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Abstract
This study evaluates the potential of 8-band high resolution WorldView-2 (WV-2) panchromatic (PAN) and multispectral image
(MSI) data for the extraction of polar geospatial information. We introduce a novel method based on a customized set of normalized
difference Spectral Index Ratios (SIRs), incorporating multiple bands, to improve the accuracy of land-cover mapping in the
Antarctic. Most recently available WV-2 data are classified into land-cover surfaces such as snow/ice, water bodies, and landmass
using the customized normalized difference SIRs. A novel multi-fold methodology is used to evaluate the effect of pan-sharpening
algorithms on spectral characteristics of satellite data, and on subsequent land-cover mapping using an array of SIRs. A set of
existing pan-sharpening algorithms was implemented in order to fuse PAN with MSI data, followed by estimation of multiple SIRs
to extract target land-cover classes. These algorithms were compared on the basis of their effectiveness in extracting target classes
using a defined set of SIRs. Our results indicate that the use of 8-bandWV-2, customized SIRs, and appropriate pan-sharpening can
greatly improve the extraction of land-cover information.
� 2012 Elsevier B.V. and NIPR. All rights reserved.

Keywords: Pan-sharpening; WorldView-2; Index ratios; Land-cover
1. Introduction

WorldView-2 (WV-2) is the first hyperspatial sat-
ellite that offers eight multispectral (MS) bands along
with a panchromatic (PAN) band using imaging MS
radiometers (VIS/IR) and a WV110 camera. The sat-
ellite, launched in October 2009, provides images at
a spatial resolution of 0.50 m in the PAN band and 2 m
in the MS bands. The Ground Sampling Distance
* Corresponding author. Tel.: þ91 0 832 2525528; fax: þ91 0 832

2520877.

E-mail addresses: shridhar.jawak@ncaor.org, shridhar.jawak@

gmail.com (S.D. Jawak).

1873-9652/$ - see front matter � 2012 Elsevier B.V. and NIPR. All rights

http://dx.doi.org/10.1016/j.polar.2012.12.002
(GSD) for the PAN band is about 0.46 m at nadir and
0.52 m at 20� off-nadir. For the eight MS bands, the
GSD is about 1.80 m at nadir and 2.40 m at 20� off-
nadir. The spatial resolution difference between
PAN and MS modes can be measured by the ratio of
their respective GSDs, which generally varies between
1:2 and 1:5; the GSD ratio for WV-2 is 1:4. The MS
bands include four conventional visible and near-
infrared bands common to multispectral satellites:
Band 2, Blue (450e510 nm); Band 3, Green
(510e580 nm); Band 5, Red (630e690 nm); and Band
7, Near-IR1 (NIR1) (770e895 nm), and four new
bands: Band 1, Coastal (400e450 nm); Band 4, Yellow
(585e625 nm); Band 6, RedEdge (705e745 nm); and
reserved.
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Band 8, Near-IR2 (NIR2) (860e1040 nm). These new
channels enable access to spectral regions where dis-
tinguishable differences exist between multiple classi-
fications within the scene, which may be overlooked by
traditional MS systems such as Landsat 7.

The Spectral Index Ratio (SIR), which is used to
classify a particular target or feature, is proportional to
the difference in reflectance values of the bands used in
the ratio. Traditionally, water and vegetation (Rouse
et al., 1974) have been the primary focus of normal-
ized difference SIRs, since water and vegetation are
easy to discriminate on the basis of the difference in
reflectance values in the range 450e750 nm.

Preliminary investigation on the bundled 8-band
WV-2 imagery reveals a significant difference be-
tween the SIR images created using the ‘traditional’
spectral bands, equivalent to QuickBird’s four spectral
bands (Blue, Green, Red, and NIR1), and the ‘new’
WV-2 spectral bands. The existing SIRs used for
effective land-cover mapping with WV-2 imagery are
listed in Table 1. However, it is practically impossible
to differentiate polar land-cover using just these two
SIRs, as the landscape is very dynamic and consists of
snow/ice of varying extent, texture, and morphology;
landmasses of varying texture; and water bodies
ranging from small ponds to large lakes. Also, the use
of two simple SIRs underutilizes the 8-band capability
of WV-2 data. We designed a novel set of normalized
difference SIRs for WV-2 to fully exploit the 8-band
capability. Each SIR includes at least one unique
band from the set of newly available wavelengths. We
focus our research efforts on designing new SIRs using
the WV-2 acquisitions for Antarctic land-cover
mapping.

The goal of the present paper is to demonstrate
a new and simple method for mapping land-cover
classes rapidly and accurately. Our study focuses on
the following objectives: (a) to evaluate traditional
pan-sharpening methods for WV-2 data on the basis of
quality indices, (b) to design a “customized SIR”
approach for 8-band WV-2 data to extract Antarctic
Table 1

List of existing normalized difference spectral index ratios (SIR).

Spectral index ratio Spatial

rationale

Mathematical

expression

Reference

NDVI (Normalized

Difference

Vegetation index)

To extract

vegetation

NIR� Red

NIRþ Red

Rouse

et al. (1974)

NDWI (Normalized

Difference

Water index)

To extract

standing water

Blue� NIR

Blueþ NIR

Gao (1996)
land-cover and compare its performance with manually
digitized land-cover map, and (c) to assess the unique
8-band characteristics of WV-2 data by employing
multiple pan-sharpening algorithms coupled with
multiple SIRs.

2. Literature review

Extensive research on image fusion techniques in
Remote Sensing (RS) started in the late 1980s and
early 1990s (Chavez et al., 1991; Cliche et al., 1985;
Ehlers, 1991; Welch and Ehlers, 1987) and con-
centrated on pixel level fusion (pan-sharpening) in the
late 1990s. Image fusion is the process of combining
images of different resolution to increase the spectral
and/or spatial quality of the fused image compared
with the original (Pohl and Van Genderen, 1998; Wald
et al., 1997). The fusion of RS images can assimilate
the spectral information of a single sensor (Wang
et al., 2005) or different sensors (Moser and
Serpico, 2009). Fusion of the PAN and MS bands is
classically referred to as pan-sharpening. Currently,
pixel level image fusion is used as synonymous with
pan-sharpening, resolution merge, image integration,
or multi-sensor data fusion (Kumar et al., 2009;
Vijayaraj et al., 2006). Today, a variety of airborne as
well as space-borne sensors have produced image
datasets of varying spatial, spectral and temporal
resolution. Most of the Earth Observation (EO) sat-
ellites in operation, such as WorldView, Landsat, IRS-
P5 (Cartosat), IRS 1C/1D, SAC-C, CBERS, SPOT,
IKONOS, Quickbird, Formosat, and GeoEye, provide
PAN images at a higher spatial resolution than in their
MS mode. With the launch of these very high-
resolution satellite sensors, the interest in pan-
sharpening techniques has significantly increased.
Much research has focused on preserving the spectral
characteristics of the multispectral data after pan-
sharpening (Alparone et al., 2007; Thomas et al.,
2008).

Pan-sharpening techniques have become very
important for RS applications such as enhancement of
image classification, temporal change detection stud-
ies, object identification and selection, image seg-
mentation, map updating, and enhanced visualization
(Yuhendra et al., 2012). Various pan-sharpening algo-
rithms have been developed (Ranchin and Wald, 2000;
Ranchin et al., 2003; Wang et al., 2005), and some
have been incorporated in commercial RS software
packages such as ERDAS 9.3 and ENVI 4.8 (Ehlers
et al., 2010; Shah et al., 2008). Most of these
methods work well with images that were acquired at
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the same time by one sensor (single-sensor, single-date
fusion) (Alparone et al., 2007; Ehlers, 2008). Gen-
erally, image fusion methods can be classified into
three levels: pixel level, feature level, and decision
level. Pixel level image fusion techniques have the
highest relevance for RS applications, as the data are
least altered and most of the pan-sharpening techniques
have been developed for this type of fusion (Wald
et al., 1997; Zhang, 2004).

