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Abstract

Consider the family of Schrödinger operators (and also its Dirac version) on �2(Z) or �2(N)

HW
ω,S = � + λF

(
Snω

) + W, ω ∈ Ω,

where S is a transformation on (compact metric) Ω , F is a real Lipschitz function and W is a (sufficiently
fast) power-decaying perturbation. Under certain conditions it is shown that HW

ω,S
presents quasi-ballistic

dynamics for ω in a dense Gδ set. Applications include potentials generated by rotations of the torus with
analytic condition on F , doubling map, Axiom A dynamical systems and the Anderson model. If W is a rank
one perturbation, examples of HW

ω,S
with quasi-ballistic dynamics and point spectrum are also presented.

© 2007 Elsevier Inc. All rights reserved.

MSC: 81Q10; 47B99

1. Introduction

Quantum Hamiltonians, i.e., Schrödinger and Dirac, with potentials along dynamical systems
is a very interesting subject that has been considered in the mathematics and physics literature,
mainly one-dimensional discrete versions. Although not explicitly stated, it is natural to expect
that the more “chaotic” the underlining dynamical system, the more singular the corresponding
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spectrum; the extreme cases could be represented by periodic potentials on one hand, which
impose absolutely continuous spectrum and ballistic dynamics (see Definition 1), and random
potentials on the other hand, that lead to point spectrum and absence of transport (bounded mo-
ments of the position operator). We mention the papers [9,12–14,16,17,22,25,37] for references
and additional comments on important recent results on quantum dynamics for Dirac and Schrö-
dinger operators.

Exceptions of the above picture are known, since there are examples of one-dimensional
quantum models with pure point spectrum and transport. Here we refer to the random dimer
model [25] for the Schrödinger case and the random Bernoulli–Dirac operator [16,17] (with
no potential correlation). The first example of (Schrödinger) operators with such “unexpected
behavior” has appeared in [18, Appendix 2], what the authors have called “A Pathological Ex-
ample;” the potential was the almost-Mathieu (see Application 5.5.1 ahead), which is built along
irrational rotations of the circle, with a combination of suitable rational approximations for the
rotation angle and a rank one perturbation.

Rotations of the circle are by far the most considered dynamical systems to generate quan-
tum potentials [6,23,30]; their finite-valued versions [3,11,19], together with substitution dy-
namical system potentials (see [28,29] and references therein) are mathematical models of
one-dimensional quasi-crystals with predominance of singular continuous spectrum. These dy-
namical systems are not “chaotic,” which could be characterized by positive entropy [26] or via
a more dynamical definition gathered in [20]; the paradigms of chaotic systems are the Anosov
and, more generally, Axiom A systems.

Since chaotic motion mimics randomness, it is natural to conjecture that for quantum op-
erators with suitable potentials built along Axiom A (and other chaotic) systems there is a
predominance of point spectrum and absence of transport. A small step in this direction are
the results of [7] about Anderson localization for potentials related to the doubling map θ �→ 2θ

on the circle and also hyperbolic toral automorphisms—both systems have positive entropy.
The main goal of this paper is to have a close inspection on the construction of the above

mentioned “unexpected example” in [18], together with the related analysis in [22], in order to
get a different view of them and so provide new examples of quantum operators with quasi-
ballistic dynamics, some of them with pure point spectrum. In spite of the above conjecture, as
applications we can prove that for a generic (i.e., dense Gδ) set of initial conditions of Axiom A
systems, as well as of chaotic dynamical systems as defined in Devaney [20], the associated
quantum operators present quasi-ballistic dynamics. We will also have something to say about
the random Anderson model, that is, there is a dense Gδ set of initial conditions so that the
quantum operators present quasi-ballistic dynamics; see Section 5 for details and other examples.
The applications are the principal contributions of this paper. From now on we shall formulate
more precisely the context we work at.

Let (Ω,d) be a compact metric space. Consider the family of bounded Schrödinger operators
HW

ω,S given by

(
HW

ω,Sψ
)
(n) = (�ψ)(n) + λF

(
Snω

)
ψ(n) + W(n)ψ(n), ω ∈ Ω, (1)

acting on ψ ∈ �2(N) (with a Dirichlet, or any other, boundary condition) or the whole lattice case
�2(Z), where the Laplacian � is the finite difference operator

(�ψ)(n) = ψ(n + 1) + ψ(n − 1),
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S is a transformation on Ω (invertible in the whole lattice case), F :Ω → R satisfies a Lipschitz
condition, i.e., there exists L > 0 such that

∣∣F(θ) − F(ω)
∣∣ � Ld(θ,ω), ∀θ,ω ∈ Ω, (2)

and, for some η > 0 and 0 < C̃ < ∞, the perturbation W satisfies

∣∣W(n)
∣∣ � C̃

(
1 + |n|)−1−η

, ∀n ∈ Z. (3)

The coupling constant λ is a positive real number. Throughout W is supposed to satisfy (3). We
shall denote by � the Lebesgue measure (normalized, when necessary) and by σ(H) the spectrum
of a self-adjoint operator H .

