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1. Introduction

The 5 S RNA is an integral part of the prokaryotic
ribosome and plays an important role in polypeptide
synthesis. However, the specific function of 5 S RNA
and/or associated proteins is unknown. The removal
of 5 S RNA from 50 S ribosomal subunits strongly
impairs various functional activities of ribosomes
[1,2]. The only exception is the EF-G-dependent
GTP hydrolysis which is not influenced by the pres-
ence of 5 S RNA [2]. Therefore, the direct localiza-
tion of the 5 S RNA—protein domain with respect
to other ribosomal components with known func-
tions is of great interest.

Here we report the localization of the 3',5"-termi-
nal stem of the Escherichia coli 5 S RNA on the sur-
face of the 50 S subunit. This was done using the
immune-electron microscopy approach applied to
localize the 3'ends of the 16 S [3] and 23 S RNA
[4} on the 30 S and 50 S subunits, respectively. The
3'end nucleotide residue of 5 S RNA was found to
be located on the outward surface of the central
protuberance of the 50 S subunit. These data
together with the known secondary structure of the
3',5"-terminal stem of the 5 S RNA allow one to con-
clude that its 5'-end is also located in this region of
the 50 S subunit.

2. Materials and methods

Ribosomes and ribosomal subunits were isolated
from Escherichia coli strain MRE 600 as described
[3]. 5 S RNA was prepared as in [5] except that
50 S subunits rather than 70 S ribosomes were used
as a source of RNA. The homogeneity of 5 S RNA
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preparations was checked by polyacrylamide gel
electrophoresis and, if necessary, they were addi-
tionally purified by gel-filtration on Sephadex G-100.
Oxidation of the 3'-terminal nucleoside residue

of the 5 S RNA, modification of oxidized RNA by
1,N-[p{B-D-lactosyl)benzyl]-6-aminohexylamine
{LBA), estimatjon of the extent of 5 S RNA modi-
fication were done as described for 16 S RNA [3].
Antibodies specific to phenyl-8-D-lactoside hapten
(anti-pAPL}) were prepared asin [3]. 50 S subunits
were reconstituted from modified 5 SRNA,23 S
RNA and total 50 S subunit protein {TP50) by the
method developed in [6] with some modifications
[4]. Purification of reconstituted SO S subunits, incu-
bation of subunits with anti-pAPL and the electron
microscopy technique were also described [3,4].
Buffer, 10 mM Tris—HCl (pH 7.3), containing 5 mM
Mg(CH;C00), and 100 mM NH,CH;COO was used
in all experiments.

3. Results

As one can see from fig.1a, 50 S subunits recon-
stituted from 23 S RNA, TP50, and 5 S RNA modi-
fied by phenyl8-Dactoside hapten at its 3'end
(modification was 40—50%) give the symmetrical
homogeneous peak in a sucrose gradient. After incu-
bation of these particles with anti-pAPL, a ‘dimer’
fraction of 63 S av. appears (fig.1b). The formation
of the 50 S - IgG - 50 S complexes is specific for the
modified 5 S RNA in 50 S subunits since the incuba-
tion of the reconstituted 50 S subunits with anti-
pAPL in the presence of free hapten does not give rise
to the “dimer’ fraction (fig.1c). For electron micros-
copy the ‘dimer’ fraction was isolated on a large scale.
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Fig.1. Sedimentation of reconstituted 50 S subunits with
LBA modified 5 S RNA treated with anti-pAPL ina 5-20%
sucrose gradient. (a) Modified 50 S subunits (2 4,,, units,

80 pmol) in the absence of antibodies; (b) +50 pg anti-
pAPL, 312 pmol; (c) +50 ug of anti-pAPL and pAPL to 50 mM
final conc.; anti-pAPL peak is masked by the absorbance of
the large excess of the free hapten; (d) large scale preparation
of ‘dimers’: 5 A, units of LBA-modified 50 S subunits +
125 ug anti-pAPL; the shaded region indicates fractions used
in electron microscopical analysis.

It is interesting that increasing of the concentrations
of 50 S subunits and anti-pAPL in the incubation
mixture results in a better separation of the ‘dimer”
fraction from monomeric 50 S subunits.

