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Possible negative effects of increased competition for land include pressures on biodiversity, rising food prices
and GHG emissions. However, neoclassical economists often highlight positive aspects of competition, e.g. in-
creased efficiency and innovation. Competition for land occurs when several agents demand the same good or
service produced from a limited area. It implies that when one agent acquires scarce resources from land, less re-
source is available for competing agents. The resource competed for is often not land but rather its function for
biomass production,whichmay be supplanted by other inputs that raise yields. Increased competitionmay stim-
ulate efficiency but negative environmental effects are likely in the absence of appropriate regulations. Competi-
tion between affluent countries with poor people in subsistence economies likely results in adverse social and
development outcomes if not mitigated through effective policies. The socioecological metabolism approach is
a framework to analyze land-related limits and functions in particular with respect to production and consump-
tion of biomass and carbon sequestration. It can generate databases that consistently link land usedwith biomass
flows which are useful in understanding interlinkages between different products and services and thereby help
to analyze systemic feedbacks in the global land system.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Motivated by surging prices of many agricultural products, competi-
tion for land has received increased attention (Coelho et al., 2012;
Lambin and Meyfroidt, 2011; Haberl et al., 2014; Smith et al., 2010,
2014, in press). Concerns related to competition for land include environ-
mental issues such as increasing pressure on forested areas and ecologi-
cally valuable, biologically diverse ecosystems. In addition, food prices,
and therefore land rents,may increase as a result of drivers such as the ris-
ing food demand of the growing world population together with in-
creased bioenergy demand and regulations to reduce losses of forest or
other valuable ecosystems, which may constrain the expansion of farm-
land for foodproduction (Popp et al., 2011;Wise et al., 2009).While rising
prices of land or its products may benefit land owners/users, they nega-
tively affect consumers and may reduce food security. Loss of forests or
other carbon-rich ecosystems related to the area demand of additional
bioenergy provisionmay result in increased greenhouse gas (GHG) emis-
sions, thereby counteracting or even negating the stated aim of bioenergy
rsitaet Klagenfurt, Wien, Graz,
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policies to mitigate climate change (e.g., Creutzig et al., in press; Haberl,
2013; Searchinger et al., 2008; Smith et al., in press).

In this literature, competition for land is largely seen as detrimental,
resulting in rising prices for agricultural products, reduced food security,
loss of valuable ecosystems or GHG emissions (Coelho et al., 2012). Com-
petition for land is a systemic phenomenon resulting from the interplay of
the above-mentioned or other drivers (Smith et al., 2010, in press). Moti-
vated by concerns over a “looming land scarcity” (Lambin andMeyfroidt,
2011), classifications for different types of competition for land have been
proposed: production vs. production (e.g. food vs. fuel), production vs.
conservation (e.g. food vs. nature conservation) or built-up or urban vs.
production or conservation (Haberl et al., 2014).

Although scholars from both economics and ecology recognize poten-
tially detrimental effects of competition, they also identify positive as-
pects, e.g., by exerting pressure to raise efficiency and foster innovation.
Interestingly, such effects have so far not featured prominently in the
discussion of competition for land, although they were not completely
ignored. For example, it was argued that increased competition for land
from growing bioenergy supply under the assumption that forest area is
protected will stimulate technological progress in raising agricultural
yields, albeit at higher monetary (Popp et al., 2012) and ecological
(IAASTD, 2009; Smith et al., 2014) costs.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1. Two meanings of the notion “competition” as used in the ecological literature,
shown here in the simplest case with only two competing agents.
Source: own graph, after Birch, 1957; Passarge and Huisman, 2002.

2 This notion has been extended to the hypothesis that n species can co-exist on n re-
sources in well-mixed habitats (Levin, 1970). Species may coexist, however, if they use
the same resource differently as a result of “resource partitioning” (Cain et al., 2008). Later
work has suggested that the frequency and severity of disturbancesmay alleviate such re-
strictions and allowmore species to coexist, i.e. the “intermediate disturbance” hypothesis
(Connell, 1978). Current work suggests that species interaction may produce unstable or
chaotic dynamics and equilibrium may be the exception rather than the rule in ecosys-
tems; hence competitive exclusion in equilibrium systems may be a lot less ubiquitous
than previously thought (Passarge and Huisman, 2002; Sommer and Worm, 2002).