Recently, Amro et al. (2011) provided a detailed
review of the classical and state-of-the-art pan-
sharpening methods described in the literature, and
they suggested a clear classification of various pan-
sharpening methods and gave a detailed description
of their main characteristics. Most of the fusion
methods developed for improving spatial and spectral
resolutions of RS images are based on Intensi-
tyeHueeSaturation (IHS) (Choi, 2006), Color Nor-
malization (CN) Brovey (Bovolo et al., 2010), multi-
resolution analysis such as High Pass Filter (HPF)
(Wald et al., 1997), and Principal Component Anal-
ysis (PCA) (Shah et al., 2008). Other methods such as
GrameSchmidt (GS) (Kumar et al., 2009), CN-
spectral (Vrabel et al., 2002), and Ehlers fusion
(Ehlers et al., 2010) are based on intensity modula-
tion. PCA and GS are based on component substitu-
tion featuring the construction of a generalized
intensity as a linear combination of the MS bands. In
addition, several researchers have proposed the use of
a wavelet transform (cf. Shi et al., 2005) or discrete
wavelet transform (Li et al., 2005) to extract geo-
metric edge information from PAN images. In par-
ticular, wavelet techniques led to a number of new
fusion methods (Otazu et al., 2005; Yunhao et al.,
2006). Thomas et al. (2008) provided a critical re-
view of these fusion methods based on RS physics and
pointed out the weaknesses and strengths of each
method.

It is necessary to provide a general assessment of
the quality of the sharpened images for their potential
use in the present application. Thus, one of the main
purposes of this study is to assess six commonly
employed pan-sharpening methods in terms of their
ability to preserve the spectral information provided in
the MS image, and to examine their final effect on SIR-
based mapping accuracy. Visual inspection coupled
with a quantitative approach based on the evaluation of
spectral and spatial distortion due to fusion is more
desirable for mathematical modeling (Li et al., 2010;
Vijayaraj et al., 2006). Wald et al. (1997) formulated
a protocol to test the quality of fused images. In this
work, we employ six evaluation measures to compare
the pan-sharpening: the Universal Image Quality Index
(UIQI) (Wang and Bovik, 2002), Structural Similarity
Index (SSIM) (Wang et al., 2004), Spectral Angle
Mapper (SAM) (Thomas and Wald, 2007), Erreur
Relative Globale Adimensionnelle de Synthèse
(ERGAS, relative dimensionless global error in syn-
thesis) (Wald, 2000), Zhou’s spatial correlation index/
High-pass Correlation Coefficient (HCC) (Zhou
et al., 1998), and the Correlation Coefficient (CC)
(Zhang, 2008).

Different techniques have been employed to map
land-cover, such as using indices derived from the RS
images. A commonly used Normalized Difference
Vegetation Index (NDVI) involves calculation of the
difference between the reflectance values in the NIR
and red channels normalized by their sum. Achard
and Estréguil (1995) used multitemporal AVHRR
mosaics for tropical forest mapping with
NDVI. Fernandez et al. (1997) mapped the surfaces
affected by large forest fires using NDVI. The Nor-
malized Difference Snow Index (NDSI), derived
from Landsat Thematic Mapper (TM) bands 2 and 5
[(TM2 e TM5)/(TM2 þ TM5)], has been success-
fully used to map glaciers (Sidjak and Wheate, 1999).
NDSI is based on the difference between the strong
reflection of visible radiation and near total absorp-
tion of middle infrared wavelengths by snow (Hall
et al., 1995a, 1995b). It is effective in distinguish-
ing snow from ‘bright’ surfaces such as soil, vege-
tation, rock, and clouds (Dozier, 1989). The
Normalized Difference Water Index (NDWI) can be
used as the SIR for water class extraction, identifying
water bodies, and discriminating natural and man-
made features (Ben-Dor et al., 2001). The NDWI,
defined as (Green � NIR)/(Green þ NIR), was
developed to delineate open water features and
enhance their presence in RS imagery on the basis of
reflected near-infrared and visible green wavelengths
(McFeeters, 1996). NDWI is sensitive to changes in
the liquid water content of vegetation canopies, so it
is complementary to, but not a substitute for, NDVI
(Gao, 1996).

These indices were designed for traditional me-
dium resolution VeNIR systems, and have not been
validated for the 8-band WV-2 data for Antarctic
land-cover mapping. WV-2 provides a duplet of
VeNIR bands, and presents an opportunity to cus-
tomize a new set of SIRs to support Antarctic
land-cover mapping. The present study differs from
previous studies based on reconsideration and recon-
struction of SIRs for 8-band WV-2 data for land-cover
mapping.



Fig. 1. Location map of study area (source: WV-2 MSI).
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3. Data

3.1. Description of remotely sensed image data

We used radiometrically corrected, georeferenced,
orthorectified 16-bit standard level 2 (LV2A) WV-2
multi-sequence images acquired on 10 September
2010 at an off-nadir angle of 1.95� over the Larsemann
Hills, East Antarctica. The data consist of 9 tiles of
8-band MS and PAN images. These tiles were spatially
mosaicked to generate a single continuous image.

The WV-2 image covers an area of 100 km2 with
different land-cover (snow, ice, rocks, lakes, perma-
frost, etc.), and with flat, hilly and mountainous terrain,
resulting in a range of heights from 5 to 700 m. The
period of satellite data acquisition corresponds to the
beginning of austral spring in Antarctica, when solar
radiation reaches the surface on clear days.

3.2. Description of multitemporal field reference and
existing map data

Remote sensing data cannot be used efficiently
without ground truth, especially for polar studies. The
ground truth datasets used to support land-cover
mapping include data from the Antarctic Data Centre
(AADC), the Indian Scientific Expedition to Antarctica
(InSEA), historical Google Earth images and pan-
sharpened WV-2 images.

Extensive mapping work has been carried out by the
AADC in the last few decades (http://www.aad.gov.au/
) and by teams participating in the InSEA since 2005.
An important resource of land-cover data for the Lar-
semann Hills is the AADC “Larsemann Hills Photo-
grammetric Mapping Project” (Harris, 2008). A large-
scale mapping of the Larsemann Hills (1:2500 scale)
was carried out by the Survey of India from September
2007 to February 2008. These maps were digitized to
extract land-cover data. Historical Google Earth im-
ages acquired on 31 December 1999, 24 February
2006, 3 March 2006, and 4 January 2011 were used to
identify the land-cover classes and to crosscheck the
multitemporal snow-cover statistics over the study
area. Considering the high spatial resolution of WV-2
data itself, various land-cover classes can be extrac-
ted manually from the pan-sharpened images.

Based on prior knowledge of the study area
and visual analysis of the satellite data, the WV-2
GS-sharpened image was manually digitized using
ArcGIS 10 to extract a land map consisting of the three
land-cover classes of interest: snow/ice, water, and
landmass. An accurate area was calculated for each
land-cover class using the GIS routines. Since this
manually digitized map of the study area was gen-
erated based on prior knowledge of its geography and
on the WV-2 image, we consider the generated land-
cover database a reliable basis for accuracy assess-
ment. The location map of the study area and the map
of manually extracted and digitized land-cover are
shown in Figs. 1 and 2, respectively.

Three land-cover classes were extracted to yield
a land-cover map of the Larsemann Hills region, east
Antarctica between 76�0303900E, 69�2104900S and
76�1805400E, 69�2701000S. The Larsemann Hills are
a series of low rounded, snow-free coastal hills along the
southeast shore of PrydzBay. There are over 150 lakes in
the Larsemann Hills, ranging from small shallow ponds
less than 1 m deep to glacial lakes up to 38 m deep, with
area varying between 100 and 33,000 m2.

4. Methodology

The data processing protocol implemented for this
land mapping application is shown in Fig. 3. The steps
consist of four blocks: (i) data preprocessing (calibra-
tion), (ii) data fusion and evaluation of pan-sharpening,
(iii) land-cover feature extraction and land map gen-
eration, and (iv) accuracy evaluation.

The data processing was carried out as follows.
First, a dark pixel subtraction was applied to the
dataset to make best use of the dynamic range. Second,
pan-sharpening of the WV-2 MS image was performed

http://www.aad.gov.au/


Fig. 2. Manually extracted/digitized land-cover map of the study

area.
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using the standard fusion methods available in ERDAS
9.3 and ENVI 4.8. These fusion methods were assessed
for spectral and spatial quality of the pan-sharpened
images. Finally, to evaluate the influence of pan-
sharpening on land-cover mapping, a new set of nor-
malized SIRs with specific band combinations was
generated. Each SIR was calculated for all the pan-
sharpened images, and output images were generated
for all SIRs. The resultant individual images were
stacked into one final land map dataset. Each fusion
method produced a single land-cover map.

5. Image processing

Each block of the methodology (Fig. 3) is discussed
as follows.

5.1. Data preprocessing: WorldView-2 calibration

The calibration information in a metadata file
(XML) of the WV-2 imagery was used to calibrate
WV-2 by applying the WorldView calibration utility
(ENVI 4.8). The calibration method was adapted from
the literature (Updike and Comp, 2010).

