FEBS LETTERS

TOPOGRAPHY OF RNA IN THE RIBOSOME: LOCATION OF THE 3'-END OF 5 S RNA ON THE CENTRAL PROTUBERANCE OF THE 50 S SUBUNIT

I. N. SHATSKY, A. G. EVSTAFIEVA, T. F. BYSTROVA, A. A. BOGDANOV and V. D. VASILIEV⁺

A. N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, 117234 Moscow and ⁺Institute of Protein Research, USSR Academy of Sciences, 142292 Poustchino, Moscow Region, USSR

Received 12 September 1980

1. Introduction

The 5 S RNA is an integral part of the prokaryotic ribosome and plays an important role in polypeptide synthesis. However, the specific function of 5 S RNA and/or associated proteins is unknown. The removal of 5 S RNA from 50 S ribosomal subunits strongly impairs various functional activities of ribosomes [1,2]. The only exception is the EF-G-dependent GTP hydrolysis which is not influenced by the presence of 5 S RNA [2]. Therefore, the direct localization of the 5 S RNA—protein domain with respect to other ribosomal components with known functions is of great interest.

Here we report the localization of the 3',5'-terminal stem of the *Escherichia coli* 5 S RNA on the surface of the 50 S subunit. This was done using the immune-electron microscopy approach applied to localize the 3'-ends of the 16 S [3] and 23 S RNA [4] on the 30 S and 50 S subunits, respectively. The 3'-end nucleotide residue of 5 S RNA was found to be located on the outward surface of the central protuberance of the 50 S subunit. These data together with the known secondary structure of the 3',5'-terminal stem of the 5 S RNA allow one to conclude that its 5'-end is also located in this region of the 50 S subunit.

2. Materials and methods

Ribosomes and ribosomal subunits were isolated from *Escherichia coli* strain MRE 600 as described [3]. 5 S RNA was prepared as in [5] except that 50 S subunits rather than 70 S ribosomes were used as a source of RNA. The homogeneity of 5 S RNA preparations was checked by polyacrylamide gel electrophoresis and, if necessary, they were additionally purified by gel-filtration on Sephadex G-100. Oxidation of the 3'-terminal nucleoside residue of the 5 S RNA, modification of oxidized RNA by 1. N-[p-(β -D-lactosyl)benzyl]-6-aminohexylamine (LBA), estimation of the extent of 5 S RNA modification were done as described for 16 S RNA [3]. Antibodies specific to phenyl-\$-D-lactoside hapten (anti-pAPL) were prepared as in [3]. 50 S subunits were reconstituted from modified 5 S RNA, 23 S RNA and total 50 S subunit protein (TP50) by the method developed in [6] with some modifications [4]. Purification of reconstituted 50 S subunits, incubation of subunits with anti-pAPL and the electron microscopy technique were also described [3,4]. Buffer, 10 mM Tris-HCl (pH 7.3), containing 5 mM Mg(CH₃COO)₂ and 100 mM NH₄CH₃COO was used in all experiments.

3. Results

As one can see from fig.1a, 50 S subunits reconstituted from 23 S RNA, TP50, and 5 S RNA modified by phenyl- β -D-lactoside hapten at its 3'-end (modification was 40–50%) give the symmetrical homogeneous peak in a sucrose gradient. After incubation of these particles with anti-pAPL, a 'dimer' fraction of 63 S av. appears (fig.1b). The formation of the 50 S \cdot IgG \cdot 50 S complexes is specific for the modified 5 S RNA in 50 S subunits since the incubation of the reconstituted 50 S subunits with antipAPL in the presence of free hapten does not give rise to the 'dimer' fraction (fig.1c). For electron microscopy the 'dimer' fraction was isolated on a large scale.

FEBS LETTERS

Fig.1. Sedimentation of reconstituted 50 S subunits with LBA modified 5 S RNA treated with anti-pAPL in a 5-20%sucrose gradient. (a) Modified 50 S subunits (2 A_{260} units, 80 pmol) in the absence of antibodies; (b) +50 μ g antipAPL, 312 pmol; (c) +50 μ g of anti-pAPL and pAPL to 50 mM final conc.; anti-pAPL peak is masked by the absorbance of the large excess of the free hapten; (d) large scale preparation of 'dimers': 5 A_{260} units of LBA-modified 50 S subunits + 125 μ g anti-pAPL; the shaded region indicates fractions used in electron microscopical analysis.

It is interesting that increasing of the concentrations of 50 S subunits and anti-pAPL in the incubation mixture results in a better separation of the 'dimer' fraction from monomeric 50 S subunits.

The results of electron microscopical analysis are

presented in fig.2. As one can see from fig.2a, $\sim 30\%$ of the total number of reconstituted 50 S subunits form pairs in which single subunits are linked by antibodies. The asymmetric 'crown'-like images of 50 S subunits are predominant as in the case of 50 S subunits reconstituted from the 23 S RNA modified by the same hapten [4]. Fig.2b depicts both 50 S · IgG · 50 S and single 50 S · IgG complexes in two characteristic projections. Altogether, we have examined 70 complexes and we have not observed any 50 S subunit which would be bound with more than one antibody molecule. The binding site of antibodies at the 50 S subunits can be easily and unambiguously identified: it is located on the outward (not contacting with the 30 S subunit) side of the central protuberance of the 50 S subunit 20-30 Å lower than its top (fig.3).

