Incidence and strong edge colorings of graphs

Richard A. Brualdi* and Jennifer J. Quinn Massey**
Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706, USA

Received 11 June 1991
Revised 19 February 1992

Abstract

We define the incidence coloring number of a graph and bound it in terms of the maximum degree. The incidence coloring number turns out to be the strong chromatic index of an associated bipartite graph. We improve a bound for the strong chromatic index of bipartite graphs all of whose cycle lengths are divisible by 4 .

1. Introduction

Let $G=(V, E)$ be a multigraph of order n and of size m. Let
$I=\{(v, e): v \in V, e \in E, v$ is incident with $e\}$
be the set of incidences of G. We say that two incidences (v, e) and (w, f) are neighborly provided one of the following holds:
(i) $v-w$,
(ii) $e=f$,
(iii) the edge $\{v, w\}$ equals e or f.

The configurations associated with (i)-(iii) are pictured in Fig. 1.
We define an incidence coloring of G to be a coloring of its incidences in which neighborly incidences are assigned different colors. The incidence coloring number of G, denoted by $t(G)$, is the smallest number of colors in an incidence coloring. An edge coloring of G is a coloring of the edges of G in which edges of the same color form a matching. The chromatic index $q(G)$ of G equals the smallest number of colors in an

Correspondence to: R.A. Brualdi, Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706, USA.
*Research partially supported by NSF Grant DMS-8901445 and NSA Grant MDA904-89-H-2060.
**Research partially supported by NSA Grant MDA904-89-H-2060.
(i) neighborly

(ii) neighborly

(iii) neighborly

(iv)nonneighborly

Fig. 1. Examples of neighborly and nonneighborly incidences. A * above edge e closest to vertex v represents incidence (v, e).
edge coloring. A strong edge coloring of G is a coloring of the edges of G in which edges of the same color form an induced matching. ${ }^{1}$ The strong chromatic index $\mathrm{sq}(G)$ equals the smallest number of colors in a strong edge coloring.

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be the vertices of G and let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ be the edges. The vertex-edge incidence matrix of G is the n by $m(0,1)$-matrix $B=\left[b_{i j}\right]$ with $b_{i j}=1$ if and only if v_{i} is incident with e_{j}. Thus the 1 's of B correspond to the incidences of G. A set of k mutually nonneighborly incidences of G corresponds to a permutation submatrix of B of order k. The incidence coloring number of G equals the smallest number of permutation submatrices of B which partition its 1 's. Let $H=H(G)$ be the bipartite graph of order $n+m$ with bipartition V, E in which v_{i} is adjacent to e_{j} if and only if v_{i} is incident with e_{j} in G. An incidence coloring of G corresponds to a partition of the edges of H into induced matchings. Thus $l(G)$ equals the strong chromatic index $\mathrm{sq}(H)$ of H.

It has been conjectured by Erdös and Nešetřil [2] that the strong chromatic index of a multigraph of maximum degree Δ is at most

$$
\begin{cases}\frac{5}{4} \Delta^{2} & \text { if } \Delta \text { is even } \\ \frac{5}{4} \Delta^{2}-\frac{1}{2} \Delta+\frac{1}{4} & \text { if } \Delta \text { is odd }\end{cases}
$$

Horák et al. [6] and Andersen [1] have proved this conjecture if $\Delta=3$. It has also been conjectured by Faudree et al. [3, 4] that the strong chromatic index of a bipartite multigraph of maximum degree Δ is at most Δ^{2}. They proved this conjecture under the assumption that all cycle lengths are divisible by 4 . Let H be a bipartite multigraph with bipartition X, Y in which the maximum degree of a vertex of X is α and of Y is β. We conjecture that $\mathrm{sq}(H) \leqslant \alpha \beta$. We prove this conjecture if $H=H(G)$ for some graph G and for graphs H all of whose cycle lengths are divisible by 4.

We may generalize the notion of incidence coloring to any incidence structure \mathscr{F}. The incidence coloring number of \mathscr{I} is the strong chromatic index of the associated incidence matrix (bipartite multigraph). We give upper bounds for the incidence coloring numbers of projective and affine planes verifying the above conjecture in these instances.