5.2. Shadow minimization effect

Because of the high resolution of WV-2 images with
respect to contextual information, the shadow
minimization effect with or without contextual infor-
mation was applied to minimize the global posterior
energy function, using following equation (Tso and
Mather, 2001):

Uðm=dÞ ¼ ð1� lÞUðd=mÞ þ lUðmÞ; ð1Þ

where U(m/d) is global posterior energy function, U(d/
m) is the conditional energy function, and U(m) is the
prior energy function, l is the smoothness parameter
that controls the balance between the two energy
functions and its value ranges between 0 and 1.

5.3. Data fusion and evaluation of pan-sharpening

5.3.1. Pan-sharpening
In the present study, the PAN and MSI are captured

at the same time with the same sensor. Thus, pan-
sharpening can be carried out directly without further
registration. In order to create clutter at a resolution of
0.50 m, the multiband image was pan-sharpened from
a resolution of 2.00 me0.50 m. Six pan-sharpening
algorithms available in ENVI 4.8 and ERDAS
IMGINE 9.3, including PCA (Chavez et al., 1991),
Brovey Transform (BT) (Hallada and Cox, 1983),
Wavelet-based Principle Component (W-PC) (Pradhan
et al., 2006), Ehlers Fusion (EF) (Klonus and Ehlers,
2007), Gram Schmidt (GS) (Laben and Brower,
2000), and High Pass Filtering (HPF) (Schowengerdt,
1980) were employed. All the six pan-sharpening
methods were implemented using default/standard-
ized settings available in ERDAS 9.3 (ERDAS, 2010)
and ENVI 4.8 (ENVI, 2011). To ensure unbiased
quality evaluation, the default settings were not opti-
mized for individual pan-sharpening methods.

The statistics for the sharpened images were then
calculated using IDL 7 andMatlab 4 routines. After pan-
sharpening, the quality of the fusion product based on
each fusion method is examined by visual and statistical
analysis. To illustrate our findings in the following sec-
tion, we use a subset of the WV-2 image, as it represents
the different fusion effects. Fig. 4 depicts the original
multispectral WV-2 (Band 5, Red; Band 3, Green; and
Band 2, Blue) and the PAN image along with the
sharpened images. Since the performance of these al-
gorithms is spectrally and spatially dependent, an eval-
uation of the spectral and spatial quality of the pan-
sharpened images was undertaken using quality metrics.

5.3.2. Evaluation of pan-sharpening
Currently there is no consensus in the literature (Li,

2000) on the best quality index for pan-sharpening.
The protocol proposed by Wald et al. (1997) offers



NDLI (1-4/1+4)
NDLI (1-6/1+6)
NDLI (2-4/2+4)
NDLI (2-6/2+6)

Raw WorldView-2 Panchromatic (PAN) and Multispectral (MSI) 9 tiles

Pan-sharpening (ERDAS 9.1 and ENVI 4.8 Platform)
1) Principal Component Analysis (PCA) 2) Brovey Transform (BT)
3) Wavelet Based methods (W-PC) 4) Ehlers Fusion (EF)
5) Gram Schmidt (GS) 6) High Pass Filtering (HPF)

Snow/ice cover

Worldview-2 Calibration (IDL 7 and ENVI 4.7 Platforms)
1) Conversion of raw DN values to at sensor spectral radiance factors
2) Conversion from spectral radiance to Top-of-Atmosphere Reflectance
3) Application of Shadow Minimization Effect

Spectral Index Ratios (IDL 7 and MATLAB 4 Platform)
1) NDSI (Normalized Difference Snow/ice Index)
2) NDWI (Normalized Difference Water Index)
3) NDLI (Normalized Difference Landmass Index)

NDSI (7-4/7+4)
NDSI (7-6/7+6)
NDSI (5-4/5+4)
NDSI (5-6/5+6)

NDWI (1-7/1+7) 
NDWI (2-7/2+7)
NDWI (1-8/1+8) 
NDWI (2-8/2+8)

Landmass cover Water bodies 

Snow/ice layer Water layer

Empirical thresholding for each customized SIR to generate GIS layers

1) ENVI Mosaicking tool: Spatially mosaicking of 9 tiles to generate a single continuous image
2) Dark Pixel Subtraction: Using the full dynamic range for pixel values in space 

Compilation of GIS 
layers (ArcGIS 9.3)
Final land-cover map

Accuracy 
Assessment

Results and 
Conclusions

Landmass

Fig. 3. Methodology adopted for land-cover mapping.
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a robust approach to the assessment of quality. A
number of statistical evaluation methods are used to
measure post-fusion color fidelity. These methods
should be objective, reproducible, and of a quantitative
nature. Therefore, we selected the following statistical
measures.

(i) Wang and Bovik (2002) proposed the Universal
Image Quality Index (UIQI)/(WangeBovik index),
QWB, defined as:

QWB ¼ 4covðx; yÞEðxÞEðyÞ�� �� 2 2��; ð2Þ

varðxÞ þ varðyÞ EðxÞ þEðyÞ
where E(x) represents the mean of x (original image),
E(y) represents the mean of y (fused image), cov(x,y)
corresponds to the covariance of x and y, and var(x) and
var(y) are the variance of x (original image) and y (fused
image), respectively. In order to apply the QWB quality
index, a reference image is needed. This presents
a problem for pan-sharpening since no reference image
exists at the pan-sharpened resolution. In order to
compute QWB, we downsampled the pan-sharpened
image to the original MS resolution, which allowed us
to compute the quality index directly. The index can be
computed at a specified scale or block size, and varies
between �1 and 1, with 1 representing the best quality.
Following Padwick et al. (2010), we used a block size of



Fig. 4. Original WV-2 multispectral and PAN images along with sharpened images.
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approximately ¼ of the image. The QWB index was
computed for each band in the original MSI, producing
a vector of values. We define the quantity Ql for the
eight MS bands as follows.

Ql ¼ ½QWBðMS1;PS1Þ;QWBðMS2;PS2Þ::::
�QWBðMS8;PS8Þ�;

ð3Þ

where MS indicates the original MS band and PS in-
dicates the pan-sharpened band (downsampled to the
MS resolution).

(ii) The objective of this study is to find the fused
image with the optimal combination of spectral
characteristic preservation and spatial improve-
ment. The literature has mostly concentrated on
spectral consistency, with little or no emphasis on
spatial improvement. To avoid this shortcoming,
we selected a widely used high-pass (HP) spatial
correlation index to measure the quality of spatial
improvement. For the calculation of the High-pass
Correlation Coefficient (HCC), an HP filter with
a 3 � 3 Laplacian kernel was first applied to the
PAN image and to each band of the fused image.
Then the correlation coefficients between the HP
filtered bands and the HP filtered PAN image were
calculated. This analysis was first proposed by
Zhou et al. (1998).

The HCC of two signals A and B is defined as:

HCCðA;BÞ ¼
PðAi� mAÞðBi� mBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðAi� mAÞ2ðBi� mBÞ2

q ; ð4Þ
where mA and mB are the means of signals A and B,
respectively, and the summation runs overall elements i
of each signal. The HCC metric varies from �1 to þ1.
HCCl for an 8-band MSI can be defined as:

HCCl ¼ ½HCCðPan;PS1Þ;HCCðPan;PS2Þ:::
�HCCðPan;PS8Þ�; ð5Þ

where Pan indicates the PAN band and PS indicates the
pan-sharpened band, with the subscript indicating the
band index. The statistics of the QWB and HCC indices
are summarized in Table 2.

(iii) The structural similarity (SSIM) index was
proposed by Wang et al. (2004). The SSIM is
a further development of the QWB index, and is
widely used to assess the spectral value preservation
of pan-sharpened images (Alparone et al., 2004).
This method, which combines a comparison of
luminance, contrast, and structure, was applied
locally on an 8 � 8 pixel window. This window was
moved pixel-by-pixel over the entire image. At each
pixel, the local statistics and the SSIM index were
calculated within the window. The values vary be-
tween 0 and 1, with values close to 1 indicating the
highest correspondence with the original image.

SSIM¼ ð2EðxÞEðyÞ þ c1Þð2covðx;yÞ þ c2Þ��
EðxÞ2þEðyÞ2þc1

�ðvarðxÞ þ varðyÞ þ c2Þ�;

ð6Þ

where c1 ¼ (k1L)
2, c2 ¼ (k2L)

2, L is the dynamic range
of pixel values, k1¼ 0.01, and k2¼ 0.03. E(x) represents



Table 2

Quantitative evaluation of pan-sharpening on the basis of QWB and HCC indices.

