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• Feeding prompts a reliable and consistent
behavioral satiety sequence in pigeons.

• Temporal/sequential traits of post-meal
drink–preen–sleep BSS were quantita-
tively described.

• BSS temporal structure is similar after
different feed-evoking stimuli and food
intakes.

• Though similar in profile, central controls
of BSS timingmay be different in pigeons
and rats.
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The postprandial event known as the specific dynamic action is an evolutionarily conserved physiological set of
metabolic responses to feeding. Its behavioral counterpart, a sequence of drinking, maintenance (e.g., grooming)
and sleep-like behaviors known as the behavioral satiety sequence (BSS), has been thoroughly described in
rodents and has enabled the refined evaluation of potential appetite modifiers. However, the presence and
attributes of a BSS have not been systematically studied in non-mammalian species. Here, we describe the BSS
induced in pigeons (Columba livia) by 1) the presentation of a palatable seed mixture (SM) food to free-feeding
animals (SM + FF condition) and 2) re-feeding after a 24-h fasting period (FD24h + SM), which was examined
by continuous behavioral recording for 2 h. We then compare these patterns to those observed in free-feeding
(FF) animals. A set of graphic representations and indexes, drawn from these behaviors (latency, time-to-peak,
inter-peak intervals and the first intersection between feeding curves and those of other BSS-typical behaviors)
were used to describe the temporal structure and sequential relationships between the pigeon's BSS components.
Cramér–von Mises-based statistical procedures and bootstrapping-based methods to compare pairs of complex
behavioral curves were described and used for comparisons among the behavioral profiles during the free-
feeding recordings and after fasting- and SM-induced BSS. FD24h + SM- and SM + FF-induced feeding were
consistently followed by a similar sequence of increased bouts of drinking, followed by preening and then
sleep, which were significantly different from that of FF birds. The sequential and temporal patterns of the
pigeon's BSS were not affected by differences in food intake or by dissimilarity inmotivational content of feeding
stimuli. The present data indicated that a BSS pattern can be reliably evoked in the pigeon, in a chronological
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succession and sequence that strongly resembled that observed in rodents and primates. This pattern can be
quantitatively described and compared using different suitable and coordinated behavioral measures, enabling
further studies on the comparative and evolutionary aspects of the mechanisms that shape the post-
consummatory behavioral flux in amniotes.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Feeding behavior was followed by conspicuous metabolic/thermal
changes (the thermal effect of feeding or “specific dynamic action”,
[1,2]) which is a functional trait that is widely shared by vertebrates
and invertebrates. Beyond the robust changes inmetabolic and gastroin-
testinal functions, the postprandial state inmammalswas also associated
with intense modifications in cardiovascular (e.g., [3,4]), renal (e.g., [5]),
and HPA activity [6], which are thought to be of relevance as risk factors
for cardiovascular diseases and diabetes (e.g., [7–9]).

Thebehavioral counterpart of thesephysiological changes is a remark-
able sequence of maintenance (grooming and preening) behaviors and
then sleep/rest, which are known as the behavioral satiety sequence
(BSS, [10–12]). Water intake is a major (although not compulsory) com-
ponent of the periprandial events in mammals [13–15], while post-meal
quiescence was observed in invertebrates (e.g., Caenorhabditis elegans,
[16]) as well as in vertebrates, including rats (e.g., [17,18]), mice
(e.g., [19]), rhesus monkeys [20] and humans [21–23]. Most studied in
the rat, the temporal patterns and sequential arrangement of the BSS
components are thought to reflect the natural and physiological process
of satiety and have been used in the last four decades as an important
method to evaluate the behavioral selectivity and specificity of changes
in food intake induced by drugs or changes in the palatability of foods
(e.g., [10–12,24,25]). Thus, measures of changes in the temporal and
sequential relationships among BSS components may be valuable
as tools to dissect the functional interactions between systems related
to energy homeostasis, hydrosaline balance and sleep–waking states.

Although some attributes of sleep, feeding and drinking behavior
control systems appear to be phylogenetically conserved in amniotes
(e.g., [26–30]), the relationships between these behaviors as parts of
the feeding and post-prandial continuum are mostly unknown in non-
mammalian species. Quantitative descriptions of postprandial behaviors
in vertebrate taxa other than rodents could enable further studies on the
comparative and evolutionary aspects of themechanisms that shape the
post-consummatory behavioral flux. Birds show intense postprandial
changes in thermal and metabolic indices [2,31–33], and these changes
were associated with increases in gastrointestinal distension in pigeons
(Columba livia) [34,35]. Fasting-induced feeding is followed by increased
drinking and then, within 30–45 min, by intense sleep-like episodes
that exhibit EEG patterns that are comparable to spontaneous sleep in
this species [30,36,37].

In addition to being habitual subjects in the neurobiology lab (and
thus possessing abundant documentation on their behavioral, neuroan-
atomical and neurochemical brain attributes), feral rock pigeons are
relatively free from artificial selection for particular growing or feeding
traits and may be relevant to comparative functional studies on the
relationships between feeding, drinking and sleep behaviors in the
context of the BSS. We have recently shown that an ongoing, tonic
and inhibitory influence of central 5-HT circuits may integrate feeding,
drinking and resting behaviors in pigeons, so that feeding-induced
5-HT1A-receptor-mediated changes in the activity of central serotoner-
gic neurons induced drinking and sleep behaviors [30,38] in a pattern
that resembled the rodent BSS. However, a detailed description and
the tools available for the study of satiety-like sequences are lacking
in pigeons. In the present report, we sought to describe the postprandial
behaviors after fasting and palatable food feeding and to develop indi-
ces and statistical behavioral approaches to assess the sequential and
temporal structures of postprandial behaviors that allow for studies
on BSS in pigeons. In companion papers, the calibration of a palatable
food-based test protocol and the effects of hyper- and hypophagy-
inducing serotonergic drugs and neuropeptides on the pigeon's BSS are
examined.

