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Abstract

In this article we investigate the essential spectra of a 2 × 2 block operator matrix on a Banach space.
Furthermore, we apply the obtained results to determine the essential spectra of two-group transport opera-
tors with general boundary conditions in the Banach space Lp([−a, a]× [−1,1])×Lp([−a, a]× [−1,1]),
a > 0.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this article we are concerned with the essential spectra of operators defined by a 2×2 block
operator matrix

L0 :=
(

A B

C D

)
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that act on the product of Banach spaces X × Y . In general, the operators occurring in L0 are
unbounded. The operator A acts on the Banach space X and has the domain D(A), D is defined
on D(D) and acts on the Banach space Y and the intertwining operator B (respectively C) is
defined on the domain D(B) (respectively D(C)) and acts between these spaces. Note that, in
general, L0 is neither a closed nor a closable operator, even if its entries are closed. It’s showed
that under some conditions L0 is closable (see, [1]). We shall denote L its closure.

Many problems in mathematical physics can be described by systems of mixed order linear
differential equations. Important physical information is given by the localization of the essential
spectra. The study of the problem of the essential spectrum of these operators was done by
different authors [27,33–35]. The most general results for Douglis–Nirenberg elliptic systems
were obtained by G. Grubb and G. Geymonat [13]. A successful approach has recently been
developed by F.V. Atkinson, H. Langer, R. Mennicken and A.A. Shkalikov in [1,45]. M. Damak
and A. Jeribi [3] have, recently, extended these results to a large class of operators. But the
theoretical results of the authors cited above cannot solve some physical problems, in particular
the essential spectra of two-group transport operators in L1-spaces.

To describe the essential spectra of a class of linear two-group transport operators, with ab-
stract boundary conditions, in the Banach space Xp × Xp , 1 � p < ∞, where

Xp := Lp

([−a, a] × [−1,1]), a > 0,

we will consider the operator

AH = TH + K

where TH and K are defined by

TH ψ =
(−v

∂ψ1
∂x

− σ1(v)ψ1 0

0 −v
∂ψ2
∂x

− σ2(v)ψ2

)
:=

(
TH1 0

0 TH2

)(
ψ1

ψ2

)
and

K =
(

K11 K12

K21 K22

)
where Kij , 1 � i, j � 2, are bounded linear operators defined on Xp by{

Kij :Xp → Xp,

ψj �→ Kijψj (x, v) = ∫ 1
−1 κij (x, v, v′)ψj (x, v′) dv′.

Each operator THj
, j = 1,2, is defined by⎧⎪⎪⎨⎪⎪⎩

THj
:D(THj

) ⊂ Xp → Xp,

ψj �→ (THj
ψj )(x, v) = −v

∂ψj

∂x
(x, v) − σj (v)ψj (x, v),

D(THj
) = {ψj ∈ Xp such that v

∂ψj

∂x
∈ Xp and ψi

j = Hjψ
o
j }.

The function ψj(x, v) represents the number density of gas particles having the position x and
the direction cosine of propagation v. The variable v may be thought of as the cosine of the angle
between the velocity of particles and the x-direction. The function σj (.) is a measurable function
called the collision frequency. The boundary conditions are modelled by

ψi
j = Hjψ

o
j , j = 1,2,

see Section 4 for more details.
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For a self-adjoint operator in a Hilbert space, there seems to be only one reasonable way to
define the essential spectrum: the set of all points of the spectrum that are not isolated eigenvalues
of finite algebraic multiplicity (see, for example, [39,49,50]). When dealing with non self-adjoint
closed, densely defined linear operator, T , on a Banach space X, various notions of essential
spectrum appear in application of spectral theory (see, for instance, [10,14,15,26,40,41,49]) and
the references therein. Motivated by the description of the essential spectra of transport operators,
A. Jeribi has, recently, discussed in [16–23] the essential spectra of closed densely defined linear
operators under additive perturbations.

Let X and Y be two Banach spaces. We denote by L(X,Y ) (respectively C(X,Y )) the set
of all bounded (respectively closed, densely defined) linear operators from X into Y and we
denote by K(X,Y ) the subspace of compact operators from X into Y. For T ∈ C(X,Y ), we write
D(T ) ⊂ X for the domain, N(T ) ⊂ X for the null space and R(T ) ⊂ Y for the range of T .

The nullity, α(T ), of T is defined as the dimension of N(T ) and the deficiency, β(T ), of T is
defined as the codimension of R(T ) in Y. Let σ(T ) (respectively ρ(T )) denote the spectrum
(respectively the resolvent set) of T . The set of upper semi-Fredholm operators is defined by

Φ+(X,Y ) = {
T ∈ C(X,Y ) such that α(T ) < ∞ and R(T ) is closed in Y

}
and the set of lower semi-Fredholm operators is defined by

Φ−(X,Y ) = {
T ∈ C(X,Y ) such that β(T ) < ∞}

.

Φ(X,Y ) := Φ+(X,Y ) ∩ Φ−(X,Y ) denote the set of Fredholm operators from X into Y and
Φ±(X,Y ) := Φ+(X,Y ) ∪ Φ−(X,Y ) the set of semi-Fredholm operators from X into Y. While
the number i(T ) := α(T ) − β(T ) is called the index of T , for T ∈ Φ(X,Y ). A complex number
λ is in Φ+T , Φ−T , Φ±T or ΦT if λ − T is in Φ+(X,Y ), Φ−(X,Y ), Φ±(X,Y ) or Φ(X,Y ),
respectively. If X = Y then L(X,Y ), C(X,Y ), K(X,Y ), Φ(X,Y ), Φ+(X,Y ), Φ−(X,Y ) and
Φ±(X,Y ) are replaced by L(X), C(X), K(X), Φ(X), Φ+(X), Φ−(X) and Φ±(X), respectively.

In this paper we are concerned with the following essential spectra:

σe1(T ) := {
λ ∈ C such that λ − T /∈ Φ+(X)

} := C \ Φ+T ,

σe2(T ) := {
λ ∈ C such that λ − T /∈ Φ−(X)

} := C \ Φ−T ,

σe3(T ) := {
λ ∈ C such that λ − T /∈ Φ±(X)

} := C \ Φ±T ,

σe4(T ) := {
λ ∈ C such that λ − T /∈ Φ(X)

} := C \ ΦT ,

σe5(T ) := C \ ρ5(T ),

σe6(T ) := C \ ρ6(T ),

where ρ5(T ) := {λ ∈ ΦT such that i(λ − T ) = 0} and ρ6(T ) denotes the set of those λ ∈ ρ5(T )

such that all scalars near λ are in ρ(T ). They can be ordered as

σe3(T ) := σe1(T ) ∩ σe2(T ) ⊆ σe4(T ) ⊆ σe5(T ) ⊆ σe6(T ).

