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1. INTRODUCTION 

We consider here two related equations 

(1.1) 

and 

(1.2) 

for t E (a, b) where b < co. We suppose that ,I is a real and positive 
parameter and q E L(a, 6). 

Our object is to derive a series expansion for a solution of (1.1). This 
series gives rise to an exact solution set of the equation (1.2). That is to say, 
we derive a fundamental solution pair for (1.2). The members of this 
fundamental pair are of interest in their own right, but we are particularly 
interested in the use of these solutions to solve Sturm-Liouville problems 
for large values of 2. 

Approximate solutions to (1.2) have been obtained before; we mention in 
particular [ 1, 3, 5,6] and, under very general circumstances, [2]. These 
approximations are valid for large values of 1 and share the feature that 
the approximations are dependent on the smoothness of q. Results are 
obtained, for example, which give an approximation with error O(IPN) as 
I + co where N depends on the number of derivatives possessed by q. 

Our results differ from those mentioned above in two respects. First, like 
the results of [4], we make minimal assumptions on the smoothness of q, 
and second we derive exact solutions of (1.2). Approximations may then be 
obtained by truncating the series involved which, at least in the case of 
finite 6, are convergent rather than asymptotic. 
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2. THE RESULTS 

We set 

t-,(x, I) := -I” exp(2iA’/*(f -x)) q(t) dt 
x 

(2.1) 

and, for j = 1, 2, . . . . 

rj+ ,(x, I) := jb exp (2 I’ illi + .$, r,,(s, A) ds) r,(t, A)’ dt. 
r .v 

THEOREM 1. If there exists a non-increasing function p( ., 1) such that for 
all I>& 

(i) Iri(x, A)\ 6 p(x, A) < A”* for all x E (a, b), 

(ii) 12 p(x, A) dx < $, 

then for all A > 2, and x E (a, b) the series 

r(x, A) = iA”* + f rJx, A) 
II=1 

is untformly convergent and is a solution of ( 1.1). 

THEOREM 2. Under the same conditions as Theorem 1 there exist two 
linearly independent solutions y, and y, of (1.2) with 

y,(x, A) =exp Re(r,(t, 12)) dt cos 
I u 

X A112+ f lm(r,(t, A))dt , 
(1 ?I=1 

y2(x, A)=exp F Re(r,(t, A)) dt} sin {s-X A”* + f lm(r,(t, A)) dt}. 
a n=l 

3. COROLLARIES 

We consider the circumstances under which Theorems 1 and 2 apply and 
we derive estimates for the error introduced by a truncation of the series. 

COROLLARY 1. If b < CC and q E L(a, b) then the conditions of 
Theorems 1 and 2 are satisfied for some 2,. 
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Proof By the Riemann-Lebesgue Lemma there exist A0 such that for 
XE(U, 6) and A>& 

jr,(x, A)\ < $(b - a)-‘=: p(x, 1). 

The truth of (i)-(iii) now follows. 
The conditions of Corollary 1 are too general to give information about 

the truncation error. The obtain this we are forced to impose stronger 
conditions on q. 

COROLLARY 2. Zf p(x, A.) <u(x) b(l) for x E (a, b) and II > & where 

(i) a( .) is nonincreasing, 

(ii) a( .) E L(u, b), 
(iii) 6(A) + 0 us A-+ 00, 

then 
Ir,(x, A)[ < Cu(x) b(A)“-’ 

for j = 2, . . . . x E (a, b) if A is sufficiently large. 

COROLLARY 3. Zf q E AC(u, b) and there exists a non-increasing function 
(T with 

0) Iq(x)l + Se Iq’(t)l dt < 4x)for x~ (u, b), 
(ii) cr E L(u, b), 

then Ir,(x, ,I)1 < Co(x) k21m2 for x E (a, b), 1 sufficiently large and 
j= 2, 3, . . 

COROLLARY 4. Zf b < co and q E CN(a, b), then 

Ir,(x, A)/ < Cjl-(1/2)(2’- ‘) j= 1, . . . . N 

Irj(x, A)[ < C~p(2Np’)2N-‘m’ j>N 

for x E (a, b) and 2 sufficiently large. 

We defer the proof of Corollaries 2, 3,4 to Section 6 below. 