We are interested in situations where nontrivial quantum transport for systems governed by
the above Hamiltonians can be established. To this end consider the time averaged moments of
order p > 0 associated to the initial state δ1 (a member of the canonical basis of �2), defined by

MW
ω,S(p,T ) := 2

T

∞∫
0

e−2t/T
∑
n

(
1 + n2)p/2∣∣〈δn, e

−itHW
ω,S δ1

〉∣∣2
dt. (4)

The presence of quantum transport will be probed through the upper diffusion exponents

β+
ω,S,W (p) := lim sup

T →∞
logMW

ω,S(p,T )

p logT
. (5)

The lower diffusion exponents will be denoted by

β−
ω,S,W (p) := lim inf

T →∞
logMW

ω,S(p,T )

p logT
. (6)

Definition 1. If β−
ω,S,W (p) = 1 for all p > 0, the operator HW

ω,S is said to present ballistic dynam-

ics. If β+
ω,S,W (p) = 1 for all p > 0, the operator HW

ω,S is said to present quasi-ballistic dynamics.

Although point spectrum has been associated with localized dynamics, as already mentioned
the first example of a Schrödinger operator with quasi-ballistic dynamics and point spectrum was
the half lattice almost Mathieu operator under rank one perturbation [18]. The random dimer
model [15] and the Bernoulli–Dirac model [16,17] (zero mass case) are other examples of op-
erators with nontrivial quantum transport (due to existence of critical energies) and pure point
spectrum. In [22] a new method was developed to obtain dynamical lower bounds with applica-
tion for random decaying potentials.

Here we are confined to quasi-ballistic transport; the ideas in [18] for the almost Mathieu
operator, and then revisited in [22], is presented from a rather different viewpoint in order to
provide new examples of quantum operators with quasi-ballistic dynamics, some of them also
with pure point spectrum (see ahead).

The abstract result we shall present can be summarized as (see Theorem 1 for a precise state-
ment): If there exists a dense set of initial conditions in Ω for which the transfer matrices are
bounded from above in energy intervals with positive Lebesgue measure, and if the iterations of S
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satisfies a suitable continuity-like condition, then one obtains a dense Gδ set Ω̃ ⊂ Ω such that for
any ω ∈ Ω̃ , HW

ω,S defined by (1) presents quasi-ballistic dynamics. With respect to the spectral
type, we shall highlight a known result (see Theorem 2) that will be used in some applications: If
the Lyapunov exponent corresponding the HW=0

ω,S is strictly positive for energies in the spectrum,

then under the rank one perturbation W = κ〈δ1, ·〉δ1 the Schrödinger operator HW
ω,S on �2(N)

has pure point spectrum for a.e. ω (with respect to an ergodic measure) and a.e. κ (with respect
to Lebesgue � measure). There is a restricted version for the whole lattice case. That result will
be so important for some applications here that a sketch of its proof will be provided. We shall
apply the abstract result to several types of potential Vω(n) = F(Snω) (see Section 5): Rotations
of S1 and of the torus with analytic condition on F , doubling map, Anderson model, Anosov
and Axiom A, and chaotic dynamical systems. For the particular case of incommensurate rota-
tions of the torus under rank one perturbations (see Sections 5.5 and 5.6), besides quasi-ballistic
dynamics, it is also found the concomitant presence of pure point spectrum.

This paper is organized as follows: In Section 2 the results about quasi-ballistic dynamics
(Theorem 1) and point spectrum (Theorem 2) for the model (1) are presented, whose proofs
appear in Section 4. In Section 3 some preliminary results used in those proofs are collected.
Section 5 is devoted to applications. In Section 6 the adaptation of the results for the discrete
Dirac model is briefly mentioned.

2. Abstract results

In this section we will present our result about quasi-ballistic dynamics (Theorem 1) for the
operators HW

ω,S defined by (1) and also a spectral result (Theorem 2) that will be used in some ap-

plications. First of all, we recall the notion of transfer matrices. These matrices ΦW
ω,S are uniquely

defined by the condition that

(
ψ(n + 1)

ψ(n)

)
= ΦW

ω,S(E,n,0)

(
ψ(1)

ψ(0)

)

for every solution ψ of the eigenvalue equation

HW
ω,Sψ = Eψ.

Hence,

ΦW
ω,S(E,n,0) =

⎧⎪⎨
⎪⎩

T W
ω,S(E,n) · · ·T W

ω,S(E,1), n � 1,

Id, n = 0,

(T W
ω,S(E,n + 1))−1 · · · (T W

ω,S(E,0))−1, n � −1,

where

T W
ω,S(E, k) =

(
E − λF(Skω) − W(k) −1

1 0

)
.

Now we are in position to state the main abstract result of this paper.
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Theorem 1. Let HW
ω,S be the operator defined by (1) on �2(N) with S and W (as in (3)) fixed.

Suppose that there exists a dense set A of initial conditions in Ω such that, for each ω ∈ A, there
are a closed interval Jω

S ⊂ σ(H 0
ω,S) (i.e., the spectrum in the case W ≡ 0) with �(Jω

S ) > 0 and
0 < Cω(S) < ∞ so that

∥∥Φ0
ω,S(E,n,0)

∥∥ � Cω(S), ∀E ∈ Jω
S and ∀n ∈ N. (7)

Assume that there are 0 < C < ∞ and a nonnegative function hS : N → R satisfying

d
(
Snθ,Snω

)
� Cd(θ,ω)hS(n), ∀θ,ω ∈ Ω and ∀n ∈ N.