3 A substancemay be a resource or a factor, depending on the circumstances. For exam-

425H. Haberl / Ecological Economics 119 (2015) 424–431
This article aims to discuss the potentialmerits of the socioeconomic
metabolism approach in analyzing competition for land. It starts by
summarizing the meaning of competition in various disciplines, in par-
ticular ecology and economics, and relates it to land (Section 2). The po-
tential contribution of a sociometabolic perspective to understanding
competition for land is discussed in Section 3. Section 4 provides out-
look and conclusions.

2. What is Competition for Land?

2.1. Competition in Ecology and Economics

The notion of competition is used in many scientific disciplines with
widely varying meanings depending on the context. In this article, I
focus on two concepts from the ecological literature, (a) interference
competition and (b) resource competition (Fig. 1). In both concepts,
competition includes a negative effect of one agent on another. Interfer-
ence competitionmeans that agents harm each other directlywhen try-
ing to acquire a scarce resource. In resource competition, the negative
effect results from reduced availability of the resource for the inferior
competitor.

In ecology, “agents”maybe individual organisms of the same species
(“intraspecific competition”) or different species (“interspecific compe-
tition”). Intraspecific competition is a density-dependent process that
limits population growth, whereas interspecific competition is one of
themain biotic interactions structuring biotic communities and playing
an important role in evolutionary processes (Cain et al., 2008). Some
detrimental direct interactions between organisms such as predation
or parasitism are usually1 excluded from the definition of competition
(Birch, 1957), mainly because predator–prey and parasite–host rela-
tionsmostly result in the coexistence of both species. In contrast, an im-
portant aim of ecologists is to understand the role of competition in
structuring biological communities throughwhat is called the “compet-
itive exclusion principle,” i.e. the assumption that among two species
using the same resource in the same way, one species will outcompete
1 Sometimes the notion of competition is used so broadly that it becomes more or less
synonymous with “selection”; i.e. any process contributing to the “struggle for existence”
would fall within that concept – a use of the notion that is, however, mostly seen to be too
inclusive to be useful (Birch, 1957).
the other – in other words, two species using the same resource in the
same way cannot coexist (Gause, 1934; Hardin, 1960).2 An important
distinction is that between resources and factors: While factors (e.g.
temperature) may affect organisms, they are not depleted— in contrast
to resources such as water, nutrients, food, sunlight or space: if a re-
source is used or occupied by one organism, the availability of that re-
source for another organism is reduced by that amount.3 While
detrimental effects of competition on inferior competitors are recog-
nized, the ecological literature also highlights some of its positive
aspects, e.g. as part of evolutionary processes or in the regulation of pop-
ulations in ecosystems (Cain et al., 2008).

In neoclassical economics, competition is cherished as the force
guaranteeing that interactions of profit-maximizing, self-interested in-
dividuals on markets result in both productive and allocative efficiency.
Competition is seen as Adam Smith's famous invisible hand in action,
securing optimal use of scarce resources in meeting society's unlimited
wants (Rohlf, 2008). Neoclassical economists usually distinguish situa-
tions of competition in “perfect markets” (numerous buyers and sellers
with complete information on supply and demand prices trade homog-
enous goods) from “imperfectmarkets”where these assumptions are to
some extent violated. The complementary notion of Schumpeterian
“entrepreneurial competition” is focused on the role of “creative de-
struction” and innovation: successful introduction of new products by
entrepreneurs allows them to escape competition for some period in
which they can enjoy the benefits of being “temporary monopolists.”
This phase is, however, soon followed by imitation by other producers
resulting in renewed competition that reduces monopoly rents. Entre-
preneurial competition hence allows for (at least temporary) coexis-
tence of cooperation and coordination (which are both involved in
innovation) with competition (Breton, 1996).4