[^0]
2. Main results

Let G be a graph with maximum degree Δ. A simple lower bound for its incidence coloring number is

$$
\begin{equation*}
l(G) \geqslant \Delta+1 . \tag{1}
\end{equation*}
$$

To see this, let v be a vertex of degree Δ. Let e_{1}, \ldots, e_{A} be the edges incident with v, and let $e_{1}=\{v, w\}$. Then each pair of the $\Delta+1$ incidences $\left(v, e_{1}\right), \ldots,\left(v, e_{4}\right),\left(w, e_{1}\right)$ is neighborly and hence cannot be colored the same. We show that equality holds in (1) for complete graphs and trees.

For each vertex v of a graph the set of incidences of the form (v, e) is denoted by I_{v}. For an incidence coloring the set of colors assigned to the incidences in I_{v} is denoted by C_{v}.

Theorem 2.1. For each $n \geqslant 2, u\left(K_{n}\right)=n$.
Proof. Let the vertices of K_{n} be $\{1, \ldots, n\}$. We prove by induction on n that there is an incidence coloring of K_{n} with the n colors $\{1,2, \ldots, n\}$ having the property that $C_{k}=\{1, \ldots, k-1, k+1, \ldots, n\},(k=1, \ldots, n)$. If $n=2$ this is obvious. Let $n \geqslant 3$ and take such a coloring for K_{n-1}. We color the incidence ($n,\{n, i\}$) with the color i and the incidence ($i,\{n, i\}$) with the color $n(i=1, \ldots, n-1)$ and obtain the desired coloring for K_{n}.

Theorem 2.2. Let T be a tree of order $n \geqslant 2$ with maximum degree Δ. Then $t(T)=\Delta+1$.
Proof. We prove the theorem by induction on n. Let v be a pendant vertex with pendant edge $e=\{v, w\}$, and let T^{\prime} be the tree obtained from T by deleting v. Let w_{1}, \ldots, w_{k} be the vertices adjacent to w in T^{\prime}. Let T_{i}^{\prime} be the subtree of T^{\prime} rooted at w containing w_{i} (the trees $T_{1}^{\prime}, \ldots, T_{k}^{\prime}$ have only the vertex w in common). By induction there is an incidence coloring of T^{\prime} with at most $\Delta+1$ colors. If two of the incidences ($\left.w_{i},\left\{w, w_{i}\right\}\right)\left(w_{j},\left\{w, w_{j}\right\}\right)$ are colored differently, an interchange of their colors in T_{i}^{\prime} gives another incidence coloring of T^{\prime}. Hence we may assume that each of the incidences ($w_{i},\left\{w, w_{i}\right\}$) is colored the same. There are now at most Δ colors affecting the incidence (w, e) and at most $\Delta-1$ colors affecting (v, e). Hence at least two of the $\Delta+1$ colors are available to color these two incidences giving an incidence coloring of T.

Theorem 2.3. For all $m \geqslant n \geqslant 2, t\left(K_{m, n}\right)=m+2$.
Proof. Let the vertices of degree n be w_{1}, \ldots, w_{m} and let the vertices of degree m be u_{1}, \ldots, u_{n}. By (1) $t\left(K_{m, n}\right) \geqslant m+1$. Suppose $K_{m, n}$ has an $m+1$ incidence coloring using the colors $1, \ldots, m+1$. Then each of the incidences ($\left.w_{i},\left\{w_{i}, u_{1}\right\}\right)(1 \leqslant i \leqslant m)$ is colored the same, as are the incidences ($w_{i},\left\{w_{i}, u_{2}\right\}$). This easily gives a contradiction. Hence $l\left(K_{m, n}\right) \geqslant m+2$.

To complete the proof, it suffices to incidence color $K_{m, m}$ with $m+2$ colors $1,2, \ldots, m+2$. We color the incidences ($w_{i},\left\{w_{i}, u_{j}\right\}$) as follows. The incidences $\left(w_{i},\left\{w_{i}, u_{1}\right\}\right), \ldots,\left(w_{i},\left\{w_{i}, u_{m}\right\}\right)$ are colored with the colors $1, \ldots, i-1, i+1, \ldots, m+1$, respectively. For each j, the m incidences $I_{u_{j}}$ are affected by at most two colors, and hence there are at least m colors available with which to color the incidences in $I_{u j}$. Since different $I_{u_{j}}$'s can be colored independently, we may completc the coloring.