Then there exists a dense Gδ set Ω̃ ⊂ Ω such that, for each ω ∈ Ω̃ , the operator HW
ω,S presents

quasi-ballistic dynamics.

Let ν be an ergodic probability measure on Ω with respect to S. By Furstenberg and Kesten
Theorem [4], for ν-a.s. ω the Lyapunov exponent

Γ W
S (E) = lim

n→∞
1

|n| log
∥∥ΦW

ω,S(E,n,0)
∥∥

exists and is independent of ω. The next result is a consequence of the Simon–Wolff criterion [35]
(see Lemma 5 ahead). Recall that the cyclic subspace generated by φ ∈ �2 for a self-adjoint
operator H is the closure of {(H − z)−1φ: z ∈ C}; the vector φ is cyclic for H if such subspace
is the whole �2.

Theorem 2. (See [34].) Let HW
ω,S be the operator defined by (1) on �2(Z) under rank one per-

turbations W = κ〈δ1, ·〉δ1, κ ∈ R. Fix an interval [a, b]. If Γ 0
S (E) > 0 for �-a.s. E ∈ [a, b], then

restricted to the cyclic subspace generated by δ1, the operator HW
ω,S has pure point spectrum in

[a, b] for �-a.s. κ and ν-a.s. ω.

Remarks.

(i) Theorem 1 can be readily adapted to the whole lattice case.
(ii) The set Ω̃ in Theorem 1 does not depend on the perturbation W (including W ≡ 0).

(iii) Although both theorems above have half and whole lattice versions, the proofs of such ver-
sions are quite similar; so Theorem 1 will be proven for the half lattice case while Theorem 2
for the whole lattice one.

(iv) Since in the half lattice case the vector δ1 is cyclic for H 0
ω,S , then in this case the conclusions

of Theorem 2 hold on �2(N).
(v) In this paper (and perhaps in most future applications) the set A in Theorem 1 is composed

of periodic orbits of the map S.

3. Preliminaries

In this section we collect some results that will be used in the proofs of Theorems 1 and 2.
Most of them are known results whose proofs are easily found in the references. Denote by μW
ω,S
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the spectral measure associated to the pair (HW
ω,S, δ1) and introduce the “local spectral mo-

ments” [22]

KμW
ω,S

(q, ε) := 1

ε

∫
R

(
μW

ω,S(x − ε, x + ε)
)q

dx (8)

defined for q > 0 and ε > 0. A key point for the proof of Theorem 1 will be the following lower
bound for the diffusion exponents β+

ω,S,W (p).

Lemma 1. For all p > 0 and q = (1 + p)−1, one has

β+
ω,S,W (p) � lim sup

ε→0

logKμW
ω,S

(q, ε)

(q − 1) log ε
.

The proof of Lemma 1 follows directly from Theorem 2.1 of [1] and Lemmas 2.1 and 2.3
of [2]. The next result converts an upper bound on the norm of transfer matrices into a lower
bound on the spectral measure; for its proof see Proposition 2.1 of [22].

Lemma 2. Let HW
ω,S be the operator defined by (1) on �2(N) and let I be a compact interval.

There exist a universal constant C1 and, for all M > 0 and τ > 0, a constant C2 = C2(I,M, τ)

such that for all ε ∈ (0,1) and all x ∈ I , one has

μW
ω,S(x − ε, x + ε) � C1

x+ ε
2∫

x− ε
2

dE

‖ΦW
ω,S(E,N,0)‖2

− C2ε
M,

with N = [ε−1−τ ] (integer part).

In order to establish relations between the transfer matrices with different initial conditions,
the next result will be used.

Lemma 3. Let E ∈ R, N > 0 and set

Lω
S (N) := sup

1�n�N

∥∥ΦW
ω,S(E,n,0)

∥∥.

Then, for 1 � n � N and θ ∈ Ω ,

∥∥ΦW
θ,S(E,n,0)

∥∥ � Lω
S (N)eLω

S (N)λ|F(Snθ)−F(Snω)|n.

Proof. An inductive argument shows that, for θ,ω ∈ Ω and n � 1, one can write the identity

ΦW
θ,S(E,n,0) = ΦW

ω,S(E,n,0) + λ

n∑
ΦW

ω,S(E,n, j) B
θ,ω
S (n)ΦW

θ,S(E, j,1),
j=1
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where

B
θ,ω
S (n) =

(
F(Snω) − F(Snθ) 0

0 0

)
.

By iteration, using the fact that ‖ΦW
ω,S(E,n,0)‖ � Lω

S (N) for all 1 � n � N , one obtains

∥∥ΦW
θ,S(E,n,0)

∥∥ � Lω
S (N)

[
1 + λ

∣∣F (
Snθ

) − F
(
Snω

)∣∣Lω
S (N)

]n−1

� Lω
S (N)eLω

S (N)λ|F(Snθ)−F(Snω)|n,

for 1 � n � N . �
Now we describe two results that will be used in the proof of Theorem 2. Details will be

presented only for the whole lattice case. Consider the function

Gθ,S(E) =
∫

dμ0
θ,S(x)

(E − x)2

which is defined for E ∈ (−∞,∞) and takes values in (0,∞]. The first result relates Gθ,S(E)

with the solutions of the eigenvalue equation

H 0
θ,Sψ = Eψ. (9)

See Theorem 2.4 of [34] for its proof.

