
Discrete Mathematics 122 (1993) 51-58 

North-Holland 

51 

Incidence and strong edge 
colorings of graphs 

Richard A. Brualdi” and Jennifer J. Quinn Massey** 

Received 11 June 1991 

Revised 19 February 1992 

Abstract 

We define the incidence coloring number of a graph and bound it in terms of the maximum degree. 

The incidence coloring number turns out to be the strong chromatic index of an associated bipartite 

graph. We improve a bound for the strong chromatic index of bipartite graphs all of whose cycle 

lengths are divisible by 4. 

1. Introduction 

Let G = (V, E) be a multigraph of order II and of size m. Let 

I = { (0, e): v E V, e E E, c is incident with e} 

be the set of incidences of G. We say that two incidences (c, e) and (w, f ) are neighborly 

provided one of the following holds: 

(i) v=w, 

(ii) e=f, 

(iii) the edge {v, w} equals e or ,fi 

The configurations associated with (i)-(iii) are pictured in Fig. 1. 

We define an incidence coloring of G to be a coloring of its incidences in which 

neighborly incidences are assigned different colors. The incidence coloring number of 

G, denoted by z(G), is the smallest number of colors in an incidence coloring. An edge 

coloring of G is a coloring of the edges of G in which edges of the same color form 

a matching. The chromatic index q(G) of G equals the smallest number of colors in an 
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(i)neighborly (ii)neighborly (iii)neighborly (iv)nonneighborly 

j, * 

Fig. I. Examples of neighborly and nonneighborly incidences. A * above edge e closest to vertex t 
represents incidence (u, e). 

edge coloring. A strong edge coloring of G is a coloring of the edges of G in which edges 

of the same color form an induced matching.’ The strong chromatic index sq(G) equals 

the smallest number of colors in a strong edge coloring. 

Let V= {or, . . . , v,,) be the vertices of G and let E = {el, . . , e,} be the edges. The 

vertex-edge incidence matrix of G is the n by m (0, 1)-matrix B = [hij] with hi, = 1 if and 

only if Vi is incident with ej. Thus the l’s of B correspond to the incidences of G. A set 

of k mutually nonneighborly incidences of G corresponds to a permutation submatrix 

of B of order k. The incidence coloring number of G equals the smallest number of 

permutation submatrices of B which partition its 1’s. Let H=H(G) be the bipartite 

graph of order n + m with bipartition V, E in which oi is adjacent to ej if and only if ui is 

incident with ej in G. An incidence coloring of G corresponds to a partition of the 

edges of H into induced matchings. Thus r(G) equals the strong chromatic index 

sq(H) of H. 

It has been conjectured by Erdiis and NeSetiil [2] that the strong chromatic index 

of a multigraph of maximum degree A is at most 

$42 if A is even, 

sA2--+A++ ifA is odd. 

Ho&k et al. [6] and Andersen [l] have proved this conjecture if A = 3. It has also been 

conjectured by Faudree et al. [3,4] that the strong chromatic index of a bipartite 

multigraph of maximum degree A is at most A’. They proved this conjecture under the 

assumption that all cycle lengths are divisible by 4. Let H be a bipartite multigraph 

with bipartition X, Yin which the maximum degree of a vertex of X is r and of Y is fl. 

We conjecture that sq(H)<@. We prove this conjecture if H = H(G) for some graph 

G and for graphs H all of whose cycle lengths are divisible by 4. 

We may generalize the notion of incidence coloring to any incidence structure 9. 

The incidence coloring number of 9 is the strong chromatic index of the associated 

incidence matrix (bipartite multigraph). We give upper bounds for the incidence 

coloring numbers of projective and affine planes verifying the above conjecture in 

these instances. 

’ That is, a matching which is an induced subgraph 
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2. Main results 

Let G be a graph with maximum degree d. A simple lower bound for its incidence 

coloring number is 

z(G)ad+l. (1) 

To see this, let u be a vertex of degree d. Let ei, . . . , e, be the edges incident with v, and 

let e,={n,w}. Then each pair of the d+ 1 incidences (u,ei), . . . . (u,e,), (w,e,) is 

neighborly and hence cannot be colored the same. We show that equality holds in (1) 

for complete graphs and trees. 

For each vertex u of a graph the set of incidences of the form (u, e) is denoted by I,. 

For an incidence coloring the set of colors assigned to the incidences in I, is denoted 

by C,. 

Theorem 2.1. For each n 3 2, I (K,) = n. 