The subsets σe1(.) and σe2(.) are the Gustafson and Weidmann essential spectra [15]. σe3(.) is the
Kato essential spectrum [26]. σe4(.) is the Wolf essential spectrum [15,50]. σe5(.) is the Schechter
essential spectrum [40,43] and σe6(.) denotes the Browder essential spectrum [15,24,37]. Note
that all these sets are closed and if X is a Hilbert space and T is a self-adjoint operator on X,

then all these sets coincide.
To study the Wolf essential spectrum of the operator matrix L in Banach spaces, the

authors in [1,45] used the compactness condition for the operator (λ − A)−1 (respectively
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C(λ − A)−1 and ((λ − A)−1B)∗). They showed that, under certain additional assumptions,
σe4(L) = σe4(D − C(λ0 − A)−1B) (respectively σe4(L) = σe4(A) ∪ σe4(D − C(λ0 − A)−1B)),
where L (respectively D − C(λ0 − A)−1B) is the closure of L0 (respectively D−C(λ0 −A)−1B)
and λ0 is any number in the resolvent set of A. In [3] the authors determine the essen-
tial spectra of L by assuming that (λ − A)−1 ∈ I(X) where I(X) is a nonzero two-sided
ideal of L(X) contained in the set of Fredholm perturbations. But the above assumptions
are not always satisfactory in the classical transport theory. In fact in L1-spaces the operator
C(λ − A)−1 := K21(λ − TH1 − K11)

−1 is weakly compact (see Lemma 4.3).
The aim of this paper is to extend the obtained results into a large class of operators and to

investigate the six essential spectra of a matrix operators. More precisely, let I(X) be an arbitrary
nonzero two-sided ideal of L(X) contained in F(X), where F(X) denotes the set of Fredholm
perturbations. If for some μ ∈ ρ(A) the operator C(A−μ)−1 is in I(X) and M(μ) ∈ F(X×X),
then

σe4(L) = σe4(A) ∪ σe4
(
S(μ)

)
and

σe5(L) ⊆ σe5(A) ∪ σe5
(
S(μ)

)
,

where S(μ) is the closure of D − C(μ − A)−1B and M(μ) is the operator defined by

M(μ) :=
(

0 (μ − A)−1B

C(μ − A)−1 C(μ − A)−1(μ − A)−1B

)
.

If in addition, ΦA is connected then σe5(L) = σe5(A) ∪ σe5(S(μ)). Moreover, if I(X) satisfies
some additional (reasonable) conditions, we get

σei(L) = σei(A) ∪ σei

(
S(μ)

)
, i = 1,2,

and

σe3(L) = σe3(A) ∪ σe3
(
S(μ)

) ∪ [
σe2(A) ∩ σe1

(
S(μ)

] ∪ [
σe1(A) ∩ σe2

(
S(μ)

)]
(see Theorem 3.2). Our results extend and improve many known ones in the literature. In partic-
ular, the results obtained in [1,3,45] are now special cases of the ones obtained here.

Our paper is organized as follows. In the next section we recall some definitions and pre-
liminary results. In Section 3 we investigate the essential spectra of L. The main result of this
section is Theorem 3.2. Finally, in Section 4 we apply the results obtained in Section 3 to inves-
tigate the essential spectra of a two-group transport operator with general boundary conditions
on Lp-spaces, 1 � p < ∞.

2. Notations and preliminary results

In this section we recall some definitions and we give some lemmas that we will need in the
sequel.

In the next proposition we will recall some well-known properties of the Fredholm-sets (see,
for example, [8,43]).
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Proposition 2.1.

(i) Φ+T , Φ−T and ΦT are open.
(ii) i(λ − T ) is constant on any component of ΦT .

(iii) α(λ − T ) and β(λ − T ) are constant on any component of ΦT except on a discrete set of
points at which they have larger values.

Definition 2.1. Let X and Y be two Banach spaces. An operator A ∈ L(X,Y ) is said to be weakly
compact if A(B) is relatively weakly compact in Y for every bounded subset B ⊂ X.

The family of weakly compact operators from X to Y is denoted by W(X,Y ). If X = Y the
family of weakly compact operators on X, W(X) := W(X,X) is a closed two-sided ideal of
L(X) containing K(X) (cf. [7,9]).

Definition 2.2. Let X be a Banach space. An operator S ∈ L(X) is called strictly singular if, for
every infinite-dimensional subspace M of X, the restriction of S to M is not a homeomorphism.

Let S(X) denote the set of strictly singular operators on X.

The concept of strictly singular operators was introduced in the pioneering paper by Kato [25]
as a generalization of the notion of compact operators. For a detailed study of the properties of
strictly singular operators we refer to [9,25]. Note that S(X) is a closed two-sided ideal of L(X)

containing K(X). If X is a Hilbert space then S(X)= K(X). The class of weakly compact op-
erators in L1-spaces (respectively C(Ω)-spaces with Ω a compact Haussdorff space) is nothing
else than the family of strictly singular operators on L1-spaces (respectively C(Ω)-spaces) (see
[38, Theorem 1]).

Let X be a Banach space. If N is a closed subspace of X, we denote by πN the quotient map
X → X/N. The codimension of N, codim(N), is defined to be the dimension of the vector space
X/N.

Definition 2.3. Let X be a Banach space. An operator S ∈ L(X) is said to be strictly cosingular
if there exists no closed subspace N of X with codim(N) = ∞ such that πNS :X → X/N is
surjective.

Let CS(X) denote the set of strictly cosingular operators on X. This class of operators was
introduced by Pelczynski [38], it forms a closed two-sided ideal of L(X) (cf. [46]).

Definition 2.4. A Banach space X is said to have the Dunford–Pettis property (for short property
DP) if for each Banach space Y every weakly compact operator T :X → Y takes weakly compact
sets in X into norm compact sets of Y .