Lemma 4. Let H 0
θ,S be the operator defined by (1) on �2(Z), with W ≡ 0. Then one has

Gθ,S(E) < ∞ if and only if

(i) E is not an eigenvalue of H 0
θ,S ;

(ii) One of the following holds:
(ii.1) Eq. (9) has an �2 solution on (0,∞) with ψ(0) = 0;
(ii.2) (9) has an �2 solution on (−∞,0) with ψ(0) = 0;
(ii.3) (9) has an �2 solutions ψ± on both (0,∞) and (−∞,0) with both ψ+(0) 
= 0 and

ψ−(0) 
= 0.

Finally we remind of Simon–Wolff criterion [35]:

Lemma 5. Let HW
ω,S be the operator defined by (1) on �2(Z) with W = κ〈δ1, ·〉δ1, κ ∈ R. Fix an

interval [a, b]. Then the following assertions are equivalent:

(i) Gω,S(E) < ∞ for �-a.s. E ∈ [a, b];
(ii) restricted to the cyclic subspace generated by δ1, the operator HW

ω,S has only pure point
spectrum in [a, b] for �-a.s. κ.



92 C.R. de Oliveira, R.A. Prado / J. Differential Equations 235 (2007) 85–100
4. Proofs

In this section the proofs of Theorems 1 and 2 are presented. In order to prove Theorem 1,
the following technical result will be used.

Lemma 6. Let A be the set described in Theorem 1 and fix ω ∈ A. Then there exists ε(ω,S) > 0
such that for every 0 < ε < ε(ω,S) it is possible to choose δ(ε,ω,S) > 0 such that if d(θ,ω) <

δ(ε,ω,S), then for any q ∈ (0,1) there exists 0 < Cq < ∞ so that

KμW
θ,S

(q, ε) � Cq

ε−1+q

log(ε−1)
.

Proof. For each ω ∈ A fixed, there exists a closed interval Jω
S ⊂ σ(H 0

ω,S) with �(Jω
S ) �

Lω(S) > 0 and 0 < Cω(S) < ∞ such that

∥∥Φ0
ω,S(E,n,0)

∥∥ � Cω(S), ∀E ∈ Jω
S and ∀n ∈ N.

Since W satisfies (3), it is found that

∥∥ΦW
ω,S(E,n,0)

∥∥2 � C̃ω(S), ∀E ∈ Jω
S and ∀n ∈ N. (10)

We remark that inequality (10) is closely related to discrete versions of the Levinson’s theorem
(see, e.g., [24,33] and references therein), but in Theorem 2 of [13] a detailed and ad hoc proof
is presented.

Pick ε(ω,S) > 0 such that if ε < ε(ω,S), then for any q ∈ (0,1),

max
{
C̃ω(S),Lω(S)−1} �

(
log

(
ε−1))1/(1+q)

. (11)

Now note that, by (2) and the hypotheses of Theorem 1, one has

∣∣F (
Snθ

) − F
(
Snω

)∣∣ � Ld
(
Snθ,Snω

)
� LCd(θ,ω)hS(n), (12)

for every θ,ω ∈ Ω and for all n ∈ N. Note that by using the new function HS(n) :=
max0�j�n hS(j), one may assume that hS is nondecreasing; this will be done in what follows.

Pick τ > 0. As a consequence of (10), (12) and Lemma 3, it is found that for ω ∈ A fixed and
for any ε < ε(ω,S),

∥∥ΦW
θ,S(E,n,0)

∥∥2 � C̃ω(S)e2λC̃ω(S)LCd(θ,ω)hS([ε−1−τ ])ε−1−τ

� 2λLCC̃ω(S), (13)

for every E ∈ Jω
S and for all 1 � n � [ε−1−τ ], where we required that d(θ,ω) is small enough

(which determines δ(ε,ω,S) > 0) so that

2λ log
(
ε−1)LCd(θ,ω)hS

([
ε−1−τ

])
ε−1−τ � log(2λLC).

Thus, by Lemma 2 with M = 2 and by (11) and (13), it follows that for ε small enough,
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μW
θ,S(E − ε,E + ε) � C1

(
2λLCC̃ω(S)

)−1
ε − C2ε

2

� C3
ε

(log(ε−1))1/(1+q)
,

for every E ∈ Jω
S . Therefore, for any q ∈ (0,1) and ε < ε(ω,S), it follows from (8), (11) and the

above inequality that

KμW
θ,S

(q, ε) � Cq

ε−1+q

(log(ε−1))q/(1+q)
�
(
Jω

S

)
� Cq

ε−1+q

log(ε−1)
. �

Remarks. Both Lemma 6 and the proof of Theorem 1 hold if the logarithm function is replaced
by any g : R → R with limt→∞ g(t) = ∞ and limt→∞ g(t)/t = 0.

Proof of Theorem 1. For each n ∈ N \ {0} define the sets

Bn =
{
θ ∈ Ω

∣∣∣ ∃ε <
1

n
: KμW

θ,S
(q, ε) � Cq

ε−1+q

log(ε−1)

}
.