4. Discussion

It has to be emphasized that the mapping of the 3'-end of the 5 S RNA on the 50 S subunit spells out simultaneously the localization of its 5'-end. Indeed, it was proved by direct crosslinking experiments that the complementary terminal sequences 1-10 and 110-119 in the Escherichia coli 5 S RNA form the double-helical stem [7]. Thus, the central protuberance of the 50 S subunit is the site of location of the 3',5'-terminal stem of the 5 S RNA. This morphological part of the 50 S subunit is the universal and very characteristic feature of both prokaryotic and eukaryotic ribosomes [8]. Further, it is retained after removal of a significant portion of ribosomal proteins from 50 S subunits [9]. One can suggest that the majority of the 'body' of the central protuberance consists of rRNA with a stable tertiary structure. It is also important that the 5 S RNA-protein complex can be specifically associated with different proteindeficient core-particles [2] and even with the free 23 S RNA [10]. Hence we can assume that one of the 5 S RNA binding sites formed by 23 S RNA segment in the region of the large subunit central protuberance.

Fig.2. Electron micrographs of 50 S subunits modified by LBA in the 3'-end of their 5 S RNA after reaction with anti-pAPL. (a) General view of the preparation from the 'dimer' fraction (fig.1d); arrows indicate antibodies in 50 S \cdot IgG \cdot 50 S and 50 S \cdot IgG complexes; bar = 1000 Å; (b) large ribosomal subunits linked with anti-pAPL. Three upper rows represent the images of subunits in characteristic projections schematically shown in the right frames. The last row gives single subunits with attached antibody molecules; bar = 500 Å.

Fig.2a,b

Fig.3. Localization of the 3'-end of 5 S RNA on the 50 S subunit: the 3'-end position on the two main projections of the large ribosomal subunit is denoted by solid circles.

These data allow one to map the 5 S RNA-binding protein L25 on the 50 S subunit. Since the L25binding site occurs near the 5 S RNA 3',5'-terminal stem [11] \leq 30 Å in length, it also has to be located in the region of the central protuberance. This conclusion is in strong contradiction with the model of Stöffler et al. who placed all 5 S RNA-binding proteins (L5, L18 and L25) at the edge of the large subunit interface opposite to the central protuberance (e.g., see fig.34 in [12]). At the same time our data are in better correlation with Lake's preliminary map of large subunit proteins, on which proteins L5 and L25 are placed on the 'right' (short) protuberance [13].

It is interesting that Lake et al. have located protein L27, which is very likely the component of the peptidyl transferase (for references see [14]), near the top of the central protuberance of the 50 S subunit [15] and hence near the 3',5'-terminal stem of 5 S RNA. Since the presence of 5 S RNA is very significant for binding of aminoacyl-tRNA in the A-site of the ribosome and peptidyl transferase activity [2], and the P-site of the ribosome is mainly formed from 23 S RNA ([16], for references see [14]) one can suggest that the central protuberance of the 50 S subunit is a very important if not the primary part of the peptidyl transferase center of the ribosome.

Acknowledgements

We are grateful to Professor A. S. Spirin for helpful discussion, to L. V. Mochalova for the synthesis of *p*-phenyl- β -D-lactoside hapten, and O. M. Zalite for electron microscopic and photographic assistance.

References

- Erdmann, V. A., Fahnestock, S., Higo, K. and Nomura, M. (1971) Proc. Natl. Acad. Sci. USA 68, 2932-2936.
- [2] Dohme, F. and Nierhaus, K. H. (1976) Proc. Natl. Acad. Sci. USA 73, 2221-2225.
- [3] Shatsky, I. N., Mochalova, L. V., Kojouharova, M. S., Bogdanov, A. A. and Vasiliev, V. D. (1979) J. Mol. Biol. 133, 501-515.
- [4] Shatsky, I. N., Evstafieva, A. G., Bystrova, T. F., Bogdanov, A. A. and Vasiliev, V. D. (1980) submitted.
- [5] Spierer, P. and Zimmermann, R. A. (1978) Biochemistry, 17, 2474-2479.
- [6] Dohme, F. and Nierhaus, K. H. (1976) J. Mol. Biol. 107, 585-599.
- [7] Wagner, R. and Garrett, R. A. (1978) Nucleic Acid Res. 5, 4065-4075.
- [8] Boublik, M. and Hellmann, W. (1978) Proc. Natl. Acad. Sci. USA 75, 2829-2833.
- [9] Spiess, E. (1979) Eur. J. Cell Biol. 19, 120-130.
- [10] Spierer, P., Wang, C.-C., Marsh, T. L. and Zimmermann, R. A. (1979) Nucleic Acid Res. 6, 1669–1682.
- [11] Douthwaite, S., Garrett, R. A., Wagner, R. and Feunteun, J. (1979) Nucleic Acid Res. 6, 2453-2470.
- [12] Stöffler, G. and Wittmann, H. G. (1977) in: Molecular mechanisms of protein biosynthesis (Weissbach, H. and Pestka, S. eds) pp. 117-202, Academic Press, New York.
- [13] Lake, A. L. (1978) in: Proc. 11th FEBS Meet., Copenhagen, 1977, vol. 43, Symp. A2, Gene expression (Clark, B. F. C. et al. eds) pp. 121-130, Pergamon, Oxford.
- [14] Ofengand, J. (1979) in: Ribosomes. Structure, function and genetics (Chambliss, G. et al. eds) pp. 497-529, University Park Press, Baltimore, MD.
- [15] Lake, J. (1979) in: Ribosomes. Structure, function and genetics (Chambliss, G. L. et al. eds) pp. 207-236, University Park Press, Baltimore, MD.
- [16] Bochkareva, E. S., Budker, V. G., Girshovich, A. S., Knorre, D. G. and Teplova, N. M. (1971) FEBS Lett. 19, 121-124.