It is well known that any L1-space has the property DP [6]. Also, if Ω is a compact Hausdorff
space, C(Ω) has the property DP [12]. For further examples we refer to [5] or [7, pp. 494, 497,
508 and 511]. Note that the property DP is not preserved under conjugation. However, if X is a
Banach space whose dual has the property DP, then X has the property DP (see, [12]). For more
information we refer to the paper by J. Diestel [5] which contains a survey and exposition of the
Dunford–Pettis property and related topics.
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Definition 2.5. Let X be a Banach space and R ∈ L(X). R is said to be a Riesz operator if
ΦR = C\{0}.

For further information on the family of Riesz operators we refer to [2,24] and the references
therein.

Definition 2.6. Let X and Y be two Banach spaces and let F ∈ L(X,Y ).

(i) The operator F is called Fredholm perturbation if U +F ∈ Φ(X,Y ) whenever U ∈ Φ(X,Y ).

(ii) F is called an upper (respectively lower) semi-Fredholm perturbation if U + F ∈ Φ+(X,Y )

(respectively U + F ∈ Φ−(X,Y )) whenever U ∈ Φ+(X,Y ) (respectively U ∈ Φ−(X,Y )).

We denote by F(X,Y ) the set of Fredholm perturbations and by F+(X,Y ) (respectively
F−(X,Y )) the set of upper semi-Fredholm (respectively lower semi-Fredholm) perturbations.

Remark 2.1. Let Φb(X,Y ) denote the set Φ(X,Y ) ∩ L(X,Y ). If in Definition 2.6 we replace
Φ(X,Y ) by Φb(X,Y ), we obtain the sets Fb(X,Y ), Fb+(X,Y ) and Fb−(X,Y ).

The set of Fredholm perturbations, Fb(X,Y ), was introduced and investigated in [8]. In par-
ticular, it is shown that Fb(X,Y ) is a closed subset of L(X,Y ) and if X = Y , then Fb(X) :=
Fb(X,X) is a closed two-sided ideal of L(X).

Remark 2.2. In [42], it is proved that Fb(X) is the largest ideal of L(X) contained in the family
of Riesz operators.

We recall the following result established in [28].

Lemma 2.1. [28, Lemma 2.3] Let X be a Banach space. Then

Fb(X) = F(X),

where F(X) := F(X,X).

An immediate consequence of Lemma 2.1 is that F(X) is a closed two-sided ideal of L(X).

We can deduce from Lemma 2.2 in [28] and Theorem 3.1 in [9] the following inclusions:

K(X) ⊂ S(X) ⊂ F+(X) ⊂ F(X),

K(X) ⊂ CS(X) ⊂ F−(X) ⊂ F(X),

where F−(X) := F−(X,X) and F+(X) := F+(X,X).

Remark 2.3. It is proved in [32, Section 3] that if X is a Banach space with the property DP, then

W(X) ⊂ F+(X) ∩F−(X).

We say that X is weakly compactly generating (w.c.g.) if the linear span of some weakly
compact subset is dense in X. For more details and results see [5]. In particular, all separable and
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all reflexive Banach spaces are w.c.g. as well as L1(Ω,dμ) if (Ω,μ) is σ -finite. It is proved in
[47] that if X is a w.c.g. Banach space then

F+(X) = S(X) and F−(X) = CS(X).

Remark 2.4. Let (Ω,Σ,μ) be a positive measure space and let Xp denote the spaces Lp(Ω,dμ)

with 1 � p < ∞. Since the spaces Xp , 1 � p < ∞, are w.c.g., then we can deduce from what
precedes that

K(Xp) ⊂ F+(Xp) ∩F−(Xp).

We say that X is subprojective, if given any closed infinite dimensional subspace M of X,
there exists a closed infinite dimensional subspace N contained in M and a continuous projection
from X onto N . Clearly any Hilbert space is subprojective. The spaces c0, lp (1 � p < ∞)
and Lp (2 � p < ∞) are also subprojective [48].

We say that X is superprojective if every subspace V having infinite codimension in X is con-
tained in a closed subspace W having infinite codimension in X as it exists a bounded projection
from X to W . The spaces lp (1 < p < ∞) and Lp (1 < p � 2) are superprojective [48].

Let X be a w.c.g. Banach space. It is proved in [44] that if X is superprojective (respectively
subprojective), then S(X) ⊂ CS(X) (respectively CS(X) ⊂ S(X)). Accordingly, we have the
following result:

Proposition 2.2. Let X be a w.c.g. Banach space, then

(i) If X is superprojective, then S(X) ⊂ F+(X) ∩F−(X).

(ii) If X is subprojective, then CS(X) ⊂ F+(X) ∩F−(X).

3. Essential spectra of L

The purpose of this section is to discuss the essential spectra of the matrix operator L, closure
of L0, on the space X × X, where X is a Banach space.

In the product space X × X, we consider an operator which is formally defined by a matrix

L0 =
(

A B

C D

)
,

where the operator A acts on X and has domain D(A), D is defined on D(D) and acts on the
Banach space X, and the intertwining operator B (respectively C) is defined on the domain
D(B) (respectively D(C)) and acts on X. In what follows, we will assume that the following
conditions, introduced in [45], hold:

(H1) A is closed, densely defined linear operator on X with nonempty resolvent set ρ(A).
(H2) The operator B is densely defined linear operator on X and for some (hence for all)

μ ∈ ρ(A), the operator (A − μ)−1B is closable. (In particular, if B is closable, then
(A − μ)−1B is closable.)

(H3) The operator C satisfies D(A) ⊂ D(C), and for some (hence for all) μ ∈ ρ(A), the opera-
tor C(A − μ)−1 is bounded. (In particular, if C is closable, then C(A − μ)−1 is bounded.)

(H4) The lineal D(B)∩D(D) is dense in X, and for some (hence for all) μ ∈ ρ(A) the operator
D − C(A − μ)−1B is closable, we will denote by S(μ) its closure.
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Remark 3.1.

(i) It follows, from the closed graph theorem that the operator

G(μ) := (A − μ)−1B

is bounded on X.
(ii) We emphasize that neither the domain of S(μ) nor the property of being closable de-

pend on μ. Indeed, it follows from the Hilbert identity that

S(λ) = S(μ) + (μ − λ)F (λ)G(μ), (3.1)

where

F(λ) := C(A − λ)−1, λ,μ ∈ ρ(A).