Since A is dense, by Lemma 6 each of the sets Bn contains a dense open set. Therefore, by Baire
theorem,

⋂∞
n=1 Bn contains a dense Gδ set Ω̃ . Note that for each θ ∈ Ω̃ there exists a sequence

εn → 0 such that

KμW
θ,S

(q, εn) � Cq

ε
−1+q
n

log(ε−1
n )

,

for any q ∈ (0,1). Choosing q = (1 + p)−1, it follows by Lemma 1 that for any θ ∈ Ω̃ and for
all p > 0, β+

θ,S,W (p) = 1, i.e., the operator HW
θ,S presents quasi-ballistic dynamics. �

Proof of Theorem 2. By hypothesis, Γ 0
S (E) > 0 for �-a.s. E ∈ [a, b]. The theorem of Ruelle–

Oseledec [31] implies that there exist solutions ψ± of Eq. (9), for �-a.s. E ∈ [a, b], that are �2

at ±∞ (they decay exponentially). Hence by Lemma 4, either E is an eigenvalue of H 0
θ,S or

Gθ,S(E) < ∞. Since H 0
θ,S has only countably many eigenvalues, it is possible to conclude that

Gθ,S(E) < ∞ for �-a.s. E ∈ [a, b]. Therefore, it follows by Lemma 5 that, restricted to the cyclic
subspace generated by δ1, the operator HW

θ,S has pure point spectrum in [a, b] for ν-a.s. θ and
�-a.s. κ . �
5. Applications

This section is devoted to applications of Theorems 1 and 2. Some of them provide examples
of quantum operators with quasi-ballistic dynamics and point spectrum (pure point in the half
lattice case).

5.1. Anosov and Axiom A

Let M be a differentiable compact manifold. Recall that a diffeomorphism S : M → M satis-
fies Axiom A of Smale [26] if its nonwandering set Ω = Ω(S) is hyperbolic with respect to S
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and the set of periodic points of S is dense in Ω . Recall also that the nonwandering set of a dif-
feomorphism is closed and invariant under S. It is known that for Axiom A dynamical systems
the set Ω is a finite (disjoint) union of closed, invariant and transitive sets (i.e., there is a dense
orbit); each of these sets is called a basic set for S.

By the continuity of the derivative of S and compactness (or hyperbolicity), there are C > 0
and γ > 1 so that

d
(
Snθ,Snω

)
� Cγ |n|d(θ,ω), ∀θ,ω ∈ Ω and ∀n ∈ Z (or N).

Now by taking F :M → R continuously differentiable, the Lipschitz condition (2) is immedi-
ately satisfied. So Theorem 1 is applicable with A being the set of initial conditions giving rise to
periodic orbits of S. Therefore, there is a dense Gδ set Ω̃ ⊂ Ω so that for each initial condition
ω ∈ Ω̃ the Schrödinger operator HW

ω,S presents quasi-ballistic dynamics.
It is interesting to note that due to hyperbolicity of Ω the set of periodic points of S is at most

countable, so that for “chaotic” Axiom A systems the dense Gδ set with quasi-ballistic dynamics
is actually a nontrivial one.

Recall also that if M is hyperbolic with respect to S, then S is said to be an Anosov diffeo-
morphism. These systems satisfy Axiom A and so the above conclusion about quasi-ballistic
dynamics holds. It seems to be an open question if for Anosov diffeomorphisms the nonwander-
ing sets Ω always coincide with M ; in the case of Anosov diffeomorphism on the torus T2 it is
known that there is just one basic set and it coincides with the whole torus.

To the best of our knowledge, the only spectral specification related to such systems are a.s.
purely point spectrum (at the border of the spectrum) for hyperbolic toral automorphisms S on T2

(i.e., a particular class of Anosov maps and so the torus T2 is a basic set) and F ∈ C1(T2) with
zero average studied in [7]. Such spectral results are similar to those mentioned for the doubling
map in Section 5.2. Of course the periodic orbits of S generate absolutely continuous spectrum.

5.2. Doubling map

Consider the operator HW
θ,S defined by (1) on �2(N) where S is the transformation on Ω =

[0,1] given by Sθ = 2θ (mod 1) and F = cos :Ω → R. Note that F satisfies the Lipschitz
condition. The set A = {θ whose expansion in the basis 2 is periodic} is dense in Ω . Since each
element of A corresponds to a periodic orbit of S, it follows from [18,27] that A satisfies the
hypotheses of Theorem 1. Furthermore, for every θ,ω ∈ Ω = [0,1] and n ∈ N, one has

d
(
Snθ,Snω

) = ∣∣2nθ − 2nω
∣∣ = 2nd(θ,ω).

Therefore, by Theorem 1, there exists a dense Gδ set Ω̃ ⊂ [0,1] such that for any θ ∈ Ω̃ and for
every p > 0, β+

θ,S,W (p) = 1—note that indeed this result holds for any (nonconstant) periodic
continuously differentiable F .