Proof. Let the vertices of K, be { 1, . . . , H} . We prove by induction on n that there is an 

incidence coloring of K, with the n colors { 1,2, . . . , n} having the property that 

C,={l,..., k-l,k+l,..., n},(k=l,..., n).Ifn=2thisisobvious.Letn33andtake 

such a coloring for K,- I. We color the incidence (n, {n, i}) with the color i and the 

incidence (i, {n,i}) with the color n (i= 1, . . . , n- 1) and obtain the desired coloring 

for K,. Cl 

Theorem 2.2. Let T be a tree of order n 3 2 with maximum degree A. Then z(T) = A + 1. 

Proof. We prove the theorem by induction on n. Let 1: be a pendant vertex with 

pendant edge e= {o, w}, and let T’ be the tree obtained from T by deleting t’. Let 

Wl, ... > wk be the vertices adjacent to w in T’. Let T: be the subtree of T’ rooted at 

w containing Wi (the trees T\ , . . , Tk have only the vertex w in common). By induction 

there is an incidence coloring of T’ with at most A + 1 colors. If two of the incidences 

(wi, {w, Wi}) (wj, {w, Wj}) are colored differently, an interchange of their colors in 

Ti gives another incidence coloring of T’. Hence we may assume that each of the 

incidences (Wi, {w, Wi}) is colored the same. There are now at most A colors affecting 

the incidence (w,e) and at most A- 1 colors affecting (u,e). Hence at least two of 

the A + 1 colors are available to color these two incidences giving an incidence 

coloring of T. 0 

Theorem 2.3. For all m>n>2, z(K,,.)=m+2. 

Proof. Let the vertices of degree n be wi , . . . , w, and let the vertices of degree m be 

Ul, . . . > u,. By (1) z(K,,,)>m+l. Suppose K,,, has an m + 1 incidence coloring using 

the colors 1, . . . . m + 1. Then each of the incidences (wi, {wi, u1 }) (1~ i < m) is colored 

the same, as are the incidences (Wi, {wi, uz}). This easily gives a contradiction. Hence 

z(K,,,)>m+2. 
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To complete the proof, it suffices to incidence color K m,m with m+ 2 colors 

1,2, , m +2. We color the incidences (wi, (wi, uj)) as follows. The incidences 

(Wi, iWi,U,}), . , (pi, (~i,U,}) are colored with the colors 1, . . , i- 1, i+ 1, . . . , m+ I, 

respectively. For each j, the m incidences I,, are affected by at most two colors, 

and hence there are at least m colors available with which to color the incidences in 

I,,. Since different I,,‘s can be colored independently, we may complete the 

coloring. 0 

An upper bound for the incidence coloring number of a graph can be obtained from 

Vizing’s theorem (see e.g. [S]). Let G be a graph with maximum degree A. By Vizing’s 

theorem q(G)= A or A + 1, and hence the edges of G can be partitioned into A or A + 1 

matchings. The incidences of a matching can be colored with two colors. Hence the 

incidences of G can always be colored with 2(A + 1) colors. If the chromatic index of 

G is A, then ‘doubling’ an edge coloring gives a 24 incidence coloring. We now show 

that 24 colors suffice also for graphs with chromatic index A + 1. 

Theorem 2.4. For each graph G we hate I(G)< 24. 

Proof. Choose an edge coloring of G with colors {I,. . , A + 1) which minimizes the 

number of edges of color A + 1. We double each of the colors 1, . , A and show how to 

incidence color G with the colors [ 1, 1 ‘, . . , A, A’). The edges of color A + 1 form 

a matching M. We arbitrarily call one of the vertices of each edge of M left and the 

other right. This enables us to refer to the left incidence and right incidence of an edge 

of M. Every other edge e = (x, y j of G has two colors i and i’ assigned to it, and these 

colors will be assigned to the incidences (.x, e) and ( 4; e). 

Let ,f’= (If, rI) be an edge of M. Since the degree of a vertex is at most A, there is 

some color s E i 1, . . , A i which is not a color of any edge incident with I,. We assign 

the color s to the incidence (I,, ,f). If some edge 9 = {rs, x) incident with rf has color s, 

then we assign s to the incidence (x, 9). Similarly, there is some color t’ E ( 1 ‘, . . . , A’ i 

which is not a color of any edge incident with rf. We assign the color t’ to the 

incidence (rf, ,f’). If some edge h = {l,-, y ) incident with 1, has color f’, then we assign t’ 

to the incidence (y,Ir). The two incidences of each edge of M are now assigned 

different colors. For each edge not belonging to M we claim that (i) the same color is not 

assigned to both of its incidences and (ii) no incidence is assigned more than one color. 