Since the operators F(λ) and G(μ) are bounded, then the difference S(λ)−S(μ) is bounded.
Therefore, neither the domain of S(μ) nor the property of being closable depend on μ.

We recall the following result which describes the closure of the operator L0.

Theorem 3.1. [1] Let conditions (H1)–(H3) be satisfied and the lineal M := D(B) ∩ D(D) be
dense in X. Then the operator L0 is closable if and only if the operator S(μ),μ ∈ ρ(A), is
closable in X. Moreover, the closure L of L0 is given by

L = μ −
(

I 0

F(μ) I

)(
μ − A 0

0 μ − S(μ)

)(
I G(μ)

0 I

)
(3.2)

or, spelled out⎧⎪⎨⎪⎩
L :D(L) ⊂ X × X → X × X,(
x
y

) → L
(
x
y

) = (
A(x+G(μ)y)−μG(μ)y
C(x+G(μ)y)−S(μ)y

)
,

D(L) = {(
x
y

) ∈ X × X such that x + G(μ)y ∈D(A), y ∈ D(S(μ))
}
.

Note that, in view of Remark 3.1(ii) the description of the operator L does not depend on the
choice of the point μ ∈ ρ(A).

Unless otherwise stated in all that follows I(X) will denote an arbitrary nonzero two-sided
ideal of L(X) satisfying

(H5) I(X) ⊆ F(X)

and we will denote, for μ ∈ ρ(A), by M(μ) the operator

M(μ) :=
(

0 G(μ)

F(μ) F (μ)G(μ)

)
. (3.3)

Remark 3.2. It should be observed that if I(X) is a nonzero two-sided ideal of L(X) satisfy-
ing (H5), then

F0(X) ⊆ I(X) ⊆ F(X),

where F0(X) stands for the ideal of finite rank operators. This follows from Lemma 2.1 and [8,
Proposition 4, p. 70].
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Lemma 3.1. Let I(X) be any nonzero two-sided ideal of L(X) satisfying (H5). If F(μ) ∈ I(X)

for some μ ∈ ρ(A), then F(μ) ∈ I(X) for all μ ∈ ρ(A).

Proof. Let μ0 ∈ ρ(A), such that F(μ0) ∈ I(X). We have

F(μ) = F(μ0)
[
I + (μ − μ0)(μ0 − A)−1]−1

,

for all μ in ρ(A). This implies, by the ideal propriety of I(X), that F(μ) ∈ I(X). �
Lemma 3.2. Let I(X) be a nonzero two-sided ideal of L(X) satisfying (H5). If F(μ) ∈ I(X) for
some μ ∈ ρ(A), then

(i) σei(S(μ)), i = 4,5 does not depend on μ.

(ii) If I(X) ⊂ F+(X), then σe1(S(μ)) does not depend on μ.

(iii) If I(X) ⊂ F−(X) or [I(X)]∗ ⊂ F+(X∗), then σe2(S(μ)) does not depend on μ.

(iv) If I(X) ⊂ F+(X) ∩F−(X), then σe3(S(μ)) does not depend on μ.

Proof. The proof of this lemma follows from Eq. (3.1) and [28, Theorem 3.1]. �
We are now in the position to express the main result of this section. In the following we will

denote the complement of a subset Ω ⊂ C by CΩ.

Theorem 3.2. Let the matrix operator L0 satisfy conditions (H1)–(H4), and let I(X) be any
nonzero two-sided ideal of L(X) satisfying (H5). If for some μ ∈ ρ(A), the operator F(μ) ∈
I(X), then

(i) If M(μ) ∈F(X × X) for some μ ∈ ρ(A), then

σe4(L) = σe4(A) ∪ σe4
(
S(μ)

)
and

σe5(L) ⊆ σe5(A) ∪ σe5
(
S(μ)

)
.

Moreover, if Cσe4(A) is connected, then

σe5(L) = σe5(A) ∪ σe5
(
S(μ)

)
.

If in addition, Cσe5(L) is connected, ρ(L) �= ∅, Cσe5(S(μ)) is connected and ρ(S(μ)) �= ∅, then

σe6(L) = σe6(A) ∪ σe6
(
S(μ)

)
.

(ii) If I(X) ⊆ F+(X) and the operator M(μ) ∈ F+(X × X) for some μ ∈ ρ(A), then

σe1(L) = σe1(A) ∪ σe1
(
S(μ)

)
.

(iii) If I(X) ⊆ F−(X) and the operator M(μ) ∈ F−(X × X), then

σe2(L) = σe2(A) ∪ σe2
(
S(μ)

)
.



1080 N. Moalla et al. / J. Math. Anal. Appl. 323 (2006) 1071–1090
(iv) If I(X) ⊆ F+(X) ∩F−(X) and the operator M(μ) ∈ F+(X × X) ∩F−(X × X) for some
μ ∈ ρ(A), then

σe3(L) = σe3(A) ∪ σe3
(
S(μ)

) ∪ [
σe2(A) ∩ σe1

(
S(μ)

)] ∪ [
σe1(A) ∩ σe2

(
S(μ)

)]
.

Remark 3.3.

(a) If X is a w.c.g. Banach space and superprojective (respectively subprojective), then the ideal
I(X) = S(X) (respectively I(X) = CS(X)) satisfies the conditions of Theorem 3.2 (see
Proposition 2.2). Also, if we take X a Banach space with the property DP and I(X) = W(X)

(see Remark 2.3) or if we consider the ideal K(Xp) in the Lp spaces, 1 � p � ∞.
(b) The ideal of finite rank operators F0(X) is the minimal subset of L(X) for which the condi-

tions of Theorem 3.2 are valid regardless of the Banach spaces.
(c) It is noted that, in the paper [3] the authors suppose that the operator (A − μ)−1 ∈ I(X)

but in our case we suppose only that C(A − μ)−1 ∈ I(X), which is a weaker condition, and
we usually obtain the same result. So, Theorem 3.2 may be regarded as an extension of [3,
Theorem 4.2] to a larger class of operators.

(d) In the papers [1,45], the authors studied only the Wolf essential spectrum. Theorem 3.2 is an
extension of their results to different other essential spectra.

(e) If F(μ) and G(μ) are in K(X), for some μ ∈ ρ(A), then M(μ) ∈ K(X × X) ⊂ F(X × X).

(f) Let X = L1(Ω,dμ) where (Ω,Σ,μ) is a positive measure space. If F(μ) and G(μ) are in
W(X), for some μ ∈ ρ(A), then M(μ) ∈ W(X × X) ⊂ F(X × X).