4. PROOF OF THEOREM 1 

We write 

r(x, A) :=A”’ + f r-,(x, A) 
tl=l 

(4.1) 
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and 

Q(x, 1) :=A - q(x) + r(x, 1)’ + r’(x, A). (4.2) 

We choose the r,, in such a way that Q(x, A) = 0 for all x E (a, 6). 
We may differentiate the series (4.1) term by term and substitute into 

(4.2) to obtain 

Q= -q+ f r~+2iA”2 f r,+ f, rn f rs (4.3) 
n=l “=I II=1 s=l 

= - q + r; + 2il.“2r, + r: 

+ f ri+ 2iA’12 f r,+ f r, f r,+r, f rs. (4.4) 
n=2 II=2 n=2 >=I s = 2 

We now choose r, to satisfy 

(4.5) 

That is to say, 

r,(x, 2) := - [” e2iA”2(tpx) q(t) & 

Equation (4.4) now beomes 

Q = rf + 2(iA”‘+ rl) r2 + r;+ r: 

cc cc m m 2 m 

+ 1 r; + 2il”’ C rn + C rn C rs C rn C rs. 
II=3 n=3 n=3 s=l n=l s = 3 

We choose r2 to satisfy 

r; + 2(iA”* + rl) r2 = -rT. 

(4.7) 

(4.8) 

This process may be repeated and we find that after rj has been defined 

Q=rf+2 i1112+ i rn 
( 

r,+,+r~+l+r~+l 
n= I > 

+f ri + 2iA112 f r,+ f 
n=Jf2 n=j+* n=1+2 

We choose rj+ , to satisfy 

(4.9) 

(4.10) 
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rj+ I (x, A) := f” exp (2 f’ iA”* + f r,(s, A) ds) ri(t, A)’ dt. 
.x .r ?I=1 

Then 

Q=C'+I + f rL+2i11’2 f r,+ f r,, f r,+~$:rH~y=~+2r, 
n=,i* n=/+* n=jf2 s = 1 

( 
j+l 

=rj+,+r;+, +2 iAL/*+ 1 rn rj+2+rJ2+2 
n=l > 

+ f r~+2iA’/2 f r,+ 2 rn f r,+‘i* rn f rs. (4.11) 
?l=jf3 n=J+3 n=J’+3 S=l n=l S=J+3 

Observe that (4.11) has the form of (4.9) with j + 1 replaced by j + 2. The 
process of defining rj+ , by mean of (4.10) may thus be continued 
indefinitely. 

In order to discuss the convergence of the series C,“=, r,,(x, A) we require 
a bound for the r,. 

LEMMA 1. Let p(x, A) be a non-increasing function of x with 

(i) b-,(x, l)l d P(X, JL)for XE (a, 61, A > A.,, 
(ii) JS: p(x, ;i) dx < $ for ,I > A.,. Then 

Ir,(x, A)1 < 2p2’m2p(x, A) for xE(a,b),A>&,n=2,3 ,.... 

Proof: Consider first the case n = 2: 

r2(x, A) := j” exp { 2 1’ iA’j2 + r,(s, A) ds) r,(t, A)’ dt 
x x 

so that 

Ir2(x, 111 < 1” exp { 2 f” p(s,A) h} At, A)’ df 
x a 

b < e’l* 
s dt, A)* dt 
x 

< 4p(x, 1) j-” dt, 1) dt 
a 

< 2-‘p(x, A). 
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Suppose that the result has been proved for rn with n = 1, . . . . j. Now, 

r,+i(x,)):=!+exp{2~‘ii”‘+ i r.,(s,i)ds}r#,i)‘dl (4.12) 
1 -r n = 1 

so that 

<2-2’-’ ~(x,4~4j-~p(bWr 
u 

< 2 -p(x, A). (4.13) 

The result now follows by induction from (4.12) and (4.13). 
It follows from Lemma 1 that the function 

r(x, A) = il1’2 + f rn(x, A) 
n= I 

is well defined for x E (a, b). Moreover, the series is uniformly convergent in 
this region and the term by term differentiation is justified. 