An upper bound for the incidence coloring number of a graph can be obtained from Vizing's theorem (see e.g. [5]). Let G be a graph with maximum degree 4 . By Vizing's theorem $q(G)=\Delta$ or $\Delta+1$, and hence the edges of G can be partitioned into Δ or $\Delta+1$ matchings. The incidences of a matching can be colored with two colors. Hence the incidences of G can always be colored with $2(\Delta+1)$ colors. If the chromatic index of G is Δ, then 'doubling' an edge coloring gives a 2Δ incidence coloring. We now show that 2Δ colors suffice also for graphs with chromatic index $\Delta+1$.

Theorem 2.4. For each graph G we have $l(G) \leqslant 2 A$.
Proof. Choose an edge coloring of G with colors $\{1, \ldots, \Delta+1\}$ which minimizes the number of edges of color $\Delta+1$. We double each of the colors $1, \ldots, \Delta$ and show how to incidence color G with the colors $\left\{1,1^{\prime}, \ldots, \Delta, \Delta^{\prime}\right\}$. The edges of color $\Delta+1$ form a matching M. We arbitrarily call one of the vertices of each edge of M left and the other right. This enables us to refer to the left incidence and right incidence of an edge of M. Every other edge $e=\{x, y\}$ of G has two colors i and i^{\prime} assigned to it, and these colors will be assigned to the incidences (x, e) and (y, e).

Let $f=\left\{l_{f}, r_{f}\right\}$ be an edge of M. Since the degree of a vertex is at most Δ, there is some color $s \in\{1, \ldots, \Delta\}$ which is not a color of any edge incident with l_{f}. We assign the color s to the incidence $\left(l_{f}, f\right)$. If some edge $g=\left\{r_{f}, x\right\}$ incident with r_{f} has color s, then we assign s to the incidence (x, g). Similarly, there is some color $t^{\prime} \in\left\{1^{\prime}, \ldots, \Delta^{\prime}\right\}$ which is not a color of any edge incident with r_{f}. We assign the color t^{\prime} to the incidence $\left(r_{f}, f\right)$. If some edge $h=\left\{l_{f}, y\right\}$ incident with l_{f} has color t^{\prime}, then we assign t^{\prime} to the incidence (y, h). The two incidences of each edge of M are now assigned different colors. For each edge not belonging to M we claim that (i) the same color is not assigned to both of its incidences and (ii) no incidence is assigned more than one color.
(i) Suppose to the contrary that a color s is assigned to both of the incidences of an edge $\{x, y\}$. Then x and y are right vertices of edges e_{1} and e_{2}, respectively, of M. We now change the color of e_{1} and e_{2} from $\Delta+1$ to s and the color of $\{x, y\}$ from s to $\Delta+1$ and obtain an edge coloring of G in which the number of edges of color $\Delta+1$ is smaller, contradicting the minimality assumption. Similarly no color s^{\prime} is assigned to both of the incidences of an edge.
(ii) Suppose to the contrary that some incidence ($x,\{x, y\}$) is assigned both of the colors s and s^{\prime} of the edge $\{x, y\}$. Then y is both a left vertex of an edge of M and a right vertex, contradicting the fact that M is a matching.

Fig 2. An incidence coloring of the Peterson graph using 5 colors. A four coloring of the incidences is not possible.

The colors of an edge not yet assigned to one of its incidences can now be used to complete the incidence coloring of G in 24 colors.

The incidence coloring number of an n-cycle ($A=2$) is 4 provided n is not divisible by 3 and hence the bound 2Δ in Theorem 2.4 can be attained. But we believe that for $\Delta>2$ the bound can never be attained. In Fig. 2 we exhibit an incidence coloring of the Petersen graph $(\Delta=3)$ with $\Delta+2=5$ colors. We conjecture that every graph can be incidence colored with $\Delta+2$ colors.

Corollary 2.5. Let H be a bipartite graph with bipartition X, Y with no cycles of length 4. Let the maximum degree of a vertex of X be 2 and the maximum degree of a vertex of Y be Δ. Then the strong chromatic index of H satisfies $s q(H) \leqslant 2 \Delta$.