Because competition is seen as a key element of technological prog-
ress and economic efficiency, it is widely accepted that it should be pro-
moted by the state through appropriate policies, e.g. by antitrust laws
preventing monopolies hence enabling competition and by regulations
ensuring market fairness and avoiding collusion (Molitor, 1992). One
might say that, while they regard resource competition as benign, neo-
classical economists tend to call for rules to exclude most forms of “in-
terference competition” according to Fig. 1. Only for few markets
would many neoclassical economists agree that they should be exclud-
ed from competition, e.g. in the case of products or serviceswhere econ-
omies of scale are large enough to justify natural monopolies (Sharkey,
1983), e.g. electricity grids, or for public goods that cannot be procured
profitably by private companies (Rohlf, 2008).

However, not all economists agree that competition is overwhelm-
ingly benign. Even neoclassical economists usually accept that markets
fail to result in socially optimal outcomes when external costs are not
properly reflected in prices (Rohlf, 2008). Ecological economists have
suggested that international competition may result in a “race to the
bottom” of social and environmental standards leading to inequality,
ple, although animals use oxygen it usually does not become scarce (and hence is not a
limited resource) under free air conditions — but in the soil it is a limited resource for
which competition may be intensive (Cain et al., 2008).

4 The economic competition framework has been extended to the political sphere in a
concept claiming that governments compete in several ways: between its own compo-
nents, among each other, as well as with private actors (companies) in supplying goods
and services (Breton, 1996).
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poverty, and environmental destruction (Daly, 1993). Structural in-
equalities between rich countries of theGlobal North andpoor countries
of the Global South are thought to result in environmental cost shifting
(Muradian and Martinez-Alier, 2001) and “ecologically unequal
exchange” (Hornborg, 1998). Societies which depend to a substantial
degree on land for their subsistence – and hence only to some extent
rely onmarkets organized bymoneyflows – often use “languages of val-
uation” that are incompatible with the money-based cost–benefit anal-
yses underlying competition in market economies. In many cases, they
lack effective institutions and governance to protect their resource
access. These societies usually fare badly when competing over the re-
sources that sustain their livelihoods, e.g. productive land, clean water
or genotypes of animals and plants they use, with companies supplying
resources to consumers in urban centers in industrialized countries
(Martinez-Alier, 2002). There are many documented cases where such
resource struggles have escalated into violent conflicts (Adano et al.,
2012; Alston et al., 2000; Anguelovski and Martínez Alier, 2014), i.e. in-
terference competition.

2.2. Land as a Resource

Competition for land is a form of resource competition, with land
being the finite and, in the short run, non-renewable resource for
which different actors (e.g., firms) compete. The scheme in Fig. 1 can
be useful to inspire questions such as the following:

1. What functions of land are competed for? In many cases, other re-
sources can substitute land as an input, e.g. when fossil fuels replace
biomass as an energy source. Indeed, attempts to revert that trend by
substituting biomass for fossil fuels is oneof themain drivers of rising
competition for land (Smith et al., 2010). Different functions of land
are mutually exclusive, while others can be combined, e.g. in multi-
functional landscapes (e.g. de Groot, 2006; Coelho et al., 2012).

2. Inwhat sense is land limited?While the planet's land surface isfinite,
its output in terms of agricultural or forestry products can be in-
creased through land-use intensification; however, in this case
other resources are required, such as fertilizer or labor (Boserup,
1965; Erb et al., 2013; Turner and Doolittle, 1978).

3. Who are the actors that compete? What are the functions of land
they need or desire? Often the same actor requires more than one
competing function (e.g. consumers want habitation, food, fuel and
biodiversity).

4. What are the mechanisms of competition and in which institutional
setting is it played out? Examples aremarkets (for land and products
from land), regulation, social or political conflicts discussed in politi-
cal ecology (Martinez-Alier, 2002; Martinez-Alier et al., 2010). The
“land grab” discussion (Anguelovski and Martínez Alier, 2014; Friis
and Reenberg, 2010; Messerli et al., 2013) is a good example for
the importance of asking which actors compete for land in what so-
cial setting. It shows that institutional and social contexts in which
competition for land and other resources is played out are important,
including factors such as development context, property rights, land
tenure or bargaining power, which are influencing its outcomes
(Bustamante et al., 2014; Creutzig et al., 2013).