Proof of Theorem 3.2. (i) Let μ ∈ ρ(A) be such that M(μ) ∈ F(X × X) and set λ ∈ C. While
writing λ − L = μ − L + (λ − μ) and using relation (3.2), we have

λ − L =
(

I 0

F(μ) I

)(
λ − A 0

0 λ − S(μ)

)(
I G(μ)

0 I

)
− (λ − μ)M(μ)

:= UV (λ)W − (λ − μ)M(μ). (3.4)

Since M(μ) ∈ F(X × X), then λ − L is a Fredholm operator if and only if UV (λ)W is a
Fredholm operator. Now, observe that the operators U and W are bounded and have bounded
inverse, hence the operator UV (λ)W is a Fredholm operator if and only if V (λ) has this property
if and only if λ − A and λ − S(μ) are Fredholm operators on X. Therefore,

σe4(L) = σe4(A) ∪ σe4
(
S(μ)

)
. (3.5)

The use of [28, Proposition 3.1(i)] and Eq. (3.4) show that, for λ ∈ ΦL,

i(λ − L) = i(λ − A) + i
(
λ − S(μ)

)
. (3.6)

It follows, immediately, from Eqs. (3.5) and (3.6) that σe5(L) ⊆ σe5(A)∪σe5(S(μ)). Suppose
now that Cσe4(A) = ρ4(A) is connected. By assumption (H1), ρ(A) is nonempty. Let μ0 ∈ ρ(A),

then μ0 − A ∈ Φ(X) and i(μ0 − A) = 0. Since ρ(A) ⊆ ρ4(A) and i(λ − A) is constant on any
component of ΦA, then i(λ − A) = 0 for all λ ∈ ρ4(A). It follows, from Eqs. (3.5) and (3.6) that

σe5(L) = σe5(A) ∪ σe5
(
S(μ)

)
. (3.7)

Assume further, that Cσe5(L) is connected. We have the set ρ5(L) = Cσe5(L) contains points
of ρ(L), which is a nonempty set. Thus, since α(λ − L) and β(λ − L) are constant on any
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component of ΦL except possibly on a discrete set of points at which they have large values
(see Proposition 2.1), then ρ5(L) ⊂ ρ6(L). This together with the inclusion σe5(L) ⊂ σe6(L)

leads to σe5(L) = σe6(L). Since, Cσe4(A) is connected, then it follows from what precedes that
σe5(A) = σe4(A). So, Cσe5(A) is connected. Using the same reasoning as before, we show that
σe5(A) = σe6(A). The condition that Cσe5(S(μ)) is connected leads to σe5(S(μ)) = σe6(S(μ)),

and the result of the assertion (i) follows from Eq. (3.7).
(ii) Let μ ∈ ρ(A) be such that M(μ) is an upper semi-Fredholm perturbation. Then, from

Eq. (3.4), we have λ − L ∈ Φ+(X × X) if and only if UV (λ)W ∈ Φ+(X × X) if and only if
λ − A and λ − S(μ) are in Φ+(X), since the operators U and W are bounded and have bounded
inverse. Then the result of (ii) follows.

(iii) The proof of this assertion may be checked in the same way as the proof of (ii).
(iv) This assertion is an immediate consequence of (ii) and (iii). �

Remark 3.4.

(a) If the operators A, B, C and D are everywhere defined and bounded, the hypothesis of
Theorem 3.2(iii) can be replaced by [I(X)]∗ ⊂ F+(X∗) and [M(μ)]∗ ∈ F+(X∗ × X∗) for
some μ ∈ ρ(A). Indeed, it is sufficient to write the relation (3.4) for the adjoint, thus

λ − L∗ = W ∗[V (λ)
]∗

U∗ − (λ − μ)
[
M(μ)

]∗
.

Now, using the fact that α(λ − L∗) = β(λ − L) and α([V (λ)]∗) = β(V (λ)) (cf. [9,26]) and
arguing as the proof of Theorem 3.2(ii), we derive, easily, the result.

(b) Assume that the operator L acts on the product of Banach spaces X×Y. Using Proposition 2
in [8, pp. 69–70] we can verify that if F(μ) ∈ Fb(X,Y ) for some μ ∈ ρ(A), then F(μ) ∈
Fb(X,Y ) for all μ ∈ ρ(A) and σei(S(μ)), i = 4,5 does not depend on μ. Therefore, it
can be showed that the result of Theorem 3.2(i) remains valid if F(μ) ∈ Fb(X,Y ) and
M(μ) ∈F(X × Y).

4. Application to two-group transport operators

The aim of this section is to apply Theorem 3.2 to study the essential spectra of a class of linear
two-group transport operators on Lp-spaces, 1 � p < ∞, with abstract boundary conditions.

Let

Xp := Lp

(
(−a, a) × (−1,1);dx dv

)
, a > 0, 1 � p < ∞.

We consider the following two-group transport operators with abstract boundary conditions:

AH = TH + K,

where

TH ψ =
(−v

∂ψ1
∂x

− σ1(v)ψ1 0

0 −v
∂ψ2
∂x

− σ2(v)ψ2

)
=

(
TH1 0

0 TH2

)(
ψ1

ψ2

)
and

K =
(

K11 K12

K21 K22

)
with Kij , i, j = 1,2, are bounded linear operators defined on Xp by
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{
Kij :Xp → Xp,

u �→ Kiju(x, v) = ∫ 1
−1 κij (x, v, v′)u(x, v′) dv′,

(4.1)

and the kernels κij : (−a, a) × (−1,1) × (−1,1) → R are assumed to be measurable.
Each operator THj

, j = 1,2, is defined by⎧⎪⎨⎪⎩
THj

:D(THj
) ⊂ Xp → Xp,

ϕ �→ (THj
ϕ)(x, v) = −v

∂ϕ
∂x

(x, v) − σj (v)ϕ(x, v),

D(THj
) = {ϕ ∈ W such that ϕi = Hjϕ

o},
where W is the space defined by

W =
{
ϕ ∈ Xp such that v

∂ϕ

∂x
∈ Xp

}
and σj (.) ∈ L∞(−1,1). ϕo, ϕi represent the outgoing and the incoming fluxes related by the
boundary operator Hj (“o” for the outgoing and “i” for the incoming) and given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕi(v) = ϕ(−a, v), v ∈ (0,1),

ϕi(v) = ϕ(a, v), v ∈ (−1,0),

ϕo(v) = ϕ(−a, v), v ∈ (−1,0),

ϕo(v) = ϕ(a, v), v ∈ (0,1).