Proof. First suppose that each vertex of X has degree 2 . Since H has no cycles of length 4, there is a graph G such that $H=H(G)$ Since $t(G)=\mathrm{sq}(H)$, the corollary follows from Theorem 2.4. Now suppose that some vertices of X have degree 1. Let H^{\prime} be the graph obtained from H by removing the vertices of X of degree 1 . By the above $\mathrm{sq}\left(H^{\prime}\right) \leqslant 2 \Delta$ and it is easy to extend a 2Δ strong edge coloring of H^{\prime} to a 2Δ strong edge coloring of H.

We now prove our conjecture about strong chromatic index for bipartite graphs whose cycle lengths are divisible by 4 . An important property of such graphs is that all cycles are chordless. The approach in the proof is similar to that of Theorem 6 of [4].

Theorem 2.6. Let H be a bipartite graph with bipartition X, Y. Let the maximum degree of a vertex in X be α and that in Y be β. Assume that all cycle lengths are divisible by 4 . Then

$$
\mathrm{sq}(H) \leqslant \alpha \beta .
$$

Proof. We prove the theorem by induction on the number of edges. First suppose that H has a pendant edge e. Since at most $\max \{\alpha \beta-\beta, \alpha \beta-\alpha\}$ edges affect the color of e, an $\alpha \beta$ strong edge coloring of $H-c$ can be extended to H. Thus we may assume that the degree of each vertex is at least 2 . Let

$$
\gamma: v_{1}, v_{2}, \ldots, v_{t}, u
$$

be a path of maximum length. Without loss of generality we assume that v_{t} is in X, and hence the degree of v_{t} is at most α. The vertex u can only be adjacent to vertices of γ. If u is adjacent to two vertices different from v_{t} of γ, then there is a cycle of H with a chord. Hence each such u has degree 2 , and for each u there is a unique v_{k} with $k<t$ such that u is adjacent to v_{k}. The vertex v_{t} cannot be adjacent to any of the vertices v_{k}, \ldots, v_{t-2} and is adjacent to at most one of the vertices v_{1}, \ldots, v_{k-1}.

Case 1: v_{t} is not adjacent to any of v_{1}, \ldots, v_{k-1}.
By induction $H-v_{t}$ has an $\alpha \beta$ strong edge coloring μ. We extend μ to a strong edge coloring of H sequentially as follows. The number of edges in $H-v_{t}$ which affect the color of $\left\{v_{t-1}, v_{t}\right\}$ is at most

$$
(\alpha-1)+(\beta-1)+(\beta-1)(\alpha-1)=\alpha \beta-1
$$

and hence there is a color available for the edge $\left\{v_{t-1}, v_{t}\right\}$. For an edge $\left\{v_{t}, u\right\}$, the maximum number of edges in $H-v_{t}$ which affect its color equals $2 \alpha+\beta-3$. Including the edge $\left\{v_{t-1}, v_{t}\right\}$ we get $2 \alpha+\beta-2$. If $\beta \geqslant 3$ there are at least $\alpha-1$ colors available for each edge $\left\{v_{i}, u\right\}$ and hence we can extend μ to a strong edge coloring of H. If $\beta=2$, then each vertex of Y has degree equal 2 and $H=H(G)$ for some multigraph G. This multigraph G has maximum degree α and its cycle lengths are all divisible by 2 . Hence G is bipartite and by the well-known theorem of König, there is an edge coloring of G using α colors. This edge coloring may be doubled to get a 2α incidence coloring of G. Thus $\operatorname{sq}(H)=t(G) \leqslant 2 \alpha$.

Case 2: v_{t} is adjacent to v_{p} for some p with $1 \leqslant p \leqslant k-1$.
First suppose that for some u the cycle

$$
\begin{equation*}
u, v_{k}, \ldots, v_{t}, u \tag{2}
\end{equation*}
$$

has length greater than 4 . The path

$$
\gamma^{\prime}: v_{1}, \ldots, v_{k}, u, v_{t}, \ldots, v_{k+2}, v_{k+1}
$$

also has maximum length. There cannot be an edge joining v_{k+2} to any of the vertices v_{1}, \ldots, v_{k-1}, since otherwise H contains a cycle of length $2 \bmod 4$. This puts us back in Case 1 with γ^{\prime} replacing γ. Now suppose that for each u the length of the cycle (2) is 4 . By induction $H-v_{t}$ has an $\alpha \beta$ strong edge coloring μ. The number of edges in $H-v_{t}$
affecting the color of $\left\{v_{1}, v_{p}\right\}$ is at most $\alpha \beta-1$, and hence there is a color available for $\left\{v_{t}, v_{p}\right\}$. Each of the edges $\left\{v_{t}, u\right\}$ and $\left\{v_{t}, v_{t-1}\right\}$ is affected by at most $\alpha+\beta$ colors, and since we may assume that $\beta \geqslant 3$, there are at least $\alpha-1$ colors available for each of these edges. Hence μ can be extended to a strong edge coloring of H.