To tackle these questions it is useful to consider the socioeconomic
functions of land (Verburg et al., 2009); e.g. based on the ecosystem ser-
vice framework. Apart from its obvious function to provide space for
buildings and infrastructures, as well as area required for mining and
waste deposits (Dunlap and Catton, 2002), land is valued for the provi-
sioning, regulating, and cultural ecosystem services it provides (Braat
and de Groot, 2012; Millennium Ecosystem Assessment, 2005). Using
land for buildings and infrastructures excludes or strongly reduces
other services, except for cases such as greenhouse horticulture or ver-
tical gardening. Cities and rural settlements, representing a mosaic of
buildings and vegetated spaces, may nevertheless host biologically
diverse communities delivering a variety of ecosystem services (Haase
et al., 2014).

Apart from hunting and gathering, the delivery of provisioning ser-
vices by land largely depends on its societal colonization, i.e. purposive
alteration through agriculture (cropping, livestock rearing) and forestry
(Fischer-Kowalski and Haberl, 1997). The quantities of products deliv-
ered – food, feed, fiber, bioenergy – depend on the suitability and man-
agement of the land, in particular on land-use intensity (Boserup, 1965;
Erb et al., 2013; Turner and Doolittle, 1978; Section 3). However, agri-
culture and forestry often exclude or reduce the delivery of ecosystem
services other than biomass production, e.g. biodiversity or carbon stor-
age. Activities to increase biomass production (land-use expansion and
intensification) often reduce other ecosystem services such as self-
regulating capacities or carbon storage and biodiversity (Seppelt et al.,
2013). The land-sharing vs. land-sparing framework can help in ana-
lyzing biodiversity outcomes resulting from trade-offs between land
“spared” for conservation through intensification of agriculture vs. the
use of larger areas in a manner that reduces pressures on biodiversity
at the expense of reduced productivity per unit area (Grau et al., 2013;
Phalan et al., 2011). Trade-offs between biodiversity and agricultural
production depend on the spatial configurations of landscapes
(Sabatier et al., 2013) and may be mitigated through establishment of
appropriate “land system architectures” (Turner et al., 2013). There
are also trade-offs between biomass production and carbon sequestra-
tion: high output of biomass requires conversion of forests (high carbon
stocks, low production) into agro-ecosystems (cropland and pastures
with lower carbon stocks). Although some carbon can be sequestered
on cropland e.g. through reduced tillage or use of organic fertilizers,
cropland still stores much less carbon per unit area than forests
(Smith et al., in press).

Land is not substitutable by other resources when needed as space
for buildings or infrastructures, and very difficult to replace altogether
as far as food production is concerned, but many other functions of
land for resource supply can be, and have been, supplanted. For exam-
ple, exploitation of the “subterranean forest” in coal deposits triggered
an energy transition from biomass to fossil fuels, the agrarian–industrial
transition, and has greatly reduced the role of land for securing society's
energy supply (Sieferle, 2001). Land area required formining ofmineral
resources, including fossil energy, may be substantial on local and re-
gional scales and result in competition with other land uses on local
or region scales (Haberl et al., 2014). But the area required per unit of
energy supplied is orders of magnitude smaller than if biomass is used
for energy production (Coelho et al., 2012). The switch from biomass
to mineral resources (e.g. fossil fuels) almost eliminated land-related
limits to resource supply during the agrarian–industrial transition: it
opened up the possibility to replace biomass with mineral resources
requiringmuch less land, and it allowed to hugely increase the produc-
tivity of land for food and other resources. Both processes have
unleashed henceforth unknown surges of material and energy supply
(Fischer-Kowalski and Haberl, 2007). To what extent current early
warning signals of land scarcity (Lambin and Meyfroidt, 2011) actually
signify the approaching of planetary (Rockström et al., 2009) or regional
(Dearing et al., 2014) boundaries is contested due to the option to
switch to other resources or to increase the productivity of land
(Section 3).
3. A Sociometabolic Perspective on Competition for Land

