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We derive the spectrum and the total cross section of electromagnetic e+e− pair production in the 
collisions of two nuclei at low relative velocity β . Both free–free and bound-free e+e− pair production 
is considered. The parameters ηA,B = Z A,Bα are assumed to be small compared to unity but arbitrary 
compared to β (Z A,B are the charge numbers of the nuclei and α is the fine structure constant). Due to a 
suppression of the Born term by high power of β , the first Coulomb correction to the amplitude appears 
to be important at ηA,B � β . The effect of a finite nuclear mass is discussed. In contrast to the result 
obtained in the infinite nuclear mass limit, the terms ∝ M−2 are not suppressed by the high power of β
and may easily dominate at sufficiently small velocities.
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1. Introduction

The process of electromagnetic e+e− pair production in heavy-
ion collisions plays an essential role in collider experiments. It has 
a long history of experimental and theoretical investigations. The 
process takes place in two different flavors dubbed as “free–free” 
and “bound-free” production, depending on whether the final elec-
tron is in the continuous spectrum or in the bound state with one 
of the nuclei.

As for the free–free pair production, the pioneering papers [1,2]
appeared already in 1930-s and dealt with the high-energy asymp-
totics of the process. In late 1990-s the interest to the process 
has been revived due to the RHIC experiment and approaching 
launch of the LHC experiment. In particular, the contribution of the 
higher orders in the parameters ηA,B = Z A,Bα (the Coulomb cor-
rections) in the high-energy limit has been discussed intensively, 
see Refs. [3–7] and the review [8].

The interest to the lepton pair production in collisions of slow 
nuclei appeared long ago in connection with the supercritical 
regime taking place when the total charge of the nuclei is large 
enough (at least larger than 173), see Ref. [9] and references 
therein.

Recently, in Ref. [10] the total Born cross section of the free–
free pair production has been calculated exactly in the relative 
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velocity β of the colliding nuclei. It turns out that the cross section 
is strongly suppressed as β8 at β � 1. A natural question arises 
whether such a suppression also holds for the Coulomb corrections 
(the higher terms in ηA,B ).

In the present paper we show that the Coulomb corrections 
are less suppressed with respect to β than the Born term. We 
assume that β � 1 and ηA,B � 1 and take into account the higher-
order terms in ηA,B amplified with respect to β . We consider 
both free–free and bound-free pair production. In the next section 
we perform calculations in the approximation in which both nu-
clei have constant velocities, i.e., we treat the nuclei as infinitely 
heavy objects and neglect the Coulomb interaction between them. 
This approach has severe restrictions with respect to values of β . 
These restrictions are discussed in the third section together with 
the qualitative modification of the results in the region where the 
constant-velocity approximation is not valid.

2. Pair production cross section

Let us first assume that the parameter ηA is sufficiently small to 
be treated in the leading order. In particular, we assume that ηA �
ηB , β . We neglect the Coulomb interaction between the nuclei and 
work in the rest frame of the nucleus B with z axis directed along 
the momentum of the nucleus A. Since our primary goal is the 
total cross section of the process, we find it convenient to use the 
eigenfunctions of angular momentum as a basis. In this basis the 
cross section has the form
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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dσ = 1

β
2πδ

(
βqz − ε − ε̃

)∑
|M|2 d3q

(2π)3

dp

2π

dp̃

2π
(1)

where β is the relative velocity of the nuclei, q is the space com-
ponents of the momentum transfer to nucleus A, ε = √

p2 + m2 is 
the electron energy, m is the electron mass, and the correspond-
ing quantities with tildes are related to a positron. The summation 
in Eq. (1) is performed over all discrete quantum numbers related 
to the states of both particles, i.e., over the total angular momen-
tum J , its projection M , and two possible values of L = J ± 1/2, 
related to the parity of the state. Within our accuracy, the matrix 
element M reads

M = 4πηA

ωq2

∫
dreiq·rq · J ,

J = U+ (ηB , κ, ε|r)α V
(
ηB , κ̃, ε̃|r) . (2)

Here ω = ε + ε̃, U (ηB , κ, ε|r) is the electron wave function with 
the energy ε, the total angular momentum J = |κ | − 1

2 , and L =
J + 1

2 sgnκ . This wave function is the solution of the Dirac equation 
in the attractive potential −ηB/r. The function V

(
ηB , κ̃, ε̃|r) is the 

negative-energy solution of the Dirac equation corresponding to 
the charge conjugation of the positron wave function, so that

V
(
ηB , κ̃, ε̃|r) = iγ2U∗ (−ηB , κ̃, ε̃|r) .