Let A be an m by $n(0,1)$-matrix and let $H \subseteq K_{m, n}$ be its associated bipartite graph. The matrix A is called restricted unimodular [8] provided all cycle lengths of H are divisible by 4 . The matrix A is k-totally unimodular [7] provided replacing as many as k 1's by 0 's always gives a totally unimodular matrix. ${ }^{2}$ It is proved in [7] that A is restricted unimodular if and only if it is 3-totally unimodular. In addition, A is 2 -totally unimodular if and only if the submatrices of A corresponding to the blocks of H are either restricted unimodular or all 1's matrices (complete bipartite graphs). Using Theorem 2.6 and induction on the number of blocks, one can easily prove the following result.

Theorem 2.7. If H is the bipartite graph associated with a 2-totally unimodular $(0,1)$-matrix with maximum row sum α and maximum column sum β, then $\mathrm{sq}(H) \leqslant \alpha \beta$.

We conclude with upper bounds for the incidence coloring number of finite projective and affine planes.

Theorem 2.8. The incidence coloring number of a projective plane of order n is at most $n^{2}+2 n$ and of an affine plane of order n is at most $n^{2}+n$.

Proof. Let P be a projective plane of order n. Let $p_{1}, \ldots, p_{\mathrm{n}+1}$ be the $n+1$ points on some line ℓ. Let L_{i} be the set of the other n lines containing p_{i} and assume these lines have been numbered from 1 to $n(i=1, \ldots, n+1)$. Assume also that the points different from p_{i} on each line of L_{i} have been numbered from 1 to n. Color the incidences corresponding to the k th point on each line of L_{i} with the color $(i, k)(1 \leqslant k \leqslant n$, $1 \leqslant i \leqslant n+1)$. We also color the incidence ($\left.p_{i}, \ell\right)$ with the color $(i+1,1)(i+1$ is taken $\bmod n+1$). Finally, for each k between 1 and n we color the incidences corresponding to p_{i} and the k th line of L_{i} with the color $(n+2, k)$. It is now easy to check that we have defined an incidence coloring in which the number of colors used is $n(n+1)+n=n^{2}+2 n$.

Now consider an affine plane of order n. The lines are partitioned into $n+1$ parallel classes of n lines each and the incidences for each parallel class can be colored with n colors, giving the bound in the theorem.

It can be shown that the incidence coloring number of the projective plane of order 2 is 7 , which is 1 better than the bound in the theorem. In fact, it is possible in general to improve the bounds in Theorem 2.8 using more of the geometrical structure.

[^1]
References

[1] L.D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math. 108 (1992) 231-252.
[2] P. Erdös and J. Nešetřil, Problem, in: G. Halász and V.T. Sós, eds., Irregularities of partitions (Springer, New York, 1989) 162-163.
[3] R.J. Faudree, R.H. Schelp. A. Gyárfàs and Z. Tuza, Induced matchings in bipartite graphs, Discrete Math. 78 (1989) 83-87.
[4] R.J. Faudree, R.H. Schelp, A. Gyárfàs and Z. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205-211.
[5] S. Fiorini and R.J. Wilson, Edge-coloring of graphs. Research Notes in Mathematics, No. 16, Pitman, London (1977).
[6] P. Horák, H. Qing and W.T. Trotter, Induced matchings in cubic graphs, preprint.
[7] M. Loebl and S. Poljak, A hierarchy of totally unimodular matrices, Discrete Math. 76 (1989) 241-246.
[8] M. Yannakakis, On a class of totally unimodular matrices. Math. Oper. Res. 10 (1985) 280-304.

[^0]: ${ }^{1}$ That is, a matching which is an induced subgraph.

[^1]: ${ }^{2}$ One all of whose subdeterminants equal $0, \pm 1$.