WV-2 spectral details Pan-sharpening algorithms

Band name Wavelength (nm) EF BT HPF GS W-PC PC

HCC QWB HCC QWB HCC QWB HCC QWB HCC QWB HCC QWB

Coastal 400e450 0.770 0.922 0.772 0.682 0.598 0.616 0.924 0.997 0.815 0.925 0.832 0.923

Blue 450e510 0.836 0.975 0.837 0.786 0.685 0.714 0.938 0.993 0.847 0.976 0.846 0.975

Green 510e580 0.869 0.993 0.870 0.854 0.745 0.778 0.946 0.999 0.878 0.998 0.869 0.993

Yellow 585e625 0.874 0.996 0.875 0.992 0.770 0.904 0.949 0.999 0.875 0.999 0.880 0.999

Red 630e690 0.872 0.997 0.873 0.913 0.783 0.832 0.952 0.990 0.873 0.998 0.877 0.998

RedEdge 705e745 0.866 0.997 0.867 0.933 0.792 0.851 0.954 0.988 0.887 0.998 0.866 0.999

NIR1 770e895 0.848 0.993 0.849 0.959 0.794 0.875 0.956 0.983 0.864 0.995 0.858 0.994

NIR2 860e1040 0.827 0.991 0.828 0.986 0.797 0.899 0.961 0.983 0.838 0.994 0.838 0.990

Average 0.845 0.983 0.846 0.888 0.746 0.809 0.948 0.992 0.860 0.985 0.858 0.984

Correlation coefficient 0.926 0.698 0.953 �0.651 0.837 0.737
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the mean of x (original image), E(y) represents the mean
of y (fused image), cov(x,y) is the covariance of x and y,
while var(x) and var(y) are the variance of x (original
image) and y (fused image), respectively.

(iv) The correlation coefficient (CC) between the
original MS bands and the corresponding fused
bands is the most frequently used method to
evaluate the preservation of spectral value (Klonus
and Ehlers, 2007; Zhang, 2008). Its value ranges
from �1 to 1. The best correspondence between
fused and original image data shows the highest
correlation value 1. The statistics of the SSIM and
CC indices are summarized in Table 3.

(v) ERGAS (relative dimensionless global error in
synthesis) is a normalized version of the root mean
square error (RMSE) designed to calculate spectral
distortion. ERGAS is commonly used to assess the
quality of pan-sharpened images. This index
measures distortion and must be as small as pos-
sible. ERGAS is defined as,
Table 3

Quantitative evaluation of pan-sharpening on the basis of CC and SSIM ind

WV-2 spectral details Pan-sharpening algorithms

Band name Wavelength (nm) EF BT H

CC SSIM CC SSIM C

Coastal 400e450 0.793 0.550 0.795 0.522 0.

Blue 450e510 0.853 0.561 0.856 0.529 0.

Green 510e580 0.891 0.554 0.893 0.532 0.

Yellow 585e625 0.890 0.543 0.891 0.521 0.

Red 630e690 0.896 0.548 0.894 0.527 0.

RedEdge 705e745 0.885 0.561 0.882 0.515 0.

NIR1 770e895 0.862 0.559 0.862 0.520 0.

NIR2 860e1040 0.851 0.549 0.845 0.529 0.

Average 0.865 0.553 0.865 0.524 0.
ERGAS¼ 100h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 XN RMSE2ðBiÞ

vuut ; ð7Þ

l N

i¼1 Mi2

where RMSE2 (Bi) ¼ Bias2 (Bi)þ SD2 (Bi), h and l are
the resolution of PAN and MS, respectively, Mi repre-
sents the mean radiance of each spectral band involved,
Bi represents the MS bands, SD represents the standard
deviation, Bias represents the difference between
arithmetic means of MSI and fused image, and N is the
total number of spectral bands.

(vi) SAM (Spectral Angle Mapper) has been widely
used in MS or hyperspectral image analysis to
measure the spectral similarity of substance sig-
natures for material identification. A SAM value
equal to zero denotes the absence of spectral
distortion, but radiometric distortion may be pre-
sent. SAM is measured either in degrees or in
radians and is usually averaged over the whole
image to yield a global measurement of spectral
ices.

PF GS W-PC PC

C SSIM CC SSIM CC SSIM CC SSIM

633 0.461 0.942 0.731 0.831 0.621 0.854 0.628

715 0.451 0.953 0.751 0.867 0.641 0.863 0.64

761 0.468 0.969 0.741 0.894 0.637 0.887 0.632

792 0.469 0.967 0.742 0.893 0.631 0.903 0.635

801 0.473 0.974 0.748 0.898 0.639 0.898 0.633

807 0.461 0.973 0.757 0.917 0.641 0.881 0.637

812 0.458 0.977 0.748 0.874 0.642 0.877 0.621

813 0.457 0.987 0.737 0.868 0.623 0.852 0.637

767 0.462 0.968 0.744 0.880 0.634 0.877 0.633



26 S.D. Jawak, A.J. Luis / Polar Science 7 (2013) 18e38
distortion. SAM is defined as the angular differ-
ence between two spectral vectors, S1 and S2,
according to following equation,

SAMðS1;S2Þ ¼ arccos

�
S1:S2

kS1k:kS2k
�

ð8Þ
The statistics of the ERGAS and SAM indices are
summarized in Table 4.

5.4. Land-cover feature extraction

All the six pan-sharpened WV-2 images were sub-
jected to an integrated SIR-based land-cover mapping
approach, which consists of the following steps.

5.4.1. Workflow for designing customized SIRs
Customized SIRs were empirically evaluated

through spectral profile observations. The spectral re-
sponses of representative pixels in the three land-cover
classes were calculated, and averaged within classes to
provide a spectral profile. Visual inspection of the
profiles identified the most useful bands for discrim-
inating each class. A sample profile illustrates that
three classes have greatest spectral disparity for dif-
ferent bands (Supplementary Fig. 1). The maximum
and minimum response bands were then normalized to
yield the normalized difference target class index
(NDCI) (Fig. 5). The procedure was time consuming
for the eight-band image, given the number of indi-
vidual responses considered.

Close scrutiny of spectral profiles reveals that
snow/ice covered areas have highest reflectance in
band 7 and lowest in band 4. However, it is also evi-
dent that these areas have considerable spectral dis-
parity between bands 5 and 6. Similar inferences were
drawn on the basis of such profiles for the other two
land-cover classes.

Fig. 5 shows the workflow for generating a custom
target class SIR, i.e., NDCI. It is a time consuming-
process for WV-2 data, because of its high spatial
and spectral resolution compared with other datasets.
We note that the NDCI does not maximize the response
of a specific class, but best discriminates the target
class from other regions in the image.
Table 4

Quantitative evaluation of pan-sharpening on the basis of SAM and

ERGAS indices.

Method EF BT HPF GS W-PC PC

SAM 0.598 0.613 0.649 0.403 0.492 0.557

ERGAS 0.293 0.326 0.437 0.207 0.218 0.235
5.4.2. Designing SIRs for present study
In this section, we discuss the procedure and the

need for customization of existing SIRs used in the
present study (i.e., NDSI, NDWI, and NDLI), based on
the workflow (Fig. 5) and existing literature. Custom-
ized SIRs proposed using WV-2 imagery to establish
an effective land-cover map are listed in Table 5.

5.4.2.1. Customization of NDWI. Huggel et al. (2002)
developed the NDWI by normalizing the blue band
against the NIR band, since the difference in response is
very obvious. In our experiment the coastal band is
normalized by the NIR2 band. Since the difference in
response of each of these unique bands is greater, it
creates a discrete threshold for detecting areas of
standing water (Table 5). NDWI produces a single
grayscale image, where water appears bright. Some
other features may also appear bright, such as buildings
and clouds. However, the possibility of buildings having
a spectral response similar to that of water in the study
area is remote. Since the satellite image was acquired
under minimum cloud cover conditions, standing water
is the only feature that appears bright on the NDWI
image. The data acquisition period represents the
beginning of austral spring when solar radiation initi-
ates ice melting in Antarctica. Melt water on ice sur-
faces will have a similar spectral response since NDWI
discriminates water from other land-cover classes. To
differentiate melt water, it is necessary to threshold the
NDWI value, so that the overall region can be classified
as target class (water bodies) or non-target (snow, rocks
and melt water) classes.