Now fix (small) δ > 0 and λ > 0 sufficiently small. Bourgain and Schlag [7] have proven
that for �-a.s. θ ∈ [0,1], the operator H 0

θ,S has pure point spectrum in [−2 + δ,−δ] ∪ [δ,2 − δ]
with eigenfunctions decaying exponentially. In particular, Γ 0

S (E) > 0 for E ∈ [−2 + δ,−δ] ∪
[δ,2−δ]. Since in principle Ω̃ can have null measure, we cannot conclude that there are elements
of Ω̃ whose corresponding operator has a point spectrum component.
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5.3. Chaotic one-dimensional maps

Let I be a compact interval in R and S : I → I a continuously differentiable map (for simplic-
ity we restrict ourselves to one-dimensional maps). Suppose that restricted to Λ ⊂ I the map S is
chaotic as defined by Devaney [20, p. 50], i.e., it is sensitive on initial conditions, topologically
transitive, and the periodic points are dense in Λ. The potential for the Schrödinger operator (1)
on �2(N) will be the own orbits of S, so that F is the identity map (or any other Lipschitz func-
tion). The hypotheses on F and S in Theorem 1 are clearly satisfied, as well as the existence of
the set A.

Specific examples are the Tchebycheff polynomials [20]; for instance, x �→ 4x3 − 3x and
x �→ 8x4 − 8x2 + 1 are chaotic on [−1,1]. For r > 2 + √

5, the map Sr(x) = rx(1 − x) is
chaotic on the set Λ ⊂ [0,1] of points which never escape from [0,1] upon iterates of Sr ; for
r = 4 the map S4 is chaotic on Λ = [0,1].

Therefore, for the family of operators HW
x,S , with chaotic S as above, there is a dense Gδ set

Ω̃ ⊂ Λ such that for any x ∈ Ω̃ the corresponding operator presents quasi-ballistic dynamics. It
is a very interesting open problem to say something about the spectra of such operators. Are they
“in general” pure point as the intuition says? What about for x ∈ Ω̃?

5.4. Anderson model

Consider the operator HW
ω,S defined by (1) on �2(Z) where S is the shift on Ω = [−1,1]Z

given by (Sω)j = ωj+1 and F : Ω → [−1,1] defined by F(ω) = ω0. Note that F(Snω) =
(Snω)0 = ωn. It is assumed that ωn, n ∈ Z, are independent identically distributed ran-
dom variables with common probability measure σ not concentrated on a single point and∫ |ωn|α dσ(ωn) < ∞ for some α > 0. Denote by ν = ∏

n∈Z
σ the probability measure on Ω .

The metric on Ω is given by

d(ω, θ) =
∑
j∈Z

d0(ωj , θj )

2|j | ,

where d0 is the discrete metric. For every ω,θ ∈ Ω , one has

∣∣F(ω) − F(θ)
∣∣ = |ω0 − θ0| � 2d(ω, θ),

and so F is Lipschitz. The set A of periodic sequences in Ω is dense in Ω . Since each periodic
sequence determines a periodic orbit of S, it follows from [18,27] that A satisfies the hypotheses
of Theorem 1. Furthermore, for every ω,θ ∈ Ω and for all n ∈ Z, one has

d
(
Snω,Snθ

)
� 2|n| ∑

j∈Z

d0(ωj+n, θj+n)

2|j+n| = d(ω, θ)2|n|.

Therefore, by Theorem 1, there exists a dense Gδ set Ω̃ ⊂ Ω such that for any ω ∈ Ω̃ and for
every p > 0, β+

ω,S,W (p) = 1.

In [8,32,38] it was proven that for ν-a.s. ω, H 0
ω,S has pure point spectrum with eigenfunctions

decaying exponentially. In particular, Γ 0
S (E) > 0 for every E. As in Application 5.2, we cannot

conclude that there are elements of Ω̃ whose corresponding operators present point spectrum.
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Such quasi-ballistic dynamics should be contrasted with the dynamical localization proven ν-a.s.
[21] for this model. In the sequel an important particular case is selected.

5.4.1. Bernoulli–Anderson model
Take HW

ω,S as in Application 5.4 with Ω = {a1, . . . , ak}Z, ai ∈ R, and for each n ∈ Z,

σ(ωn = ai) = pi , 0 < pi < 1, and
∑k

i=1 pi = 1. The same conclusions of Application 5.4 hold.

5.5. Rotations of S1 with analytic condition on F

Consider the operator HW
(θ,α),S defined by (1) with S the transformation on Ωa := S1 ×

[−a, a], a > 0, fixed, given by S(θ,α) = (θ + πα,α), and F = g ◦ π1, with g : S1 → R

nonconstant analytic of period 1 and π1 :Ωa → S1 the projection π1(θ,α) = θ . For every
(θ,α), (ω,β) ∈ Ωa , it follows by the Mean Value Theorem that

∣∣F(θ,α) − F(ω,β)
∣∣ = ∣∣g(θ) − g(ω)

∣∣
�

(
sup
z∈S1

∣∣g′(z)
∣∣)|θ − ω|

� Ld
(
(θ,α), (ω,β)

)
,

where L = supz∈S1 |g′(z)| and d((θ,α), (ω,β)) = √
(θ − ω)2 + (α − β)2; in other words, F sat-

isfies the Lipschitz condition. The set

A = {
(θ,α0): θ ∈ S1, α0 ∈ Q ∩ [−a, a]}

is dense in Ωa and for each (θ,α0) ∈ A, Sn(θ,α0) describes a periodic orbit at the “height” α0.
Therefore the potential λF(Sn(θ,α0)) is periodic and, due to [18,27], A satisfies the hypoth-
esis (7) of Theorem 1. Now note that for every (θ,α), (ω,β) ∈ Ωa and n ∈ Z \ {0} (n = 0 is
trivial), one has

d
(
Sn(θ,α), Sn(ω,β)

)
� d

(
Sn(θ,α), Sn(θ,β)

) + d
(
Sn(θ,β), Sn(ω,β)

)

=
√

n2π2(α − β)2 + (α − β)2 +
√

(θ − ω)2

�
(√

π2 + 1 |α − β| + |θ − ω|)|n|
�

(√
π2 + 1 + 1

)
d
(
(θ,α), (ω,β)

)|n|.