In the derivation of Eq. (2) we have used the gauge in which the 
photon propagator has the form

Dab = −4π(δab − qaqb/ω2)

ω2 − q2
, D0a = D00 = 0 .

The limit β � 1 is quite special. From kinematic constraints, it 
is easy to conclude (cf. Ref. [10]) that the characteristic momentum 
transfers to both nuclei are of the order of m/β � m. A simple 
estimate r ∼ β/m � 1/mηB justifies using the small-r asymptotics 
of the Coulomb wave functions:

U (ηB , κ, ε|r) =
(

f (r)�κM

−ig (r) (σn)�κM

)
,

V
(
ηB , κ̃, ε̃|r) =

(
g̃ (r)�−κ̃M

−i f̃ (r) (σn)�−κ̃M

)
, (3)

where n = r/r, �κM = � J LM is the spherical spinor, and the radial 
wave functions read

f (r)
g (r)

}
= Crγ −1

⎧⎨
⎩

κ−γ
ηB

+ r
2γ +1 [ε (2γ − 2κ + 1) + m]

1 − r(κ−γ )
(2γ +1)ηB

[ε (2γ + 2κ + 1) − m]

f̃ (r)
g̃ (r)

}
= C̃rγ̃ −1

⎧⎪⎨
⎪⎩

− κ̃−γ̃
ηB

+ r
2γ̃+1

[
ε̃

(
2γ̃ − 2κ̃ + 1

) + m
]

1 + r
(
κ̃−γ̃

)(
2γ̃+1

)
ηB

[
ε̃

(
2γ̃ + 2κ̃ + 1

) − m
] (4)

Here

C = p

ε

√
1 + γ

κ

1 + mγ
εκ

eπν/2
∣∣∣∣� (γ + 1 + iν)

� (2γ + 1)

∣∣∣∣ (2p)γ ,

γ =
√

κ2 − η2
B , ν = εηB/p ,

C̃ = C
(
ηB → −ηB , ε → ε̃, κ → κ̃

)
.

Let us assume for the moment that β � ηB � 1. Then the 
underlined terms can be safely neglected due to the estimate 
r ∼ β/m. Moreover, due to the same estimate, the leading con-
tribution to the sum in Eq. (1) is given by the terms with κ = ±1
and κ̃ = ±1. If we also assume that ηB � 1, then only the contri-
butions of two states with(
κ, κ̃

) = (+1,−1) and
(
κ, κ̃

) = (−1,+1)

survive. The underlined terms in Eq. (4) become important for 
ηB � β . In this region, in addition to the two states mentioned 
above, the states with 

(
κ, κ̃

)
equal to

(+1,+2) , (−1,−2) , (+2,+1) , and (−2,−1)

also should be taken into account. Integrating over r in Eq. (2), 
substituting the result in Eq. (1), and integrating over q, we obtain 
the cross section σ f f of the free–free pair production:

dσ f f

dεdε̃
= η2

Aη2
Bβ6 pp̃

π
(
ε̃ + ε

)8

{
π2η2

B

(
εε̃ − m2

)

− 128πηBβ(ε̃ − ε)

27(ε̃ + ε)

(
εε̃ − 2m2

)

+ 16β2

45
(
ε̃ + ε

)2

[(
33εε̃ − 49m2

)(
ε2 + ε̃2

)

− 14ε2ε̃2 + 78m2εε̃ − 32m4
]}

. (5)

The relative order of the three terms in braces is regulated by 
the ratio ηB/β . When this ratio is small, the last term dominates. 
This term coincides with the Born result obtained in Ref. [10], 
as should be. The parameter ηB/β appears due to the “acciden-
tal” suppression of the Born amplitude of pair production and has 
nothing to do with the Sommerfeld–Gamov–Sakharov factor.