5.4.2.2. Customization of NDSI. The existing short-
wave infrared (SWIR) band-based NDSI is analogous
to the NDVI (Tucker, 1979) and is useful for identifying
and discriminating snow/ice from most cumulus clouds.
The NDSI is generally used for snow-cover mapping
using satellite data (Hall et al., 1995a), based on the
high and low reflectance of snow in the visible (Green)
and SWIR regions, respectively, yielding the ratio
(Green � SWIR)/(Green þ SWIR).

Since there is no SWIR band available on WV-2, it
was necessary to customize the NDSI for our analysis.
From spectral profile analysis (Supplementary Fig. 1),
Worldview-2 
8-band spectral 

image

Spectral profile 
observations for 
various classes

NDCI
MinMax

MinMax

Fig. 5. Workflow for generating a customized Normalized Differ-

ence Class Index (NDCI).



Table 5

List of customized SIRs: Mathematical expressions and their thresh-

old settings.

Threshold range

Normalized difference landmass index

NDLI (1 � 4/1 þ 4) Coastal� Yellow

Coastalþ Yellow

0.201e0.673

NDLI (1 � 6/1 þ 6) Coastal� RedEdge

Coastalþ RedEdge

0.221e0.689

NDLI (2 � 4/2 þ 4) Blue� Yellow

Blueþ Yellow

0.213e0.671

NDLI (2 � 6/2 þ 6) Blue� RedEdge

Blueþ RedEdge

0.224e0.687

Normalized difference water index

NDWI(1 � 7/1 þ 7) Coastal� NIR1

Coastalþ NIR1

0.641e0.788

NDWI(2 � 7/2 þ 7) Blue� NIR1

Blueþ NIR1

0.671e0.871

NDWI(1 � 8/1 þ 8) Coastal� NIR2

Coastalþ NIR2

0.640e0.773

NDWI(2 � 8/2 þ 8) Blue� NIR2

Blueþ NIR2

0.668e0.863

Normalized difference snow/ice index

NDSI (7 � 4/7 þ 4) NIR1� Yellow

NIR1þ Yellow

0.404e0.831

NDSI (7 � 6/7 þ 6) NIR1� RedEdge

NIR1þ RedEdge

0.414e0.843

NDSI (5 � 4/5 þ 4) Red� Yellow

Redþ Yellow

0.411e0.881

NDSI (5 � 6/5 þ 6) Red� RedEdge

Redþ RedEdge

0.423e0.787
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it is evident that there are differences in the response
values of snow/ice between the NIR1eYellow,
NIR1eRedEdge, RedeYellow, and RedeRedEdge
band pairs; this specific band information has been
exploited to represent snow in this study (Table 5). The
customized NDSI approach is an effective way to
distinguish snow from other surface features.

5.4.2.3. Customization of NDLI. The NDLI is used to
identify areas where soils and rocks are the dominant
backgroundor foregroundmaterial.Normally, SWIRand
NIR bands are used to represent the difference in reflec-
tancevalues for soil/rock areas. There is noSWIRband in
WV-2, but there are characteristic differences in the
response values for soil in the CoastaleYellow, Coast-
aleRedEdge, BlueeYellow, and BlueeRedEdge bands.
This spectral information has been exploited to represent
landmass (Table 5). Drawing from a sample of the land-
mass within the scene, a consistent and unique difference
between the customized NDLI bands was observed,
which was constant for all landmass regions
(Supplementary Fig. 1). All detections were validated by
cross-referencing the signatures in corresponding regions
in the true and false color composites with the detections
in the NDLI. This is a remarkable new method for
determining areas of soil/rock content without using
a SWIR band.

5.4.3. Threshold technique
After customization, the defined set of SIRs was

applied to the values in the radiance cube for the six
pan-sharpened images, and output images were gen-
erated for each SIR. The difference between the
response values in the SIR determines where the
respective classes such as snow/ice, landmass and
water are located on the scene. Once these areas were
identified from the SIR images, the optimal threshold
values were set to capture only the feasible regions of
classification (Table 5).

The threshold technique is important in SIR-based
classification and is expressed as:

T ¼ T½x; y;pðx; yÞ; f ðx; yÞ�; ð9Þ

where T is the threshold value; x, y are the coordinates
of the threshold value point; p(x, y) is the probability
distribution of the pixel located in the xth column and
yth row of the SIR image and f(x, y) is the value of
the pixel located in the xth column and yth row of
the SIR image. The threshold image g(x, y) can be
defined as:

gðx; yÞ ¼ 1; if f ðx; yÞ> T
¼ 0; if f ðx; yÞ � T

ð10Þ

The threshold values for the present study were
empirically evaluated by repeated manual scrutiny of
the most obvious 100 pixels (per target class) from SIR
images derived from the eight pan-sharpened images.
The same 100 pixel locations were scrutinized for all
the pan-sharpened SIR images to ensure unbiased ac-
curacy analysis. Pixels with a SIR value higher than the
local threshold were assigned 1 (target class pixels),
while pixels with a lower SIR value than the local
threshold were assigned 0 (non-target class pixels).
The ranges of threshold values for various SIR com-
binations for all pan-sharpened images are summarized
in Table 5. The threshold used for each SIR was kept
constant for all the pan-sharpening algorithms to
ensure unbiased comparison and assessment of
accuracy.

5.5. Land-cover map generation

In this experiment, we designed four customized
modifications for three SIRs to differentiate three land-
cover classes. Hence, each class is eventually classified
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by four customized SIRs (Table 5). Each customized
SIR identifies the desired class with varying success,
on the basis of the bands used for designing that SIR
and the threshold set for identifying the desired class.
For instance, considering NDWI, some lakes could be
identified by one combination of bands, while other
combinations could not reveal those lakes. It is also
possible that some lakes could be identified by more
than one NDWI band combination. Hence, it was
necessary to merge all the individual NDWI combi-
nations to avoid redundancy and to yield a composite
output map of water (NDWI). This also applies to the
other two classes.

The SIR output maps produced from each pan-
sharpened image were layered into a final land-cover
dataset. The final land-cover map was generated by
synergistic merging of the three output SIR maps for
each pan-sharpening algorithm. This is our novel step,
implementing a second additional GIS-based fusion of
SIR maps to generate a final land-cover map.

The land-cover classes obtained were vectorized to
generate ArcGIS-compatible shapefiles, which were
used to calculate the land-cover class area. The mul-
tifold flowchart for processing WV-2 to generate in-
dividual SIR maps and the subsequent final land-cover
map is depicted in Fig. 6. All the pan-sharpened im-
ages were processed in a similar way to generate final
output maps.
Fig. 6. Processing flowchart for analysis of W
5.6. Accuracy assessment

We assessed the results of our land-cover extraction
approach by visual interpretation and statistical
measures.

5.6.1. Visual analysis
We displayed the original MSI, the manually digi-

tized land-cover map, and the resultant SIR-based
land-cover maps in three display windows. By over-
laying ground truth-based polygon layers of manually
digitized land-cover maps on the SIR-based land-cover
map layers, visual interpretation was carried out
satisfactorily.

5.6.2. Error matrices
According to the widely used rule “number of bands

(8) � number of classes (3) � 10”, a minimum 240
validation test points are necessary to calculate the
accuracy of the land-cover map. However, given the
image size and number of classes, a set of 240 points
was not considered as a statistically significant sample.
The accuracy assessment of all output land-cover maps
was therefore carried out using a stratified random
selection of 3000 test points to ensure an approx-
imately equal distribution of points among the three
land-cover classes. We used the most commonly
employed “error matrices” for accuracy assessment of
V-2 data to produce a land-cover map.



29S.D. Jawak, A.J. Luis / Polar Science 7 (2013) 18e38
land-cover maps (Congalton, 1991), such as pixels
classified correctly for the entire map, errors of inclu-
sion (commission), errors of exclusion (omission),
user’s accuracy, producer’s accuracy, overall accuracy,
mean accuracy and kappa coefficient of agreement.

5.6.3. Statistical analysis
Very accurate pre-digitized land-cover area data for

the three classes were used as the reference for eval-
uating the accuracy of all the SIR-based land-cover
maps. The areas of all the three classes were estimated
from the vectorized outputs of SIR-based land-cover
maps. In the last step, a statistical comparison was
made between manually pre-digitized land-cover area
and SIR-based classified land-cover area for all the
three classes using bias and root mean square error
(RMSE).

The bias for each extracted class is defined as:

Bias¼ Ari �Ami; ð11Þ

where Ami is the ith original area value measured using
SIR-based land-cover classification, Ari is the reference
value from the manually digitized land-cover map, and
n is the number of land-cover classes. The average and
percentage bias were calculated to evaluate the final
accuracy.