Therefore, by Theorem 1, there exists a dense Gδ set Ω̃a ⊂ Ωa such that for any (θ,α) ∈ Ω̃a

and for every p > 0, β+
(θ,α),S,W (p) = 1, with W satisfying (3). Observe that F(Sn(θ,α)) =

g(θ + nπα).
It follows by Sorets and Spencer [36] that there exists a number λ0(F ) > 0 such that for

λ > λ0, Γ 0
S (E) > 0 for every E, every irrational α and �-a.s. θ (� on S1 is ergodic with respect

to π1 ◦ S). Since the generic set Ω̃a can have zero measure, we are not assured to be able to
apply Theorem 2 to elements of Ω̃a in order to obtain quasi-ballistic dynamics with pure point
spectrum. Nevertheless, the original view in [18,22] (i.e., to consider for each α a different map)
for the cosine function, implies uniformity in θ also in our case, so that we get new examples of
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Schrödinger operators with pure point spectrum and quasi-ballistic dynamics. Let us reconsider
the construction, since it will also be employed in Application 5.6.

Begin by replacing (rewriting, in fact) HW
(θ,α),S with HW

θ,Sα
, where Sα(θ) = θ + πα, θ ∈ S1,

and F = g (take π1 as the identity). For each α0 ∈ Q and θ ∈ S1, the potential λF(Sn
α0

(θ)) is

periodic and there is J θ
α0

⊂ σ(H 0
θ,Sα0

) with �(J θ
α0

) > 0 so that uniformly in θ

∥∥Φ0
θ,Sα0

(E,n,0)
∥∥ � Cα0, ∀E ∈ J θ

α0
, n ∈ Z.

Furthermore, for all θ and n

d
(
Sn

α(θ), Sn
α0

(ω)
) = d(θ + nπα, θ + nπα0) = π |α − α0||n|.

By repeating the arguments of Lemma 6 and Theorem 1, but now with

B̃n =
{
α ∈ [−a, a]

∣∣∣ ∃ε <
1

n
: ∀θ ∈ S1, KμW

θ,Sα

(q, ε) � Cq

ε−1+q

log(ε−1)

}

instead of Bn, one concludes that there exists a dense Gδ set of irrational numbers G ⊂ [−a, a], so
that for each fixed α ∈ G and every θ ∈ S1, the operator HW

(θ,α),S = HW
θ,Sα

presents quasi-ballistic
dynamics.

Therefore, by Theorem 2, for α ∈ G and �-a.s. θ the operator HW
(θ,α),S with nonconstant an-

alytic F on the half lattice �2(N) case, under the rank one perturbation W = κ〈δ1, ·〉δ1, λ > λ0
and α irrational, has pure point spectrum for �-a.s. κ, and also presents quasi-ballistic dynamics.

Now some interesting particular cases of potentials generated by this dynamical system will
be described.

5.5.1. Almost Mathieu
This is just a reconsideration of the “pathological example” of [18]. HW

(θ,α),S is defined by (1),
where S is the transformation on Ωa given by S(θ,α) = (θ + πα,α), F = cos ◦ π1 :Ωa → R,
W = κ〈δ1, ·〉δ1, α is irrational and λ > λ0 = 2. Under such conditions both Theorems 1 and 2
hold for proper sets, as discussed in Application 5.5.

5.5.2. Circular billiards [10]
The potential now is along the orbits of a particle under specular reflections on a circular

billiard. HW
(r,φ),S is defined by (1), where S is the transformation on Ωπ

2
given by S(r,φ) =

(r + π − 2φ,φ) and F = g ◦ π1 with g : S1 → R nonconstant analytic of period 1. Again the
conclusions of Application 5.5 hold.

5.5.3. Twist map [26]
HW

(θ,r),S
is defined by (1), with S the transformation on Ω = D(0,1) (closed disk of cen-

ter 0 and radius 1 in R2) given by S(θ, r) = (θ + ρ(r), r), with ρ : [0,1] → [0,2π] continuous,
ρ(0) = 0, ρ′(r) > 0, and F = g ◦ π1 with g a nonconstant real-analytic function of period 1.
So, the potential is defined along orbits of an integrable twist map, and Theorems 1 and 2 hold
concomitant for proper sets.
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5.6. Rotations of the torus with analytic condition on F