(i) Suppose to the contrary that a color s is assigned to both of the incidences of an 

edge [.x, J) Then .Y and y are right vertices of edges er and e2, respectively, of M. We 

now change the color of cr and e2 from A + 1 to s and the color of (x, y ) from s to A + 1 

and obtain an edge coloring of G in which the number of edges of color A + I is 

smaller, contradicting the minimality assumption. Similarly no color s’ is assigned to 

both of the incidences of an edge. 

(ii) Suppose to the contrary that some incidence (x, {x, y 1) is assigned both of the 

colors s and s’ of the edge (x, JI) Then y is both a left vertex of an edge of M and 

a right vertex, contradicting the fact that M is a matching. 
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Fig 2. An incidence coloring of the Peterson graph using 5 colors. A four coloring of the incidences is not 
possible. 

The colors of an edge not yet assigned to one of its incidences can now be used to 

complete the incidence coloring of G in 24 colors. 0 

The incidence coloring number of an n-cycle (A = 2) is 4 provided n is not divisible 

by 3 and hence the bound 24 in Theorem 2.4 can be attained. But we believe that for 

A > 2 the bound can never be attained. In Fig. 2 we exhibit an incidence coloring of the 

Petersen graph (A = 3) with A + 2 = 5 colors. We conjecture that every graph can be 

incidence colored with A + 2 colors. 

Corollary 2.5. Let H be a bipartite graph with hipartition X, Y with no cycles of length 

4. Let the maximum degree of a vertex of X be 2 and the maximum degree of a vertex of 

Y he A. Then the strong chromatic index of H satisfies sq(H) < 24. 

Proof. First suppose that each vertex of X has degree 2. Since H has no cycles of 

length 4, there is a graph G such that H= H(G) Since z(G)=sq(H), the corollary 

follows from Theorem 2.4. Now suppose that some vertices of X have degree 1. Let H’ 

be the graph obtained from H by removing the vertices of X of degree 1. By the above 

sq(H’)62A and it is easy to extend a 24 strong edge coloring of H’ to a 24 strong 

edge coloring of H. 0 

We now prove our conjecture about strong chromatic index for bipartite graphs 

whose cycle lengths are divisible by 4. An important property of such graphs is that all 

cycles are chordless. The approach in the proof is similar to that of Theorem 6 of [4]. 
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Theorem 2.6. Let H be a bipartite graph with hipartition X, Y. Let the maximum degree 

of a vertex in X he c( and that in Y be /I. Assume that all cycle lengths are divisible by 4. 

Then 

sqW)<aB. 

Proof. We prove the theorem by induction on the number of edges. First suppose that 

H has a pendant edge e. Since at most max { c@ - fl, ~fi - N} edges affect the color of e, 

an c$ strong edge coloring of H -e can be extended to H. Thus we may assume that 

the degree of each vertex is at least 2. Let 

‘4: VI, U2, . . . , v,, u 

be a path of maximum length. Without loss of generality we assume that v, is in X, and 

hence the degree oft’, is at most c(. The vertex u can only be adjacent to vertices of 7. If 

u is adjacent to two vertices different from v, of 7, then there is a cycle of H with 

a chord. Hence each such u has degree 2, and for each u there is a unique vk with k < t 

such that u is adjacent to vk. The vertex v, cannot be adjacent to any of the vertices 

c’ kr . . . 1 v, _ 2 and is adjacent to at most one of the vertices vl, . . . , vk 1. 

Case 1: v, is not adjacent to any of vl, . . . , ok- 1. 
By induction H-v, has an CY$’ strong edge coloring p. We extend p to a strong edge 

coloring of H sequentially as follows. The number of edges in H -0, which affect the 

color of {v,_ 1, v,} is at most 

(E- l)+(B- l)+(fi- 1) (cz- l)=c+ I 

and hence there is a color available for the edge {v,_ 1, v,}. For an edge {vt, u}, the 

maximum number of edges in H - v, which affect its color equals 2~ + /3 - 3. Including 

the edge {v,_ 1, v,} we get 2c( + fi - 2. If fl> 3 there are at least r - 1 colors available for 

each edge {vt, u} and hence we can extend p to a strong edge coloring of H. If fi= 2, 
then each vertex of Y has degree equal 2 and H = H(G) for some multigraph G. This 

multigraph G has maximum degree CI and its cycle lengths are all divisible by 2. Hence 

G is bipartite and by the well-known theorem of Kiinig, there is an edge coloring of 

G using u colors. This edge coloring may be doubled to get a 2c( incidence coloring 

of G. Thus sq(H)=z(G)<2a. 

Case 2: vt is adjacent to up for some p with 1 <p<k- 1. 