We denote by Xo
p and Xi

p the following boundary spaces:

Xo
p := Lp

[{−a} × (−1,0); |v|dv
] × Lp

[{a} × (0,1); |v|dv
] := Xo

1,p × Xo
2,p

equipped with the norm∥∥uo,Xo
p

∥∥ := (∥∥uo
1,X

o
1,p

∥∥p + ∥∥uo
2,X

o
2,p

∥∥p) 1
p

=
[ 0∫

−1

∣∣u(−a, v)
∣∣p|v|dv +

1∫
0

∣∣u(a, v)
∣∣p|v|dv

] 1
p

,

and

Xi
p := Lp

[{−a} × (0,1); |v|dv
] × Lp

[{a} × (−1,0); |v|dv
]

:= Xi
1,p × Xi

2,p

equipped with the norm∥∥ui,Xi
p

∥∥ := (∥∥ui
1,X

i
1,p

∥∥p + ∥∥ui
2,X

i
2,p

∥∥p) 1
p

=
[ 1∫

0

∣∣u(−a, v)
∣∣p|v|dv +

0∫
−1

∣∣u(a, v)
∣∣p|v|dv

] 1
p

.

It is well known that any function u in W possesses traces on the spatial boundary {−a}×(−1,0)

and {a} × (0,1) which respectively belong to the spaces Xo
p and Xi

p (see, for instance, [4] or
[11]). They are denoted, respectively, by uo and ui .
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It is clear that the operator AH is defined on D(TH1) ×D(TH2). We will denote the operator
AH by

AH :=
(

A11 A12

A21 A22

)
,

where⎧⎪⎪⎪⎨⎪⎪⎪⎩
A11 = TH1 + K11,

A12 = K12,

A21 = K21,

A22 = TH2 + K22.

Remark 4.1.

(i) It is well known that the operators THj
, j = 1,2, are closed, densely defined linear operators

with a nonempty resolvent set. Then the assumptions (H1)–(H4), introduced in Section 3,
are satisfied for the operator AH , since Kij , i, j = 1,2, are bounded.

(ii) To verify that the operator M(μ) defined by (3.3) is compact on Xp × Xp , 1 < p < ∞
(respectively weakly compact on X1 × X1), we shall prove that the operators

F(λ) := K21(λ − A11)
−1 and G(λ) := (λ − A11)

−1K12

are compact on Xp , 1 < p < ∞ (respectively weakly compact on X1) (see Remark 3.3).

In view of the previous remark we will determine the expression of the resolvent of the oper-
ator TH1 . Let ϕ ∈ Xp , λ ∈ C and consider the resolvent equation for TH1

(λ − TH1)ψ1 = ϕ, (4.2)

where the unknown ψ1 must be in D(TH1). Let

λ∗
j = lim inf|v|→0

σj (v), j = 1,2,

and

λ
j

0 :=
{−λ∗

j , if ‖Hj‖ � 1,

−λ∗
j + 1

2a
log(‖Hj‖), if ‖Hj‖ > 1.

Therefore, for λ ∈ C such that Reλ > −λ∗
1, the solution of (4.2) is formally given by

ψ1(x, v) =

⎧⎪⎨⎪⎩
ψ1(−a, v)e

− (λ+σ1(v))|a+x|
|v| + 1

|v|
∫ x

−a
e
− (λ+σ1(v))|x−x′|

|v| ϕ(x′, v) dx′, 0 < v < 1,

ψ1(a, v)e
− (λ+σ1(v))|a−x|

|v| + 1
|v|

∫ a

x
e
− (λ+σ1(v))|x−x′|

|v| )
ϕ(x′, v) dx′, −1 < v < 0.

(4.3)

Accordingly, ψ1(a, v) and ψ1(−a, v) are given by

ψ1(a, v) = ψ1(−a, v)e
−2a

(λ+σ1(v))

|v| + 1

|v|
a∫
e
− (λ+σ1(v))|a−x|

|v| ϕ(x, v) dx, 0 < v < 1, (4.4)
−a
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ψ1(−a, v) = ψ1(a, v)e
−2a

(λ+σ1(v))

|v| + 1

|v|
a∫

−a

e
− (λ+σ1(v))|a+x|

|v| ϕ(x, v) dx, −1 < v < 0. (4.5)

For the clarity of our subsequent analysis, we introduce the following bounded operators:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mλ :Xi

p → Xo
p, Mλu := (M+

λ u,Mλ
−u) with

M+
λ u(−a, v) := u(−a, v)e

−2a
(λ+σ1(v))

|v| , 0 < v < 1,

M−
λ u(a, v) := u(a, v)e

−2a
(λ+σ1(v))

|v| , −1 < v < 0,⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bλ :Xi

p → Xp, Bλu := χ(−1,0)(v)B−
λ u + χ(0,1)(v)Bλ

+u with

B+
λ u(x, v) := u(−a, v)e

− (λ+σ1(v))|a+x|
|v| , 0 < v < 1,

B−
λ u(x, v) := u(a, v)e

− (λ+σ1(v))|a−x|
|v| , −1 < v < 0,⎧⎪⎪⎪⎨⎪⎪⎪⎩

Gλ :Xp → Xo
p, Gλϕ := (G+

λ ϕ,G−
λ ϕ) with

G+
λ ϕ(−a, v) := 1

|v|
∫ a

−a
e
− (λ+σ1(v))|a−x|

|v| ϕ(x, v) dx, 0 < v < 1,

G−
λ ϕ(a, v) := 1

|v|
∫ a

−a
e
− (λ+σ1(v))|a+x|

|v| ϕ(x, v) dx, −1 < v < 0

and finally, we consider⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cλ :Xp → Xp, Cλϕ := χ(−1,0)(v)C−

λ ϕ + χ(0,1)(v)C+
λ ϕ with

C+
λ ϕ(x, v) := 1

|v|
∫ x

−a
e
− (λ+σ1(v))|x−x′|

|v| ϕ(x′, v) dx′, 0 < v < 1,

C−
λ ϕ(x, v) := 1

|v|
∫ a

x
e
− (λ+σ1(v))|x−x′|

|v| ϕ(x′, v) dx′, −1 < v < 0,

where χ(−1,0)(.) and χ(0,1)(.) denote, respectively, the characteristic functions of the inter-
vals (−1,0) and (0,1). The operators Mλ, Bλ, Gλ, and Cλ are bounded on their respec-
tive spaces. Their norms are bounded above, respectively by e−2a(Reλ+λ∗

1), (p Reλ + λ∗
1)

−1/p ,
(Reλ+ λ∗

1)
−1/q and (Reλ+ λ∗

1)
−1, where q denotes the conjugate of p. For the details we refer

to [30].
Using the operators defined above and the fact that ψ1 must satisfy the boundary conditions,

we can write Eqs. (4.4) and (4.5) in the operators form

ψo
1 = MλH1ψ

o
1 + Gλϕ.