Consider the operator HW
(θ,α),S defined by (1), where S is the transformation on Ωk

a := Tk ×
[−a, a]k (Tk is the k-dimensional torus; a > 0 fixed) given by S(θ,α) = (θ + πα,α), with
θ = (θ1, . . . , θk), α = (α1, . . . , αk), F = g ◦ πk with g : Tk → R nonconstant analytic of period 1
in each component, and πk :Ωk

a → Tk the projection πk(θ,α) = θ . Observe that for k = 1, we
are in the case of Application 5.5 above. Similarly to Application 5.5, one obtains a dense Gδ

set Ω̃k
a ⊂ Ωk

a such that for any (θ,α) ∈ Ω̃k
a and for every p > 0, β+

(θ,α),S,W
(p) = 1. Note that

F(Sn(θ1, . . . , θk, α1, . . . , αk)) = g(θ1 + nπα1, . . . , θk + nπαk).
The construction of G in Application 5.5 has a direct counterpart here, so that

β+
(θ,α),S,W (p) = 1 for α in a dense Gδ set Gk ⊂ [−a, a]k and every θ . The above mentioned

result of Sorets and Spencer is still valid in this case [5]: there is λ0 > 0 so that if λ > λ0, then
Γ 0

S (E) > 0 for every E, every incommensurate vector α (i.e., α · j 
= 0 for all j ∈ Zk \ {0}) and
�-a.s. θ = (θ1, . . . , θk) (� on Tk is ergodic with respect to πk ◦ S). Therefore, by Theorem 2,
for such α’s the operator HW

(θ,α),S
on �2(N), with W = κ〈δ1, ·〉δ1 and λ large enough, has pure

point spectrum for �-a.s. θ and κ . Since necessarily a Gδ set in [−a, a]k contains incommensu-
rate vectors α (in particular for Gk), again we have got new examples of Schrödinger operators
with pure point spectrum and quasi-ballistic dynamics. We stress once more that, in fact, our
arguments come from a (simple) closer inspection of the original arguments of [18,22] for the
almost-Mathieu operator.

6. The discrete Dirac model

The single particle one-dimensional discrete Dirac operator was studied in [16,17] and is
described by (ω ∈ Ω)

Dω(m, c) :=
(

mc2 cD∗
cD −mc2

)
+ Vω Id2,

acting on �2(Z,C2) or �2(N,C2), where Id2 is the 2 × 2 identity matrix, c > 0 represents the
speed of light, m � 0 is the mass of the particle, D is the finite difference operator defined by
(Dψ)(n) = ψ(n + 1) − ψ(n) and D∗ is the adjoint of D.

Besides being a physical model, it was of interest because for the massless case and two-
valued Bernoulli potentials, its behavior is similar to the corresponding Schrödinger case after
dimerization, with presence of the so-called critical energies [17,25]. So, under certain conditions
it is possible to get pure point spectrum and nontrivial transport a.s. with β−(p) � (1 − 1

2p
).

By considering the potential Vω(n) = λF(Snω)+W(n), with F and W satisfying (2) and (3),
respectively, Theorems 1 and 2 hold, and so all applications in Section 5 have a counterpart
for this model; this follows after a huge set of technical details (not presented) are checked and
adapted by following the lines of [17]. Hence this discrete Dirac version, with suitable potentials
along some dynamical systems, provides examples of relativistic quantum operators with quasi-
ballistic dynamics, some also with point spectrum.

References

[1] J.M. Barbaroux, F. Germinet, S. Tcheremchantsev, Fractal dimensions and the phenomenon of intermittency in
quantum dynamics, Duke Math. J. 110 (2001) 161–193.



C.R. de Oliveira, R.A. Prado / J. Differential Equations 235 (2007) 85–100 99
[2] J.M. Barbaroux, F. Germinet, S. Tcheremchantsev, Generalized fractal dimensions: Equivalence and basic proper-
ties, J. Math. Pures Appl. 80 (2001) 977–1012.

[3] J. Bellissard, B. Iochum, E. Scoppola, D. Testard, Spectral properties of one-dimensional quasi-crystals, Comm.
Math. Phys. 125 (1989) 527–543.

[4] P. Bougerol, J. Lacroix, Products of Random Matrices with Applications to Schrödinger Operators, Birkhäuser,
Boston, 1985.

[5] J. Bourgain, Exposants de Lyapunov pour Opérateurs de Schrödinger Discrètes Quasi-Périodiques, C. R. Acad. Sci.
Paris Ser. I 335 (2002) 529–531.

[6] J. Bourgain, S. Jitomirskaya, Absolutely continuous spectrum for 1D quasiperiodic operators, Invent. Math. 148
(2002) 453–463.

[7] J. Bourgain, W. Schlag, Anderson localization for Schrödinger operators on Z with strongly mixing potentials,
Comm. Math. Phys. 215 (2000) 143–157.

[8] R. Carmona, A. Klein, F. Martinelli, Anderson localization for Bernoulli and other singular potentials, Comm. Math.
Phys. 108 (1987) 41–66.

[9] T.O. Carvalho, C.R. de Oliveira, Critical energies in random palindrome models, J. Math. Phys. 44 (2003) 945–961.
[10] N. Chernov, R. Markarian, Introduction to the Ergodic Theory of Chaotic Billiards, IMPA, Rio de Janeiro, 2003.
[11] D. Damanik, D. Lenz, Uniform spectral properties of one-dimensional quasicrystals. IV. Quasi-Sturmian potentials,

J. Anal. Math. 90 (2003) 115–139.
[12] D. Damanik, D. Lenz, G. Stolz, Lower transport bounds for one-dimensional continuum Schrödinger operators,

Math. Ann. 336 (2006) 361–389.
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