The bound-free pair production can be treated exactly in the 
same way as the free–free pair production. It appears that an elec-
tron is produced mostly in ns1/2 states (κ = −1). The positron 
spectrum reads

dσbf

dε̃
= η2

Aη5
Bβ6 2m3

(
ε̃ − m

)
p̃(

ε̃ + m
)8

ζ3

{
π2η2

B − 128πηBβ(ε̃ − 2m)

27(ε̃ + m)

+ 16β2

15
(
ε̃ + m

)2

[
11ε̃2 − 10mε̃ + 27m2

]}
, (6)

where the Riemann zeta function ζ3 = ∑∞
n=1

1
n3 comes from sum-

mation over the principal quantum number. It is quite remarkable 
that Eq. (6) can be obtained from Eq. (5) by the simple substitu-

tion pεdε
2π2 → ∑

n |ψns (0)|2 = ∑
n

m3η3
B

πn3 followed by the replacement 
ε → m. This substitution works because of the factorization of 
hard-scale r ∼ β/m and soft-scale r ∼ 1/mηB contributions.

The total cross sections are obtained by the direct integration 
over energies (energy)1:

σ f f = η2
Aη2

Bβ6

1050πm2

{
π2η2

B + 592

105
β2

}
,

σbf = 16η2
Aη5

Bβ6

15015m2
ζ3

{
π2η2

B + 976

153
β2

}
. (7)

1 Note that Eq. (7) is in obvious contradiction with the results of Refs. [11,12]. 
The origin of discrepancy is different for these two papers. As it concerns free–free 
pair production, in Ref. [11] two definitions for the total momentum transfer from 
the nuclei (differing by the relative sign between momentum transfers from each 
nucleus) appear to be mixed. Meanwhile, in Ref. [12] the space components of mo-
mentum transfer from the projectile nucleus (of the order of m/β � m!) are totally 
omitted in the annihilation current.



342 R.N. Lee, A.I. Milstein / Physics Letters B 761 (2016) 340–343
Fig. 1. Diagrams of the e+e− pair production with the account of the first Coulomb 
correction in ηB .

The main contribution to the integral is given by the region p ∼ m, 
p̃ ∼ m. Note the cancellation of the terms ∝ ηB in braces for both 
free–free and bound-free cross sections. While this cancellation for 
the free–free case is a trivial consequence of the charge parity con-
servation, for the bound-free case it comes as a sort of surprise.

As it concerns the free–free pair production, the results (5) and 
(7) can be reproduced in a completely independent way. Namely, 
one can obtain the matrix element of the process in conventional 
diagrammatic technique taking into account the diagrams shown 
in Fig. 1 and calculating the contribution of the region where all 
Coulomb exchanges have momenta ∼ m/β .

This contribution gives the correct amplitude up to the Coulomb 
phase which cancels in the cross sections (5) and (7).

Let us now assume that ηA ∼ ηB . Then the higher-order terms 
in ηA should be treated on the same basis as those in ηB . How-
ever, the account of these terms is not reduced to the substitution 
ηA ↔ ηB in Eqs. (5), (6), and (7). Speaking of the free–free pair 
production, the substitution ηA ↔ ηB should be taken into account 
on the level of matrix element, but not in the cross section. The 
relative phase between the contributions ∝ ηAη2

B and ∝ η2
AηB to 

the matrix element can be fixed from the diagrammatic approach 
mentioned above. Then we obtain

dσ f f

dεdε̃
= η2

Aη2
Bβ6 pp̃

π
(
ε̃ + ε

)8

{
π2 (ηA + ηB)2

(
εε̃ − m2

)

− 128π (ηA + ηB)β(ε̃ − ε)

27(ε̃ + ε)

(
εε̃ − 2m2

)