The socioeconomic use of biophysical resources such as raw mate-
rials or energy can be analyzed within the concept of socioeconomic
metabolism. This approach has generated accounts of societal material
and energy use as well as indicators of socioecological metabolism
such as the “human appropriation of net primary production” (abbrevi-
ated as HANPP). This section discusses how these concepts can help in
analyzing land-use competition.
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3.1. Socioeconomic and Socioecological Metabolism

In the last decades the socioeconomic metabolism approach has
gained importance as a concept to analyze society–nature interaction
(Ayres and Simonis, 1994; Fischer-Kowalski, 1998; Martinez-Alier,
1987). The analysis ofmaterial and energy flows involved in production
and consumption has provided an interdisciplinary framework bridging
social and natural sciences with humanities in investigating resource
efficiency, socioecological transitions, North–South relations and other
aspects of sustainability (Fischer-Kowalski and Haberl, 1997, 2007;
Muradian and Martinez-Alier, 2001).

The sociometabolic approach is useful in analyzing land systems, in
particular when extended to a “socioecological metabolism” approach
in which biophysical flows (materials, energy, or carbon) of integrated
socioecological systems are analyzed. In addition to the socioeconomic
stocks and flows included in socioeconomic metabolism, this latter ap-
proach also includes stocks and flows of materials and energy in ecosys-
tems (Erb, 2012; Haberl et al., 2013a). The “human appropriation of
net primary production” (HANPP) encompasses socioeconomic flows
(e.g. biomass harvest) and changes in ecological energy flows such as al-
terations of net primary production (NPP) resulting from land use
(Vitousek et al., 1986; Wright, 1990; Haberl, 1997). NPP is the biomass
produced by green plants through photosynthesis. HANPP is the com-
bined effect of land-use related productivity changes and harvest on
biomass availability in the ecosystem (Haberl, 1997).
3.2. A Sociometabolic Approach for Analyzing Land Scarcity

Global land is limited. Excluding Antarctica and Greenland, which
are almost entirely covered by ice shields and hence unproductive, the
area of the earth's lands is ~130 million km2 or Mkm2 (discussions
below refer to that land area). One quarter of that land has been classi-
fied as largely natural (Ellis et al., 2013; Erb et al., 2007), three quarters
are used more or less intensively for settlements and infrastructures,
croplands, grazing and forestry. Most of the “natural” area is fairly un-
productive, being cold, dry, or both; only 5–7% of global land is highly
productive and unused, which are the remnants of the world's pristine
forests (Erb et al., 2007). Apart from the possibility to further encroach
pristine forests, all additional demands for land-related resources
must bemet by changing or intensifying land usewithin the three quar-
ters of the global land that is already used, which involves competition
between land uses: either existing land-use practices change within
the same land-use class (e.g. from traditional to high-input cropping)
or land use is altered, e.g. from grazing to cropping.

Land classified as “abandoned”, “degraded” or “residual” but deemed
suitable for human use (FAO and IIASA, 2000) is seldom entirely un-
used: it is often used for cropping and grazing or as fallow land in rota-
tional cropping systems by agro-pastoralists and subsistence-oriented
farmers who are not accounted for in official statistics, or it may be
used for extensive grazing, hunting, forestry and the collection of non-
timber forestry products (Coelho et al., 2012; Erb et al., 2007; Young,
1999). In addition, abandoned land often hosts regenerating vegetation
that supports biodiversity and carbon stocks in regenerating vegetation
and soils (Kuemmerle et al., 2011; Schierhorn et al., 2013).