To quantify the uncertainty of our analysis, we
calculated the RMSE using:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðAri �AmiÞ2
s

ð12Þ

6. Results

We offer a few comments on the methodology. In
the first step, the performance and quality of pan-
sharpening techniques of high-resolution RS images
from WV-2 were evaluated. In the second step, quan-
titative analysis of the pan-sharpened image was car-
ried out. In the third step, a customized SIR-based
method was developed to extract land-cover classes.
In the final step, the accuracy was evaluated on the
basis of RMSE and bias of land-cover area derived
using the customized SIR approach.

6.1. Quantitative evaluation of pan-sharpening
algorithms

The process of pan-sharpening introduces a variety
of spectral and spatial distortions, which may affect the
subsequent land-cover mapping. Hence, a quantitative
quality evaluation was necessary before the actual
implementation of the customized SIRs. The results of
evaluation of this pan-sharpening based on quantitative
indices are shown in Tables 2e4 and summarized in
Supplementary Table 1. A set of six traditional algo-
rithms (EF, PC, BT, HPF, GS, and W-PC) was com-
pared on the basis of Wald’s protocol. A value
approaching 1 for all indices (except SAM and
ERGAS) indicates very good performance.

The SSIM and QWB values are useful for evaluating
the similarity between the sharpened image and the
original image. SSIM and QWB consider the similarity
of two images on the basis of three different factors;
namely, loss of correlation, radiometric distortion, and
contrast distortion. A higher SSIM index value in-
dicates greater similarity between the fused image and
the original MSI. In Tables 2 and 3 we compare the
SSIM and QWB values for sharpened and original
images. Both values show that the GS-sharpened im-
ages are closer to the original MSI than the other five
sharpening methods. As shown in Tables 2 and 3, the
GS (QWB ¼ 0.992, SSIM ¼ 0.744) method yields the
best results, while the HPF (QWB ¼ 0.809,
SSIM ¼ 0.462) and BT (QWB ¼ 0.888,
SSIM ¼ 0.524) methods yield comparatively poorer
results in a given cohort. In contrast, the W-PC
(QWB ¼ 0.985, SSIM ¼ 0.634), EF (QWB ¼ 0.983,
SSIM ¼ 0.553) and PC (QWB ¼ 0.984, SSIM ¼ 0.633)
methods yield almost equivalent results with minor
variations.

The spectral performance of the algorithms can
be ranked quantitatively in terms of QWB and
SSIM (Supplementary Table 1) as GS > W-PC >
PC > EF > BT > HPF. The trend indicates that the
GS algorithm performed best while the HPF per-
formed worst of the set of six algorithms. However,
we note that the values of CC, SSIM, and QWB for W-
PC and PC are comparable since the W-PC algorithm
models the input bands slightly better than PC. Also
note that the SAM and ERGAS values for W-PC
exceeded that of PC, indicating that the difference
was not caused by variation in either spectral or
spatial quality, but was due to the overall perfor-
mance of the algorithm.

A high HCC value indicates that most of the spatial
information from the PAN image is incorporated in the
sharpened image. Table 2 presents the HCC calculated
between the sharpened image and the PAN image. The
GS method (HCC ¼ 0.948) yields the best result, while
the HPF (HCC ¼ 0.746) yields the poorest result in
a given cohort. This shows that the GS-sharpened
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images have higher spatial correlation, which indicates
that more information from the PAN image is incor-
porated in the sharpened image. On the other hand, EF
(HCC ¼ 0.845) and BT (0.846) are almost equivalent
in performance. Similarly, W-PC (HCC ¼ 0.860) and
PC (HCC ¼ 0.858) perform equally well in the spatial
context. The HCC index based (spatial quality) ranking
can be summarized as GS > W-
PC > PC > BT > EF > HPF. Based on spatial con-
siderations (HCC), the trend reveals that the BT
method performed better than the EF, which is the
reverse of the spectral situation (QWB, SSIM). The
spatial quality for the EF algorithm was lower than that
for BT, with the coastal band lower (HCC ¼ 0.770),
but the spectral quality was superior (QWB ¼ 0.922).
This suggests that the poor spatial performance was
offset by the excellent spectral performance.

The SAM, CC, and ERGAS values indicate the
spectral quality of the sharpened image. As shown in
Tables 3 and 4, it is evident that the GS method
(SAM ¼ 0.403, CC ¼ 0.968 and ERGAS ¼ 0.207)
yields the best results, while the HPF (SAM ¼ 0.649,
CC ¼ 0.767 and ERGAS ¼ 0.437) yields the poorest
results in a given cohort. The spectral performance of
the algorithms can be ranked quantitatively in terms of
SAM and ERGAS, (Supplementary Table 1) as
GS > W-PC > PC > EF > BT > HPF. Interestingly,
BT and EF have the same CC index value (0.865),
indicating the comparable spectral performances for
these algorithms.

The GS algorithm is the sharpest algorithm (highest
score), retaining spectral and spatial quality much
better than other algorithms, while the HPF algorithm
scored the lowest among the six algorithms. In brief,
from a spectral point of view, we conclude that GS
performs best, closely followed by W-PC, PC, EF, BT,
and HPF. However, from a spatial point of view, GS is
much superior to the other algorithms. We also com-
puted the correlation between the indices of spatial
quality (HCC) and spectral quality (QWB) (Table 2),
which indicates that the correlation is positive for all
pan-sharpening algorithms except for GS. The negative
correlation suggests that the poor spatial performance
was offset by excellent spectral performance for the
GS algorithm.

In brief, the analysis of quality measures following
Wald’s protocol indicates that the GS algorithm
maintained the best balance between spectral and
spatial quality so as to preserve consistency and syn-
thesis properties more efficiently than the other
sharpening methods, and hence surpassed the perfor-
mance of the other pan-sharpening algorithms.
6.2. SIR performance

Each ratio produced realistic results with areas of
noticeable similarity as evident in both the true/false
color composites of the original data and in the clas-
sification regions within the land-cover map. The
Larsemann Hills region is situated on the eastern coast
of Antarctica, where the sea-ice and snow-cover extent
varies significantly from summer to winter. The current
acquisition captured only a few water bodies ranging
from shallow ponds to deep lakes, which provide
a similar response to the NDWI. The clear detection of
standing water validates the theory that the coastal
band is a unique variable in the NDWI equation. In the
second phase of validation, the same process was run
again using the blue band instead of the coastal band.
As a result, the threshold had to be increased to filter
out a larger number of false alarms, showing that the
coastal band is superior to the traditional blue band for
evaluating the NDWI. This is not surprising, as in
many cases the response of the coastal band was
greater than that of the blue band in areas of standing
water. However, out of 109 manually digitized water
bodies, the NDWI approach could successfully extract
only 97 water bodies in the final land-cover map. A
visual analysis revealed that the missing water bodies
were very small in size, typically 130e200 m2 in area.
We infer that the NDWI method failed to extract small
water bodies because they were in a semi-frozen state,
so these might have been misclassified as ice/snow
since the optimum threshold ranges could not extract
them. A set of twelve missing water bodies is shown on
Supplementary Fig. 2. A final NDWI map obtained
from the GS-sharpened image is shown in Fig. 7.

Presently, the use of the Yellow and the NIR1 bands
was not adequate to classify areas of snow/ice cover.
With WV-2 imagery, the NDSI can be calculated using
either the NIR1eYellow/RedEdge or RedeYellow/
RedEdge bands. The advantage of having the Yellow
band is that the difference in the response values be-
tween the two regions (NIR1eYellow and
RedeYellow) is even greater, thereby widening the
threshold for positive classifications of snow/ice. We
found that some rocky terrain, which was partially
covered by snow/ice, had NDSI values similar to that
of snow/ice cover. Hence, these were separated from
snow/ice cover using the NDSI computed with the
RedEdge band. In contrast, other surfaces had NDSI
(RedEdge) values similar to that of snow/ice cover but
were separable using the NDSI values calculated with
the NIR1 or Red band. Most of these pixels appeared at
the edges of rocky terrain or shadowed rocky areas. In
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image.
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brief, we infer that the combined use of the four NDSI
values enabled a much more accurate separation of
snow/ice cover from other classes (Fig. 8).

Landmass features are often the simplest to extract
from homogeneous backgrounds, but in our scenario the
background comprised different types of materials such
as fully exposed rocks, partially snow-covered rocks and
Fig. 8. Resultant merged NDSI map compiled from GS-sharpened

image.
landmass surrounded by water bodies. However, the
performance of the NDLI was outstanding, with detec-
tion of not only the most obvious landmass materials
(fully exposed rocks), but also partially snow-covered
landmass and even obscure static objects such as land
surrounded by lakes. The use of the red edge and coastal
bands to detect natural hard surfaces (NDLI) was a suc-
cess (Fig. 9). This is the second most abundant layer in
the resulting land-cover map.