+ 16β2

45
(
ε̃ + ε

)2

[(
33εε̃ − 49m2

)(
ε2 + ε̃2

)

− 14ε2ε̃2 + 78m2εε̃ − 32m4]} ,

σ f f = η2
Aη2

Bβ6

1050πm2

{
π2 (ηA + ηB)2 + 592

105
β2

}
. (8)

For the bound-free pair production we have

dσbf

dε̃
=

(
η2

Aη5
B + η2

Bη
5
A

)
β6 2m3

(
ε̃ − m

)
p̃(

ε̃ + m
)8

ζ3

{
π2 (ηA + ηB)2

− 128π (ηA + ηB)β(ε̃ − 2m)

27(ε̃ + m)

+ 16β2

15
(
ε̃ + m

)2

[
11ε̃2 − 10mε̃ + 27m2

]}
,

σbf = 16
(
η2

Aη5
B + η2

Bη
5
A

)
β6

15015m2
ζ3

{
π2 (ηA + ηB)2 + 976

153
β2

}
.

(9)
Note that σ f f � σbf for ηA, ηB � 1, in contrast to the state-
ment in Ref. [12]. It is interesting that in the supercritical case, 
Z A + Z B > 173, the relation between σ f f and σbf is opposite (see 
e.g., Ref. [13]), since in this case at β → 0 due to the energy con-
servation law the electron can be produced in the bound state but 
not in the free state.

3. Account for the finite nuclear mass

The results (8) and (9) are obtained in the limit M A, MB → ∞. 
We show in this section that the account for the finite nuclear 
mass leads to an essential modification of both free–free and 
bound-free pair production cross sections at sufficiently small β .

One of the sources, which restrict the applicability of Eqs. (8)
and (9), is a deviation of the nuclear trajectories from the straight 
lines due to the Coulomb interaction between the nuclei. This de-
viation can be neglected if a shift of the minimal distance between 
the nuclei is smaller than the impact parameter ρ:

Z A Z Bα

Mrβ2
� ρ , Mr = M A MB

M A + MB
, (10)

where M A and MB are the masses of the corresponding nuclei. 
Substituting ρ ∼ β/m we come to the constraint

β �
(

mZ A Z Bα

Mr

)1/3

∼
(

mηmax

Mp

)1/3

, (11)

where Mp is the proton mass and ηmax = max{ηA, ηB}. Let us 
discuss qualitatively the modification of the cross section at β �(

mηmax
Mp

)1/3
. First of all let us consider the dependence of the cross 

section dσ f f on the impact parameter ρ at β � ηmax � 1. Simi-
larly to the derivation of Eq. (8), we obtain

dσ f f

dεdε̃dρ
= 4η2

Aη2
Bβ4 pp̃

9
(
ε̃ + ε

)6 (ηA + ηB)2 (εε̃ − m2)(1 + a)2 e−2a ,

a = (ε̃ + ε)
ρ

β
. (12)

Integrating over ρ we obtain the first term in Eq. (8). If we con-
sider the classical motion of the nuclei interacting by the Coulomb 
field, we find that the minimal distance ρ between the nuclei and 
the relative velocity β at this point are expressed via the impact 
parameter ρ0 and the relative velocity β0 at infinity as

ρ = (
√

1 + �2 + �)ρ0 , β = (
√

1 + �2 − �)β0 ,

� = Z A Z Bα

Mrβ2ρ0
. (13)

Then the parameter a in Eq. (12) can be written as

a = (ε̃ + ε)Z A Z Bα

Mrβ
3
0 �

(
√

1 + �2 + �)2 . (14)

Calculating the minimum value of the quantity a with respect to � , 
we find that

a ≥ 33/2(ε̃ + ε)Z A Z Bα

Mrβ
3
0

. (15)

Therefore, it follows from Eq. (12) that the cross section σ f f is 
exponentially small at mZ A Z Bα/(Mrβ