The area of land may be less important than its biophysical capacity
to supply biomass for food, feed,fiber and energy or to sequester carbon.
Biomass production potentials can be measured as dry matter biomass,
its carbon content or its energy equivalent.5 NPP is the total biomass
flow available in ecosystems per year for heterotrophic food webs (an-
imals, fungi, microorganisms) plus (potentially) the addition of carbon
5 In this article, biomass is referred to as dry-matter (zero water content) biomass. For
practical purposes onemay assume that 1 kg of dry-matter biomass contains 0.5 kg carbon
and has a gross calorific value of 18.5 MJ/kg (Haberl, 2013). Numbers taken from other
work that had to be converted into the dry-matter units were converted using these
factors.
to the carbon stocks in biota and soils (Haberl, 2013). The fraction of
land used for cropping (Rockström et al., 2009) may be less useful as
an indicator of planetary boundaries than the amount of yearly available
and accessible NPP, respectively the level of human use of that resource
as indicated by HANPP (Running, 2012; Erb et al., 2012a; Haberl et al.,
2013b).
3.3. Global Socioecological Biomass Flows and Competition for Land

To the extent that competition for land results from competition for
biomass, it is useful to analyze the magnitude of the total available
resource, i.e. NPP, and its human use, i.e. HANPP. Data derived from
remote sensing using the MODIS (Moderate Resolution Imaging
Spectroradiometer) NPP algorithm suggest that global terrestrial NPP
was constant from 1982 to 2009 at ~108 billion tons of dry-matter bio-
mass (Gt/yr), with b2% year-to-year variation (Running, 2012), despite
considerable increases in land-use intensity (Krausmann et al., 2013).
By contrast, results of a dynamic global vegetation model indicate that
terrestrial NPP increased by 7% from 1980 to 2005 (Krausmann et al.,
2013) due to changes in land cover, land use and climate, including
CO2 fertilization (Houghton, 2013).

Globally, the NPP of the currently prevailing vegetation (NPPact) is
estimated at 108–118 Gt/yr (Haberl et al., 2007; Running, 2012), ~10%
lower than the NPP of the potential natural vegetation assumed to
exist in the absence of land use (NPPpot). This results from human-
induced land degradation, the use of land for buildings and from the
fact that NPPact of farmland is lower than its NPPpot in the global average
(Table 1). Recent HANPP data suggest that land use raises NPPact over
NPPpot on local and regional scales, e.g. in irrigated drylands and some
intensively used humid regions in Europe (Haberl et al., 2007). But the
challenges as well as the monetary (Popp et al., 2012) and ecological
(IAASTD, 2009; Smith et al., 2014) costs of raising NPPact over NPPpot
in larger regions should not be underestimated. RaisingNPP requires in-
puts often derived directly or indirectly from non-renewable mineral
and fossil-energy resources, e.g. fuels, water, or fertilizer.While increas-
ingly using these resources risks transgressing planetary boundaries
related to climate change or biogeochemical cycles (Erb et al., 2012a;
Rockström et al., 2009), it is a powerful source of gains in land-use effi-
ciency which have greatly reduced land demand for agriculture in the
past (Burney et al., 2010).

The amount of biomass withdrawn from ecosystems each year by
humans (~20 Gt/yr) exceeds the amount of biomass used for feed,
fiber, food or bioenergy supply (~12 Gt/yr): biomass is lost during har-
vest, e.g. belowground parts of annual crop plants or plant parts
destroyed during harvest but not recovered, residues left in the field,
and biomass burned in human-induced vegetation fires.

Table 1 gives an overview of humanity's current use of the biomass
production potential of land.6 Larger harvests on croplands are possible
if NPP increases or if the ratio of commercial harvest to NPP (i.e. the har-
vest index) increases. Both effects have contributed to the past yield
growth (Krausmann et al., 2013). Although competition on agricultural
marketsmay have helped to achieve these increases in efficiency, public
sector activities such as state-funded agricultural research have also
played a major role. Until 2050, cropland area is forecast to rise by
~9% at the expense of forests aswell as the “grazing and other land” cat-
egory, but most additional production is expected from increased yields
(FAO, 2006), especially where yield gaps are high (Mueller et al., 2012).
Raising land productivity may consume substantial amounts of non-
renewable resources and incur substantial ecological costs (IAASTD,
2009; Smith et al., 2014) if not based on sustainable technologies and
6 NPPpot and NPPact were estimated using a vegetation model suggesting higher NPP
levels than MODIS but while this would affect the level of both NPPpot and NPPact, it is un-
likely to substantially affect the relation between NPPpot and NPPact (Krausmann et al.,
2013).