However, in the case of NDLI the spectral distor-
tions caused by the pan-sharpening algorithm resulted
in a varying degree of misclassification of snow/ice
pixels as landmass pixels at the edges of rocky terrain
in all the six pan-sharpened images. An example of
such a misclassification, an HPF-sharpening-based
land-cover map, is shown in Supplementary Fig. 3.
Interestingly, this misclassification is significantly
reduced in the GS-sharpened image (Fig. 9).

6.3. Comparative assessment of pan-sharpening on
the basis of error matrices

A multi-sequence and bi-fusion (two merging steps)
methodology ensured reliability in the generation of
accurate land-cover maps from each pan-sharpened
image. Each pan-sharpening method yielded three
SIR-based GIS layers: NDSI, NDLI, and NDWI. In
turn, each SIR was calculated using four different band
combinations. Twelve GIS layers from each pan-
Fig. 9. Resultant merged NDLI map compiled from GS-sharpened

image.
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sharpened output (four combinations from each of
NDVI, NDLI and NDWI) were merged using GIS
operations to produce a final output map. Thus, our
methodology yielded six final output maps from a total
of 72 GIS layers using six pan-sharpening algorithms.
The overall accuracy assessment of each land-cover
map was carried out using 3000 stratified random
points. Final accuracy assessment results of each land-
cover map are expressed in terms of the widely used
comprehensive measures, overall accuracy and the
kappa (bK) coefficient. A sample error matrix for the
land-cover map based on GS-sharpened imagery is
given in Supplementary Table 2. The overall accuracy
statistics are given in Table 6 as a function of pan-
sharpening algorithm.

We now present the accuracy statistics for the six
land-cover output maps from the six pan-sharpened
images. The GS (bK ¼ 0.98) and W-PC (bK ¼ 0.97)
pan-sharpening-based land maps have overall accuracy
of 98.76% and 98.20%, respectively, while the PC
(bK ¼ 0.97) pan-sharpening-based land map has an
accuracy of 98.16%. Note that these three methods
have higher overall accuracy than the other three pan-
sharpening methods. In addition to overall accuracy, bK,
both the user’s accuracy and producer’s accuracy of
GS-merged land-cover maps are much better than the
others, which in turn proves the robustness of our ac-
curacy assessment.

The overall trend of land-cover mapping accuracy
for the six pan-sharpening methods can be summarized
in terms of overall accuracy and kappa statistics as,
GS > W-PC > PC > EF > BT > HPF, suggesting that
the GS algorithm (bK ¼ 0.98) performed best, while
HPF (bK ¼ 0.96) performed worst of the set of six al-
gorithms (Fig. 10). Similar trends have been observed
for all the measures of land-cover mapping accuracy
derived from the error matrices. Note that the overall
accuracies for the W-PC (98.20% and bK ¼ 0.97) and
PC (98.16% and bK ¼ 0.97) algorithms were very
Table 6

Overall accuracy statistics for all the resultant individual land cover maps.

Pan-sharpening

method

Error matrix based accuracy (%)

Overall

accuracy

Kappa

value

User’s

accuracy

P

a

GS 98.76 0.98 98.77 9

W-PC 98.20 0.97 98.20 9

PC 98.16 0.97 98.17 9

EF 97.70 0.96 97.70 9

BT 97.56 0.96 97.57 9

HPF 97.50 0.96 97.50 9

MSI 95.14 0.94 95.13 9
similar, suggesting equivalent performance of these
algorithms. Additionally, we present the results of the
classification experiment on the original MSI (without
pan-sharpening) to evaluate the mapping improvement
achieved using pan-sharpening procedures. The statis-
tics listed in Table 6 suggest that all the six pan-
sharpened images performed much better than the
original MSI, improving the mapping accuracy by
approximately 2e3% in terms of overall accuracy,
equivalent to an improvement of 0.02e0.04 in bK value.

The error evaluation summarized in Table 7 in-
dicates that the error of commission/inclusion (EC) is
smallest for NDWI, ranging from 0.71% to 2.21% for
the six pan-sharpening algorithms. This indicates that
the smallest number of misclassified landmass or snow/
ice pixels is included in the water class. However, the
error of omission/exclusion (EO) for all six methods is
greatest for NDWI. This implies that a significant
percentage of water pixels ranging from 1.90% to
3.00% were misclassified as landmass or snow; the
number was lowest for GS and highest for HPF. As for
the NDLI, the GS method gave the lowest EO (0.70%)
while BT (2.30%) scored the highest, indicating the
lowest (highest) number of misclassifications of land-
mass pixel for GS (BT). We also note that EC values
for NDLI are lowest for GS (1.59%) and highest for
HPF (2.78%), giving the smallest (highest) amount of
misclassification of water or snow pixels as landmass
for GS (HPF). GS again performs the best for NDSI,
with lowest values of EO (1.10%) and EC (1.40%). On
the other hand, HPF performance was the worst in
terms of EO (2.30%) and EF performed the worst in
terms of EC (2.88%). The most significant observation
in terms of overall EC and EO is that W-PC and PC
had similar numbers of errors, suggesting comparable
performance.

The producer’s accuracy (PA) results are also
summarized in Table 7. These indicate that for GS-
sharpened images about 98.90% of snow/ice pixels,
Land cover area based accuracy

roducer’s

ccuracy

RMSE (m2) Misclassified

pixels (No.)

%Bias

8.77 2943.92 11776 3.62

8.20 3559.03 14236 4.57

8.17 8602.32 34409 10.12

7.70 10801.23 43205 8.89

7.57 15577.76 62311 18.05

7.50 17720.04 70880 22.75

5.16 85490.74 341963 15.03



Fig. 10. Error matrix based classification accuracy statistics for six

pan-sharpening methods. User’s, producer’s and overall accuracies

are expressed in terms of percentage.
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99.30% of landmass pixels, and 98.10% of water pixels
were classified correctly, at their correct locations. In
other words, 1.10% of snow pixels were omitted from
NDSI and misclassified as either landmass or water,
0.70% of landmass pixels were omitted from NDLI
and misclassified as snow or water, and 1.90% of water
pixels were omitted from NDWI and misclassified as
snow or landmass. The user’s accuracy (UA) results
summarized in Table 7 reveal that for GS-sharpened
images about 98.60% of snow/ice pixels, 98.41% of
landmass pixels, and 99.29% of water pixels were
classified correctly, at their correct locations. In other
words, 1.40% of landmass/water pixels were included
in NDSI and misclassified as snow pixels, 1.59% of
snow/water pixels were included in NDLI and mis-
classified as landmass, and 0.71% of snow/landmass
pixels were included in NDWI and misclassified as
water.

The above assessment of the results (Fig. 10)
obtained from various SIRs of pan-sharpening methods
suggests that the pan-sharpening methods GS, W-PC,
and PC provided better results than the other methods,
with the GS performing best. This implies that pan-
Table 7

Error matrix based producer’s and user’s accuracy statistics.

Pan-sharpening NDSI (Snow/Ice) NDLI (Lan

PA EO UA EC PA

GS 98.90 1.10 98.60 1.40 99.30

W-PC 98.70 1.30 98.21 1.79 98.20

PC 98.70 1.30 98.21 1.79 98.20

EF 97.90 2.10 97.12 2.88 98.10

BT 97.80 2.20 97.51 2.49 97.70

HPF 97.70 2.30 97.21 2.79 97.80

MSI 95.70 4.30 94.40 5.60 95.28
sharpening using GS and W-PC methods had the
minimum effect on subsequent processing of WV-2
data.

6.4. Comparative assessment of pan-sharpening
methods on the basis of land-cover area based
accuracy measures

We analyzed six pan-sharpening methods for their
ability to support WV-2 based land-cover mapping.
Overall accuracy statistics for all the resultant indi-
vidual land-cover maps generated from six pan-
sharpened images are summarized in Table 6. Data
used for RMSE and bias calculation of pan-sharpened
images using customized SIRs are summarized in
Table 8. A positive (negative) bias indicates the aver-
age amount of underestimate (overestimate) in the
extracted area. The RMSE was calculated to evaluate
the error in total land-cover area extraction carried out
by using various algorithms (Table 8). The number of
misclassified pixels leads to an increase or decrease in
the area of extracted land-cover. This in turn contrib-
utes to the overall RMSE. Thus, the RMSE is a mea-
sure of misclassification and hence the overall
accuracy of land-cover extraction. Considering the
0.5 m resolution of the WV-2 pan-sharpened image,
each misclassified pixel introduces 0.25 m2 of RMSE
in the extracted area. SIR-based measured areas are
compared with reference areas in Fig. 11.