3
0 ) � 1. The same conclusion 

is valid for the bound-free cross section.
Suppose now that the condition (11) holds. Since the results (8)

and (9) are strongly suppressed by the factor β6, it is natural to 
ask whether the contributions formally suppressed with respect to 
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m/Mr may dominate at sufficiently small β . The answer is positive. 
Let us consider the “bremsstrahlung” mechanism of pair produc-
tion, when the pair is produced by a virtual photon emitted by the 
scattered nucleus. We consider the case Z A Z Bα/β � 1 when the 
motion of the nuclei is classical. Then the cross section of the e+e−
pair production can be written as a product of the cross section σγ

of bremsstrahlung of virtual photon with the energy ω = ε̃+ε and 
the probability of virtual photon conversion into e+e− pair. We as-
sume that 2m < ω � Mrβ

2 so that σγ can be calculated in the 
non-relativistic dipole approximation. We have [14]

dσ B S
f f = α

2π
�

(
2m

ω

)
dσγ ,

dσγ = 16α(Z A Z Bα)2

3β2

(
Z A

M A
− Z B

MB

)2

G

(
ω

ω0

)
dω

ω
,

�(x) =

√
1−x2∫
0

dt
t2

1 − t2

√
1 − x2

1 − t2

(
1 + x2

1 − t2

)(
1 − t2

3

)
,

(16)

where ω0 = Mrβ
3

Z A Z Bα and the function G(ν) has the following 
asymptotic forms

G(x) = ln(1/x) for x � 1 ,

G(x) = π√
3

exp(−2πx) for x � 1 . (17)

It is seen from Eq. (16) that σ B S
f f is exponentially small for 

m � ω0, which is in agreement with our previous statement. For 
m � ω0, the main contribution to the integral over ω is given by 
the region m � ω � ω0. Then, taking into account that �(x) ≈
− 2

3 ln x at x � 1, we obtain in the leading logarithmic approxima-
tion

σ B S
f f = 8η2

Aη2
B

27π β2

(
Z A

M A
− Z B

MB

)2

ln3
(ω0

m

)
. (18)

It is seen that the contribution (18) to σ f f starts to dominate over 
(8) very soon as β decreases.

4. Discussion and conclusion

Let us discuss our results. We have calculated the infinite-mass 
limit of the free–free and bound-free pair production cross sec-
tions, Eqs. (8) and (9). As expected, the bound-free pair production 
cross section is much smaller than the free–free one, with the rel-
ative magnitude ∼ η3. In the region β � ηA,B both cross sections 
essentially deviate from the results obtained in the leading order 
in ηA,B . This is due to the “accidental” suppression of the Born 
amplitude. In this connection, it is interesting to compare Eqs. (8)
and (9) with the corresponding cross sections σ (0)

f f and σ (0)

bf for the
production of scalar particles. Using the same technique we easily 
obtain

dσ
(0)

f f

dεdε̃
= 16η2

Aη2
Bβ4 pp̃

3π
(
ε̃ + ε

)6
, σ

(0)

f f = 4η2
Aη2

Bβ4

135πm2
,

dσ
(0)

bf

dε̃
= 32ζ3η

2
Aη2

B(η3
A + η3

B)β4m2 p̃

3
(
ε̃ + m

)6
,

σ
(0)

bf = 64ζ3η
2
Aη2

B(η3
A + η3

B)β4

315m2
. (19)

The result for σ (0)

f f coincides with the asymptotics in Eq. (17) of 
Ref. [10].2 In contrast to the spinor case, the cross sections (19) do 
not contain the terms of relative order ηA,B/β since the leading-
order contribution in ηA,B is not suppressed by the power of β
anymore. We note that the Coulomb corrections in Eqs. (8) and 
(9) are still more strongly suppressed in β than the Coulomb cor-
rections to the corresponding cross sections for scalar particles, 
though the suppression is only β2, which is to be compared with 
β4 for the ratio of the leading terms in ηA,B .

Finally, we have obtained the contribution (18) of the brems-
strahlung mechanism which appears due to the account of the 
finite nuclear mass. It turns out that this contribution starts to 
dominate very soon when β decreases. This severely restricts the 
region of applicability of the results (8) and (9).
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