Table 1
Global HANPP in the year 2000 and its implications for potential biomass availability and competition for biomass.
Data sources: Erb et al., 2007; Haberl et al., 2007.

Area NPPpot NPPact NPPecoa HANPPa Comments (see text for detail)

[Mkm2] [Gt/yr]

Settlements 1.4 1.6 0.6 0.4 1.2 Global area expansion expected
Cropland 15.2 18.6 12.1 3.1 15.5 Increase of harvest requires raising NPP; some area expansion expected
Grazing and other landb 46.9 46.0 40.9 37.1 8.9 Some increase in harvest possible; cropland expansion may reduce area
Forestry 35.0 50.3 50.3 47.0 3.3 Some increases in harvest possible; cropland expansion may reduce area
Unused 32.0 14.5 14.5 14.5 – High ecological costs of increasing harvest
Total 130.4 131.0 118.4 102.1 28.9

NPPpot — NPP of potential natural vegetation; NPPact — NPP of currently prevailing vegetation; NPPeco — NPP remaining in ecosystems after harvest.
a Excluding human-induced fires which reduce NPPeco and increase HANPP by 3.5–3.8 Gt/yr but cannot be assigned to land-use classes (Lauk and Erb, 2009).
b See text for explanation.
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collaborative activities such as technology transfer from rich to poor re-
gions (Tilman et al., 2011).

The “grazing and other land” category displayed in Table 1 encom-
passes all land not included in the other land categories. This dataset
was generated assuming that all lands not explicitly unused or used
for settlements, cropland or forestry may be grazed, albeit sometimes
at very low intensity (Erb et al., 2007). This category contains “degrad-
ed” or “abandoned” land that is often deemed available for bioenergy
crops (Chum et al., 2012; Coelho et al., 2012; Nijsen et al., 2012). Most
land used for subsistence-oriented agriculture and shifting cultivation
is also expected to be included in that category (Erb et al., 2007). In-
creasing biomass supply for feed and as bioenergy feedstock from that
land is possible (Haberl et al., 2013b; Smith et al., 2012). Calculations
with a biomass balance model (Haberl et al., 2011; Erb et al., 2012b)
that explicitly considers the competition between grazing and energy
crops based on NPP and biomass use data suggest that 2–6 Gt/yr of bio-
mass for bioenergy might become available from that land until 2050 if
the landwithin the “grazing and other land” category can be intensified,
on top of the additional biomass required for livestock grazing.
Fig. 2. Global land use [1Mkm2 = 106 km2] and socioeconomic biomass flows [Gt/yr, 1 Gt= 1
1 kg biomass; approximately 18.5 MJ/kg biomass).
Data sources: area (Erb et al., 2007); biomass flows (Krausmann et al., 2008; Smith et al., 2013
Ecological costs as well as the social, political or economic challenges
of expanding biomass supply from that area may be substantial (Haberl
et al., 2013b). For example, excluding protected and biologically diverse
areas as well as politically unstable countries reduces biomass supply po-
tentials by ~45% (Erb et al., 2012b); potential effects on subsistence-based
livelihoods are largely unknown.

The largest biomass resource remaining in ecosystems exists in for-
estswhereNPPeco is almost 50 Gt/yr, but the fraction of theNPP that can
be harvested in forests without conversion to herbaceous vegetation is
at best ~30% (Schulze et al., 2012). Increasing biomass harvest beyond
that point entails replacement of forests with grasslands or croplands
and results in massive releases of carbon stored in biota and soils
(Smith et al., in press). There is an intensive ongoing, and at present
not conclusive, scientific debate to what extent biomass supply from
forests can be increasedwithout impairing ecosystemhealth and reduc-
ing carbon sinks in forests (Creutzig et al., in press; Haberl, 2013;
Holtsmark, 2012; Schulze et al., 2012).