We derive now a bound for the derivatives of r,, with respect to x. 
We have chosen rj+ , so that 

rj,, = - rf-2 iA”‘+ i rn rj+,. 
1 I 

(4.14) 
n=l 

Thus, by Lemma 1 

I(+ 1(x, 211 Q 2- 2’-‘p2+2{A”2+4p} 2-2’-‘p, 

<2p2’-‘p(x, A). 11 .max(A”2, p(x, A)). (4.15) 

If we add to the requirements of Lemma 1 the stipulation that 

A”2 3 p(x, A) for x~(a,6),A>il, (4.16) 

then 

jr:+ ,(x, A)[ < 11 .2-2’-2A1’2p(~, A). (4.17) 
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In order to prove Theorem 1 we show that for the r chosen above the Q 
which was defined in (4.2) by Q := A - q + r2 + r’ is zero. 

For any integer k >, 2 we have from (4.9) that 

Q(x, A) = rz + 2iA”* f rn+ f r; + f rs f r,+ jJ r, f rs, 
n=k+l n=k+l n=k+l s=l n=l s=k+l 

It follows from Lemma 1 and (4.17) that 

lQ(x, A)1 ~2-*~~‘~*+2;1~/*~ f 2~*‘-*+ 11 .~v*./, f 2-2n-2 
n=k+l n=k+l 

+g f 2-2m-'(* + 2 2-2$-2) 
n=k+l s = 2 

+p* 1 + 2 2-*“-* 
( n=2 > .$+, 2-2’-2. 

~2-*A~‘p2+4~1/2p2-2k~I 

+ 11~“2p.2~2~-‘.2+8p22~2k~’ 

~35 .2p*k l*w A P(X, A) for XE(U,~),~>&. (4.18) 

Site k is arbitrary it follows from (4.18) that Q(x, A) =0 for XE (a, b), 
A > il,. The proof of Theorem 1 is now complete. 

5. PROOF OF THEOREM 2 

We consider now the equation 

y” + (1-q) y = 0 on (a, b). (5.1) 

Let y, denote the particular solution of (5.1) which satisfies the initial 
conditions 

~;(a, 2) = 44 A), (5.2) 

where r is the function defined above. Let 

0 :=I&++, 
YP 

(5.3) 

then v satisfies the equation 

u’ = { A- q + r’ + r’} - 2ru + u2 
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and, by Theorem 1, 

v’ = - 2rv + v2 for x E (a, b), 3, > &. (5.4) 

In consequence of (5.2) we also have 

v(a, A) = 0. 

It follows from (5.4) and (5.5) by uniqueness of solutions that 

v(x, A) = 0 for x~(a,b),J>i,. 

(5.5) 

(5.6) 

Thus, for the particular solution of (5.1) which satisfies (5.2) we have 

g,(x,i)=exp{J:r(l,i)dr} for x~(a,6),1>1,, 

1, 

I 
= exp in”*+ f rn(t, I) fit . 

0 n=l 1 
(5.7) 

We recall that q and Al” are supposed real so if y, = y, + iy2 where y, and 
y2 are real-valued then yi and y, are also solutions of (5.1). It follows from 
(5.7) that 

y,(x, A) :=exp fx 2 Re(r,(t, A)) dt I”* + 2 Im(r,( t, 1)) dt 
fJ n=l n=l 

y,(x, 1) :=exp IX f Re(r,(t, A)) dt 12”‘+ f Im(r,(t, 1)) dt 
a n=l II=1 

A calculation shows that the Wronskian W(y,, y2) = y, y; - y; y, satisfies 

12i” + f Im(r,(x, A) 
n=l 

It follows that yi and y, are a fundamental pair of solutions for (1.2). The 
proof is now complete. 

6. PROOF OF COROLLARIES 

Proof of Corollary 2. It is clear that p satisfies the condition of the 
theorems for x E (a, b) if 1 is sufficiently large. Also, from (4.13) 

kj+ ,(x, 211 d C lb Iri(t, A)I’ dt. 
x 

(6.1) 

The result now follows from (6.1) by induction. 

409/137/Z-12 
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Proof of Corollary 3. An integration by parts yields 

4(t) e 
2uq r - x.) 

(6.2) 

In the case b = CO we take in Corollary 1 

4x1 := 5 Idx)l + J” Id(t)I dt > , b(A) :=1-“2, 
x 

while in the case b < co we take 

a(x) := c, b(l) :=Ap1’2. 

Proof of Corollary 4. It follows by successive integration by parts that 
forj6N 

Irj(x, A)1 < CAp1’2(2’p l), 

while for j > N we use (6.1) inductively and the result follows. 
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