It follows, from the norm estimate of Mλ, that ‖MλH1‖ < 1 for Reλ > λ1
0. This gives

ψo
1 =

∑
n�0

(MλH1)
nGλϕ. (4.6)

On the other hand, Eq. (4.3) can be written as

ψ1 = BλH1ψ
o
1 + Cλϕ. (4.7)

Substituting (4.6) into (4.7), we get

ψ1 =
∑

BλH1(MλH1)
nGλϕ + Cλϕ.
n�0
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Therefore,

(λ − TH1)
−1 =

∑
n�0

BλH1(MλH1)
nGλ + Cλ. (4.8)

Notice that the collision operators Kij , i, j = 1,2, defined in (4.1), act only on the velocity v′, so
x may be seen, simply, as a parameter in [−a, a]. Then, we will consider Kij as a function

Kij (.) :x ∈ [−a, a] −→ Kij (x) ∈ L
(
Lp

([−1,1];dv
))

.

In the sequel, we will make the following assumptions introduced in [36]:

(H6)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

– the function Kij (.) is measurable, i.e., if O is an open subset of
L(Lp([−1,1];dv)), then {x ∈ [−a, a] such that Kij (x) ∈O} is measurable,

– there exists a compact subset C ⊆ L(Lp([−1,1];dv)) such that
Kij (x) ∈ C a.e. on [−a, a],

– Kij (x) ∈K(Lp([−1,1];dv)) a.e. on [−a, a].

Definition 4.1. A collision operator in the form (4.1) is said to be regular if it satisfies the as-
sumptions (H6).

We recall the following lemma established in [36].

Lemma 4.1. [36, Lemma 2.3] A regular collision operator K can be approximated, in the uni-
form topology, by a sequence Kn of collision operators of the form

κn(x, v, v′) =
n∑

j=1

αj (x)fj (v)gj (v
′),

where αj (.) ∈ L∞(−a, a), fj (.) ∈ Lp(−1,1) and gj ∈ Lq(−1,1) (q denote the conjugate of p).

Lemma 4.2. If κ21(x, v, v′)/|v′| defines a regular operator, then K21(λ−TH1)
−1 is weakly com-

pact on X1.

Proof. In view of (4.8), the operator K21(λ − TH1)
−1 is given by

K21(λ − TH1)
−1 =

∑
n�0

K21BλH1(MλH1)
nGλ + K21Cλ.

Then, to prove the weak compactness of K21(λ−TH1)
−1, it suffices to prove the weak compact-

ness of the operators K21Bλ and K21Cλ. Observe that Cλ is nothing else but (λ − T1)
−1, where

T1 is the streaming operator for the vacuum boundary conditions. According to Remark 2.4 in
[36] the operator K21Cλ is weakly compact on X1. Thus, it suffices to prove that K21Bλ is weakly
compact on X1.

Let u ∈ Xi
1, we have

K21Bλu(x, v) =
1∫
κ21(x, v, v′)Bλu(x, v′) dv′ = K̃21B̃λu(x, v),
−1
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where{
K̃21 :X1 → X1,

ψ → K̃21u(x, v) = ∫ 1
−1

κ21(x,v,v′)
|v′| u(x, v′) dv′,

and B̃λ = |v′|Bλ. Then it is sufficient to establish the weak compactness of K̃21B̃λ. The fact that
K̃21 is regular and the use of Lemma 4.1 allows us to establish the result for an operator whose
kernel is

κ21(x, v, v′)
|v′| =

n∑
j=1

αj (x)fj (v)gj (v
′),

where αj (.) ∈ L∞(−a, a), fj (.) ∈ L1(−1,1) and gj ∈ L∞(−1,1). Therefore, we restrict our-
selves to

κ21(x, v, v′)
|v′| = α(x)f (v)g(v′),

where α(.) ∈ L∞(−a, a), f (.) ∈ L1(−1,1) and g ∈ L∞(−1,1), since the weak compactness is
stable by summation. We claim that the operator K̃21B̃λ satisfies the following estimate:

‖K̃21B̃λ‖ � 2a‖g‖∞‖α‖∞‖f ‖. (4.9)

Indeed, let u ∈ Xi
1,

K̃21B̃λu(x, v) = α(x)f (v)

[ 1∫
0

g(v′)u(−a, v′)e− (λ+σ1(v′))|a+x|
|v′ | |v′|dv′

+
0∫

−1

g(v′)u(a, v′)e− (λ+σ1(v′))|a−x|
|v′| |v′|dv′

]
.

Therefore,

∣∣K̃21B̃λu(x, v)
∣∣ � ‖g‖∞‖α‖∞

∣∣f (v)
∣∣[ 1∫

0

∣∣u(−a, v′)
∣∣e− (Reλ+λ∗

1)|a+x|
|v′| |v′|dv′

+
0∫

−1

∣∣u(a, v′)
∣∣e− (Reλ+λ∗

1)|a−x|
|v′| |v′|dv′

]
.

Thus, for Reλ > −λ∗
1, we have∣∣K̃21B̃λu(x, v)
∣∣ � ‖g‖∞‖α‖∞

∣∣f (v)
∣∣∥∥u,Xi

1

∥∥.

Then the claim is proved. The inequality (4.9) shows that the operator K̃21B̃λ depends contin-
uously (in the uniform topology) on f (.). Since the set of bounded functions which vanish in
neighborhood of v = 0 is dense in L1(−1,1), K̃21B̃λ is a limit, in the uniform topology, of inte-
gral operators with bounded kernels. The use of [7, Corollary 11, p. 294] make us conclude that
K̃21B̃λ is weakly compact on Xi

1. Now, the weak compactness of K21(λ − TH1) follows. �
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Remark 4.2. Lemma 4.2 is a generalization of Remark 2.4 in [36] to general boundary condi-
tions.