First suppose that for some u the cycle 

has length greater than 4. The path 

‘i’: VI, . . . , C‘krU,vr,...,vk+2,L’kil. 

(2) 

also has maximum length. There cannot be an edge joining vk+2 to any of the vertices 

vl,..., ukb1, since otherwise H contains a cycle of length 2 mod 4. This puts us back in 

Case 1 with y’ replacing y. Now suppose that for each u the length of the cycle (2) is 4. 

By induction H-v, has an afl strong edge coloring p. The number of edges in H-v, 
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affecting the color of {vt, u,} is at most c$- 1, and hence there is a color available for 

(u,, u,}. Each of th d e e ges { o,, u} and {ur, u,_ i } is affected by at most CI + fi colors, and 

since we may assume that Pb3, there are at least CI- 1 colors available for each of 

these edges. Hence p can be extended to a strong edge coloring of H. 0 

Let A be an m by n (0, 1)-matrix and let HE K,,, be its associated bipartite graph. 

The matrix A is called restricted unimodular [8] provided all cycle lengths of H are 

divisible by 4. The matrix A is k-totally unimodular [7] provided replacing as many as 

k l’s by O’s always gives a totally unimodular matrix.’ It is proved in [7] that A is 

restricted unimodular if and only if it is 3-totally unimodular. In addition, A is 

2-totally unimodular if and only if the submatrices of A corresponding to the blocks of 

H are either restricted unimodular or all l’s matrices (complete bipartite graphs). 

Using Theorem 2.6 and induction on the number of blocks, one can easily prove the 

following result. 

Theorem 2.7. If H is the bipartite graph associated with a 2-totally unimodular 

(0, l)-matrix with maximum row sum a and maximum column sum fi, then sq(H)<ct/. 

We conclude with upper bounds for the incidence coloring number of finite 

projective and affine planes. 

Theorem 2.8. The incidence coloring number of a projective plane of order n is at most 

n2 + 2n and of an affine plane of order n is at most n2 + n. 

Proof. Let P be a projective plane of order n. Let pl, . . , pn+ 1 be the n + 1 points on 

some line L. Let Li be the set of the other n lines containing pi and assume these lines 

have been numbered from 1 to n (i = 1,. . . , n + 1). Assume also that the points different 

from pi on each line of Li have been numbered from 1 to n. Color the incidences 

corresponding to the kth point on each line of Li with the color (i, k) (1~ k<n, 

1~ i<n+ 1). We also color the incidence (pi, 8) with the color (i+ 1, 1) (i+ 1 is taken 

mod n + 1). Finally, for each k between 1 and n we color the incidences corresponding 

to pi and the kth line of Li with the color (n + 2, k). It is now easy to check that we have 

defined an incidence coloring in which the number of colors used is 

n(n+1)+n=n2+2n. 

Now consider an affine plane of order n. The lines are partitioned into n + 1 parallel 

classes of n lines each and the incidences for each parallel class can be colored with 

n colors, giving the bound in the theorem. 0 

It can be shown that the incidence coloring number of the projective plane of order 

2 is 7, which is 1 better than the bound in the theorem. In fact, it is possible in general 

to improve the bounds in Theorem 2.8 using more of the geometrical structure. 

‘One all of whose subdeterminants equal 0, + 1 



58 R. A, Brudd;, J.J.Q. Mo.\.y 

References 

[I] L.D. Andersen, The strong chromatic index of a cubtc graph is at most IO, Discrete Math. 108 (1992) 
231-252. 

[Z] P. Erdos and J. NeSetiil, Problem. in: G. Hal&r and V.T. Sos, eds., Irregularities of partitions (Springer, 

New York, 1989) 1622163. 

[3] R.J. Faudree, R.H. Schelp. A. Gyirfas and Z. Tuna, Induced matchings in bipartite graphs. Discrete 
Math. 78 (1989) 83-87. 

[4] R.J. Faudree, R.H. Schelp, A. Gyarfas and Z. Tuza, The strong chromattc index ofgraphs, Ars Combin. 

298 (1990) 2055211. 

[5] S. Fiorini and R.J. Wilson, Edge-coloring of graphs. Research Notes in Mathematics, No. 16, Pitman, 

London (I 977). 

[6] P. Horik, H. Qing and W.T. Trotter, Induced matchings in cubic graphs, preprint. 

[7] M. Loebl and S. Poljak, A hierarchy of totally unimodular matrices, Discrete Math. 76 (1989) 241-246. 

[S] M. Yannakakis, On a class of totally unimodular matrtces. Math. Oper. Res. IO (1985) 28G304. 