As RMSE is a more reliable and more repre-
sentative measure of accuracy than the bias, we focus
on the former. The performance of each algorithm
can be ranked quantitatively using RMSE, and sev-
eral quantitative inferences about their performance
can be made. The overall trend of potential and ac-
curacy of all the pan-sharpening methods for
land-cover extraction can be summarized in terms of
RMSE and number of misclassified pixels as
GS > W-PC > PC > EF > BT > HPF, suggesting
dmass) NDWI (Water)

EO UA EC PA EO UA EC

0.70 98.41 1.59 98.10 1.90 99.29 0.71

1.80 98.00 2.00 97.70 2.30 98.39 1.61

1.80 97.91 2.09 97.60 2.40 98.39 1.61

1.90 97.71 2.29 97.10 2.90 98.28 1.72

2.30 97.41 2.59 97.20 2.80 97.79 2.21

2.20 97.22 2.78 97.00 3.00 98.08 1.92

4.72 95.80 4.20 94.50 5.50 95.20 4.80



Table 8

Land-cover area statistics for all resultant land-cover maps.

Reference data SIR-based extracted/classified area (km2) and bias (%)

GS W-PC PC EF BT HPF MSI

Class Area Area Bias Area Bias Area Bias Area Bias Area Bias Area Bias Area Bias

Water body 0.36 0.32 11.11 0.31 13.89 0.25 30.56 0.26 27.78 0.16 55.56 0.11 69.44 0.22 38.88

Landmass 12.96 12.99 �0.23 12.98 �0.15 12.97 �0.08 13.11 �1.16 13.14 �1.39 13.1 �1.08 11.99 7.48

Ice/Snow 86.68 86.69 �0.01 86.71 �0.03 86.78 �0.12 86.63 0.06 86.7 �0.02 86.79 �0.13 87.79 �1.28

Average 3.62 4.57 10.12 8.89 18.05 22.75 15.03
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that the GS algorithm performed best, with the lowest
average RMSE in the set of six algorithms. In terms
of percentage bias, the trend is almost the same
except that EF performed better than PC. This
anomaly results from a positive bias with snow/ice
cover for EF, and a negative bias for PC. Note that
EF is the only method that yielded a positive bias
(underestimate) for snow/ice cover among the six
pan-sharpening algorithms. Also note that all the
pan-sharpening methods had a positive bias for
Fig. 11. Comparison between SIR-based land-cover class area and
water, and a negative bias for snow/ice and landmass,
indicating that significant numbers of water pixels
were misclassified as either landmass or snow/ice
cover.

The GS-sharpened and W-PC-sharpened images
performed better than the remaining pan-sharpened
images for water body mapping (NDWI), with
the lowest biases of 11.11% and 13.89%, respectively.
PC-sharpened images performed best for landmass
mapping (NDLI) with the lowest bias (�0.08%),
reference class (manually digitized) area in terms of bias (%).



Table 9

The kappa index (bK) for GS-sharpened land-cover maps generated

with four SIR combinations and with one SIR combination.

Kappa index

Pan-sharpening Four SIR combinations One SIR combination

Gram Schmidt 0.98 0.92

Fig. 12. Resultant SIR-based land-cover map compiled from GS-

sharpened image.
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followed closely by W-PC (�0.15%), while GS and
BT demonstrated good performance for snow/ice
(NDSI) with the lowest biases of �0.01% and �0.02%,
respectively. In general, GS is the optimum sharpening
algorithm for mapping water and snow while PC is
ideal for landmass mapping. The performance of BT
was more or less alike to GS for snow mapping. The
representative accuracy of six land-cover maps is
expressed in terms of RMSE. GS-sharpened images
performed best with the lowest RMSE (2943.92 m2),
while HPF performed worst with the highest RMSE
(17720.04 m2). The GS-sharpened extracted final land-
cover map is shown in Fig. 12.

Additionally, to test the robustness of our method-
ology, we compared the accuracy of the GS-sharpened
land-cover map generated using one SIR combination
against the final land-cover map generated using four
SIR combinations. The bK index statistics for GS-
sharpened land-cover maps generated with four SIR
combinations and with a single SIR combination are
given in Table 9. The land-cover map generated from
using four SIR combinations had a bK value (0.98)
significantly higher than for the land-cover map gen-
erated using one SIR combination (0.92). The result
highlights the advantage of using multiple combina-
tions of available bands to formulate SIRs, and their
contribution to generating a final precise map.

7. Discussion

Our study differs from earlier work (Ben-Dor et al.,
2001; Fernandez et al., 1997; Hall et al., 1995a;
Huggel et al., 2002) in three key areas: (i) the use of 8-
band data, (ii) the customization of SIRs, and (iii) the
reconstruction of SIRs to yield an accurate land-cover
map of the study area. The characteristic feature of this
analysis is that, except for a few mixed pixels, no
layers overlap in this land-cover, which indicates
a high degree of accuracy in the resultant output map.
Typically, where regions of classification are not set to
reasonable thresholds, false signals do exist. However,
false signals in this dataset have been almost com-
pletely mitigated for GS-sharpened images by the
sequential optimization of a final threshold.

Most misclassifications in the SIR-based land-cover
mapping procedure are related to three main types of
error. (1) Inaccuracies due to cast shadow: there is
a high probability that shadowed pixels are mis-
classified as water, unless a suitable correction is
applied. The frequency and magnitude of these errors
are closely linked to the topography of the study area.
(2) Blue band saturation: Snow and ice have high
reflectivity in the visible range of the electromagnetic
spectrum. Sun glint effects for pixels with the relevant
slope and aspect can saturate the blue band, leading to
misclassification in both the “customized NDWI” and
“customized NDLI”. (3) The magnitude of the spectral
distortion introduced by the pan-sharpening methods.

In order to reduce the cast shadow effect, a dark
object subtraction (DOS) was applied to the blue
channel (Crippen, 1988). This procedure, however,
produced only minor improvements. Hence, for water
surface extraction, the detected water areas need to be
checked for shadow. Otherwise some water areas can
be underestimated (overestimated) due to a false neg-
ative (positive) signal and may result in a positive
(negative) bias. Negative bias was omnipresent and
dominant for NDLI and NDSI, while positive bias was
omnipresent for NDWI in all the pan-sharpening
methods (Table 8), suggesting a misclassification of
landmass and snow pixels and an underestimate of
water pixels. The negative bias indicates that the
extracted land-cover area is estimated to be larger than
the original (reference) area.
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To provide a wider context to the study, we decided
to utilize multiple combinations of available bands to
generate SIR maps. Different band combinations ena-
bled us to determine minute differences in the perfor-
mance of the fusion and SIR procedures. It also
provided a platform to gain insights into the role of
specific spectral bands for the maximum extraction of
information from the pan-sharpened products. The use
of all combinations enabled us to carry out a wide
variety of statistical analyses of the research experi-
ment, which was very successful. However, we note
that the present application is limited to polar regions,
and may not represent the practicability and robustness
of SIR-based land-cover mapping methods for urban
areas, which are prone to variable shadow effect due to
elevated manmade structures.
8. Conclusions

The combined use of all the SIRs, computed using
the twin set of VeNIR bands, provided an accurate
means for differentiating various land-cover classes.
The magnitude of spectral and spatial distortions
induced by pan-sharpening impacts on subsequent
processing, which greatly affects the final accuracy of
the analysis. The reduction of pan-sharpening-
induced spectral distortions due to processing of 8-
band acquisitions is attributed to the three major
experimental superiorities: (i) use of multiple SIRs,
(ii) optimum and constant thresholding for each set of
customized SIRs, and (iii) synergistic merging of all
SIR images to produce land-cover classes from the
dataset.

We set out with the goals of covering a handful of
uniquely customized SIRs to provide accurate spatial
and spectral information for Antarctic land-cover map-
ping and fostering a new capability usingWV-2 data. Our
research provides new procedures to overcome the pan-
sharpening-triggered spectral distortions of WV-2 im-
agery, and so will contribute to a better understanding of
the earth’s surface. The present work reinforces the view
that the traditional pan-sharpening algorithms coupled
with a wide array of SIRs from WV-2 data provide an
effective tool for mapping the Antarctic surface.
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