Lemma 4.3. Let λ ∈ ρ(TH1) be such that rσ ((λ − TH1)
−1K11) < 1 (rσ (.) the spectral radius).

(i) If κ21(x, v, v′)/|v′| defines a regular operator, then the operator F(λ) = K21(λ−A11)
−1 is

weakly compact on X1.
(ii) If K21 is regular, then the operator F(λ) = K21(λ − A11)

−1 is compact on Xp for 1 <

p < ∞.
(iii) If the operator K12 is regular, then G(λ) = (λ − A11)

−1K12 is compact on Xp for 1 <

p < ∞ and weakly compact on X1.

Proof. In [31, Proposition 3.1] it is shown that limReλ→+∞ ‖(λ−TH1)
−1‖ = 0. Then there exists

λ ∈ ρ(TH1) such that rσ ((λ−TH1)
−1K11) < 1. For a such λ, the equation (λ−TH1 −K11)ϕ = ψ

may be transformed into

ϕ − (λ − TH1)
−1K11ϕ = (λ − TH1)

−1ψ,

since λ ∈ ρ(TH1). The fact that rσ ((λ − TH1)
−1K11) < 1 implies

(λ − A11)
−1 =

∑
n�0

[
(λ − TH1)

−1K11
]n

(λ − TH1)
−1. (4.10)

(i) The use of Lemma 4.2 implies that for all n in N, K21[(λ − TH1)
−1K11]n(λ − TH1)

−1 is
weakly compact on X1. Now, the result follows from Eq. (4.10) and the fact that W(X1) is a
closed two-sided ideal of L(X1).

(ii) The proof of this assertion follows immediately from Eq. (4.10) and Theorem 2.2 in [30].
(iii) Equation (4.10) leads to

G(λ) =
∑
n�0

[
(λ − TH1)

−1K11
]n

(λ − TH1)
−1K12.

Therefore, the hypothesis on K12 together with Lemma 3.1 in [19] imply the compactness of
G(λ) on Xp for 1 < p < ∞ and its weak compactness on X1. �
Remark 4.3.

(i) Let us note that according to Theorem 1 in [38] we have

W(X1) = S(X1).

If 1 < p < ∞, Xp is reflexive and then L(Xp) = W(Xp). On the other hand, it follows
from [8, Theorem 5.2] that K(Xp) ⊂�= S(Xp) ⊂�= W(Xp) with p �= 2. For p = 2 we have
K(Xp) = S(Xp) = W(Xp).

(ii) The essential spectra of the operator Tj , j = 1,2 (Tj designates the streaming operator with
vacuum boundary conditions, i.e., Hj = 0), were analyzed in detail in [29, Remark 4.1]. In
particular it is shown that

σei(Tj ) = {
λ ∈ C such that Reλ � −λ∗

j

}
for i = 1, . . . ,6.
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In view of Eq. (4.8), we have for Reλ > λ
j

0, j = 1,2,

(λ − THj
)−1 − (λ − Tj )

−1 =
∑
n�0

BλHj (MλHj )
nGλ

(Cλ is nothing else but (λ − Tj )
−1). If the operators Hj , j = 1,2, are strictly singular on Xp,

for 1 � p < ∞, then (λ − THj
)−1 − (λ − Tj )

−1 are strictly singular too. Therefore, the use of
Theorem 3.3 in [28] and Remark 4.3(ii) imply that

σei(THj
) = {

λ ∈ C such that Reλ � −λ∗
j

}
for i = 1, . . . ,5.

The fact that Cσe5(THj
), j = 1,2, are connected and ρ(THj

) �= ∅ imply that σe5(THj
) =

σe6(THj
).

Remark 4.4. According to Remarks 3.3, 2.4 and Lemma 4.3, the hypothesis M(μ) in
K(Xp × Xp), for 1 < p < ∞ (respectively in W(X1 × X1)) is verified. Hence, for I(X) =
K(Xp), 1 < p < ∞ (respectively I(X) = W(X1)), all the results of Section 3 are applicable for
the operator AH .

We are now ready to express the essential spectra of two-group transport operators with gen-
eral boundary conditions.

Theorem 4.1. If the operators Hj ∈ S(Xp), j = 1,2, and the operators K11, K22, K12 are
regular and if in addition κ21(x, v, v′) (respectively κ21(x, v, v′)/|v′|) defines a regular operator
on Xp , for 1 < p < ∞ (respectively on X1), then

σei(AH ) = {
λ ∈ C such that Reλ � −min(λ∗

1, λ
∗
2)

}
, for i = 1, . . . ,6.

Proof. Let λ ∈ ρ(TH1) such that rσ ((λ − TH1)
−1K11) < 1, then λ ∈ ρ(A11) ∩ ρ(TH1). From

Eq. (4.10) we have

(λ − A11)
−1 − (λ − TH1)

−1 =
∑
n�1

[
(λ − TH1)

−1K11
]n

(λ − TH1)
−1.

Since K11 is regular, then it follows from [16, Lemma 3.1] that the operator (λ − A11)
−1 −

(λ − TH1)
−1 is compact on Xp, for 1 < p < ∞, and weakly compact on X1. The use of [28,

Theorem 3.3] leads to

σei(A11) = σei(TH1) = {
λ ∈ C such that Reλ � −λ∗

1

}
, i = 1, . . . ,6. (4.11)

Let μ ∈ ρ(A11). The operator S(μ) is given by

S(μ) = A22 − K21G(μ).

By Lemma 4.3, the operator K21G(μ) is compact on Xp, for 1 < p < ∞, and weakly compact
on X1, then it follows from [28, Theorem 3.1] that σei(S(μ)) = σei(A22), i = 1, . . . ,6. Accord-
ing to the same reasoning as the previous one, we have

σei

(
S(μ)

) = σei(A22) = {
λ ∈ C such that Reλ � −λ∗

2

}
, i = 1, . . . ,6. (4.12)

Applying Theorem 3.2 and using Eqs. (4.11) and (4.12), we get

σei(AH ) = {
λ ∈ C such that Reλ � −min

(
λ∗

1, λ
∗
2

)}
, for i = 1, . . . ,6. �
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