The results of electron microscopical analysis are
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presented in fig.2. As one can see from fig.2a, ~30%
of the total number of reconstituted 50 S subunits
form pairs in which single subunits are linked by
antibodies. The asymmetric ‘crown’like images of
50 S subunits are predominant as in the case of

50 S subunits reconstituted from the 23 S RNA
modified by the same hapten [4]. Fig.2b depicts
both 50 S - IgG - 50 S and single 50 S - IgG com-
plexes in two characteristic projections. Altogether,
we have examined 70 complexes and we have not
observed any 50 S subunit which would be bound
with more than one antibody molecule. The binding
site of antibodies at the 50 S subunits can be easily
and unambiguously identified: it is located on the
outward (not contacting with the 30 § subunit) side
of the central protuberance of the 50 S subunit
20-30 A lower than its top (fig.3).

4, Discussion

It has to be emphasized that the mapping of the
3'end of the 5 S RNA on the 50 S subunit spells out
simultaneously the localization of its 5'-end. Indeed,
it was praved by direct crosslinking experiments that
the complementary terminal sequences 1—10 and
110—119 in the Escherichia coli 5 S RNA form the
double-helical stem [7]. Thus, the central protuber-
ance of the 50 S subunit is the site of location of the
3',5"-terminal stem of the 5 S RNA. This morpho-
logical part of the 50 8 subunit is the universal and
very characteristic feature of both prokaryotic and
eukaryotic ribosomes [8]. Further, it is retained after
removal of a significant portion of ribosomal proteins
from 50 § subunits [9]. One can suggest that the
majority of the ‘body’ of the central protuberance con-
sists of IRNA with a stable tertiary structure. It is
also important that the 5 S RNA—protein complex
can be specifically associated with different protein-
deficient core-particles [2]} and even with the free
23 S RNA [10]. Hence we can assume that one of
the 5 S RNA binding sites formed by 23 § RNA
segment in the region of the large subunit central
protuberance.

Fig.2, Electron micrographs of 50 S subunits modified by LBA in the 3'-end of their 5 § RNA after reaction with anti-pAPL. (1)
General view of the preparation from the ‘dimer’ fraction {fig.1d); arrows indicate antibodies in 50 S - 1gG - 50 Sand 50 S - IgG
complexes; bar = 1000 A; (b) large ribosomal subunits linked with anti-pAPL. Three upper rows represent the images of subunits
in characteristic projections schematically shown in the right frames. The last row gives single subunits with attached antibody

molecules; bar = 500 A.
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Fig.3. Localization of the 3-end of 5 5 RNA on the 50 S sub-
unit: the 3"-end position on the two main projections of the
large ribosomal subunit is dénoted by solid circles.

These data allow one to map the § S RNA-binding
protein L25 on the 50 S subunit. Since the L25-
binding site occurs near the 5 S RNA 3,5 terminal
stem [11] <30 A in length, it also has to be located
in the region of the central protuberance. This con-
clusion is in strong contradiction with the model of
Stoffler et al. who placed all 5 S RNA-binding pro-
teins (L5, L18 and 125} at the edge of the large sub-
unit interface opposite to the central protuberance
{e.g., see fig.34 in [12]). At the same time our data
are in better correlation with Lake’s preliminary
map of large subunit proteins, ont which proteins L5
and L25 are placed on the ‘right’ (short) protuber-
ance [13].

It is interesting that Lake et al. have located pro-
tein L27, which is very likely the component of the
peptidyl transferase (for references see [14}), near the
top of the central protuberance of the 50 S subunit
{15] and hence near the 3’ 5 -terminal stem of 5 §
RNA. Since the presence of 5 S RNA is very signifi-
cant for binding of aminoacyl-tRNA in the Asite of
the ribosome and peptidyl transferase activity {2},
and the P-site of the ribosome is mainly formed from
23 S RNA ([16], for references see {14]) one can sug-
gest that the central protuberance of the 50 S subunit
is a very important if not the primary part of the pep-
tidyl transferase center of the ribosome.
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