Future competition for biomass, as well as between biomass supply
and carbon sequestration, depends on diets (Stehfest et al., 2009) and
09 tons]; biomass flows are given as dry matter biomass (approximately 0.5 kg carbon per

). Own graph, strongly modified after Smith et al. (2013).
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food supply chains. More than half of the entire biomass used by
humans globally is fed to livestock (Fig. 2). Reducing the fraction
of animal products in diets as well as losses in food supply chains can al-
leviate the intensity of future land-use competition (Erb et al., 2012b;
Smith et al., in press). However, ruminants are capable of using lands
not usable for cropland due to their ability to digest plant materials rich
in fiber and low in protein and starch, which also contributes to their
low feed conversion efficiency and gives them a special role in maintain-
ing food security in many socioecological settings (Krausmann et al.,
2008). Nevertheless, adopting diets with lower levels of animal products,
e.g. those recommended by the Harvard medical school (Stehfest et al.,
2009), would strongly reduce global competition for farmland (Smith
et al., 2013).

Important synergies that could reduce competition for landmight
be realized through a “cascade utilization” of biomass (Haberl and
Geissler, 2000; WBGU, 2009), i.e. a strategy to optimize biomass
flows (Fig. 2) through increased re-use, recycling and energetic use
of wastes and residues. A caveat is that reduced backflows of resi-
dues to soils result in degradation and carbon losses (Blanco-
Canqui and Lal, 2009); unsustainably high levels of residue use
should hence be avoided.
4. Outlook and Conclusions

Projected increases in global demands for land-based products are im-
mense: until 2050, the world population may grow to 9–10 billion and
become considerably more affluent; demand for agricultural products
could rise by 70–100% (FAO, 2006; Tilman et al., 2011). Large amounts
of biomass are additionally required in scenarios projecting 3–6 fold in-
creases of global bioenergy supply over its present value of ~50 EJ/yr
until 2050 (Chum et al., 2012; Smith et al., in press). Land is also expected
to play amajor role formitigating climate change through carbon seques-
tration (Smith et al., in press); area demand for nature conservation may
also rise (Haberl et al., 2014). Competition for land is therefore expected
to intensify, in particular under ambitious bioenergy targets and continu-
ation of current dietary trajectories. Foregoing possible future increases in
yields, e.g. to reduce detrimental effects of agricultural intensification,
might intensify competition for land area if not coupled with lower de-
mand growth. Competition for land (and GHG emissions) can be reduced
by adopting diets low in animal products and reducing food losses (Smith
et al., 2013; Stehfest et al., 2009). Substantial contributions towards in-
creased efficiency of biomass use could be achieved through “cascade uti-
lization”, considering limits to residue use related to soil conservation.
Difficulties of implementing demand-side strategies may be considerable
(Smith et al., in press).

A sociometabolic perspective helps in generating land-use data that
can be unambiguously and comprehensively related with NPP and bio-
mass flows. This is useful in analyzing systemic feedbacks between dif-
ferent land uses and between potentially competing uses of biomass
because it provides a rigorous analytical framework to reduce double
counting and inconsistencies. Concepts of competition from ecology
and economics can provide guidance in future research by structuring
research questions, e.g. what functions of land are being competed for,
to what extent they are mutually exclusive or might be reconciled,
who the competing actors are and through what socioeconomic mech-
anisms and in what institutional framework competition is played out.
Although resource competition may stimulate innovation and efficien-
cy, socioeconomic and political contexts in which inequality between
actors is strong (e.g. market vs. subsistence economies) or production
competes with conservation of ecosystems, biodiversity or carbon
stocks, considerable risks exist that competition increases inequalities
and results in detrimental environmental outcomes. Potentially nega-
tive socioeconomic aspects of land-use competition deserve more re-
search. Where they emerge, they need to be addressed through
appropriate social, economic and environmental policies.
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