2. Material and methods

2.1. Animals

All of the experimental procedures described belowwere conducted
in strict adherence to the National Institutes of Health guide for the care
and use of Laboratory animals (NIH Publications No. 8023, revised
1978) and were approved by the local Committee for Ethics in Animal
Research (CEUA–UFSC, protocol: PP00133/2007 and PP00524/2010).
Adult domestic pigeons (C. livia of both sexes, 360–520 g bw, raised at
the central vivarium of the Universidade Federal de Santa Catarina)
that were brought to the lab vivarium and maintained in individual
cages at a temperature of 23–25 °C on a 12:12 light–dark cycle (lights
on at 07:00 a.m.; fluorescent day-light lamps, resulting in 80–90 lx
light intensity) and with free access to food (pigeon chow, formulation
for growing birds, SUPRA Ltda, Itajaí, SC, referred to here as regular
chow, RC) and tap filtered water were used throughout the experi-
ments. The pigeons were adapted to lab conditions for at least 10 days.
In the week preceding the experiments, the pigeons had access (for
90 min in 3 alternated days in their own home cage) to a seed mix-
ture (SM), consisting of oatmeal (Avena sativa, 57%), millet (Panicum
millaceum, 30%) and sunflower seeds (Helianthus annuus, 13%). This
mixture was shown in preliminary tests to be highly palatable to the
pigeons: it evoked prompt and intense intake and was preferred by
the pigeons, compared to the RC.

2.2. Behavioral and ingestive recordings and analysis

The experiments were conducted in the bird's own home cage. After
presentation of the food in any protocol, digital video recordings
(Microsoft®, VX80)were continuously taken from the bird (for different
periods of time and specified at each experiment described below). The
latency to the first event, and the duration and frequency of drinking,
feeding, preening, locomotor/exploratory and sleep behaviors were
scored using the EthoWatcher® software ([39]; which is freely available
atwww.ethowatcher.ufsc.br). These behavioral units, defined in Table 1,
have been previously described (e.g., [38,40]) and are shown in amovie
clip available on the internet ([41]; http://dx.doi.org/10.1016/j.regpep.
2007.12.003). Transcriptions of these recordings were carried out by
3 observers (WAS, ACA, GIH, Kappa's inter-observer concordance
index = 0.80; Kappa's intra-observer concordance index: WAS =
0.93, ACA = 0.94, GIH = 0.80). SM and RC foods were delivered in
identical opaque plastic cups and water was provided in plastic bottles.
Food and water were weighed after different periods of time according
to the experiment. The experiments were performed between 13:00
and 17:00 h during the illuminated part of the light/dark cycle when
the ingestive behavior was usually higher than that observed in the
morning hours [42,43].

The behavioral scores for each consecutive 4-min time bin (total
duration and frequency of each behavior in a given bin) were used
to describe the temporal profile of the behavioral change. Typical
durations of each of the recorded behaviors varied widely: drinking
bouts lasted up to 24 s in a free feeding condition, while sleep bouts
could reach up to 210 s under the same conditions (see Fig. 2E–H). To
better depict the temporal relationships between these behaviors, the

http://www.ethowatcher.ufsc.br
http://dx.doi.org/10.1016/j.regpep.2007.12.003
http://dx.doi.org/10.1016/j.regpep.2007.12.003


Table 1
Behavioral catalog.

Behavior Description

Feeding A bout of pecking movements directed at the feeder, including brief (b or =3 s) inter-pecking intervals, during which the animal adopted an
upright posture, showed swallowing and beak movements, and then started pecking again.

Drinking Pigeons drink by suction of water through the beak; a drinking bout was recorded for the interval between each beak immersion in and its
removal from the water reservoir's spout.

Preening Rubbing the beak or lower limbs over or between the feathers.
Exploratory/locomotor Locomotion (at least a complete hind limb step, jumps to or from the perch) and exploratory behavior (angular or ballistic, to-and-fro and stretching

movements of the head and neck directed in every direction, occurring in the absence of locomotion, known as peeping behavior [64]) were recorded.
Alert immobility A quiet upright waking posture with the animal standing on both legs, with both eyes showing fast blinks, but no head/body exploratory movements.
Sleep Sleep-like behavior was recorded when the pigeon showed chest and neck plumage puffed up and one or both eyelids showing slow blinks or

remaining steadily closed for at least 3 s. This may occur with the animal in a crouching position or standing on one or both legs. This category
included both drowsiness and sleep states, which have been observed after large, fasting-evoked meals and were associated with slow wave
sleep-typical signals (SWS), with a low-frequency, high-amplitude EEG and decreased EMG activity and rapid eye movement sleep (REMS):
characterized by a posture identical to the SWS with sporadic and sudden downward head drops followed by slow return to an upright posture,
closed eyes (one or both), low-activity EMG, fast and high amplitude EOG activity indicative of large eye movements, and a high-frequency
low-amplitude EEG [30,38,42].
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raw data of each animal were expressed as the percentage of time spent
in a given behavior (in each 4-min bin) relative to the total duration of
the behavior in the total recording period. This was calculated using the
formula RDi bin = (ADi bin ∗ 100) / TD, where RDi bin is the relative
duration of a given behavior in the ith time bin, ADi bin is the absolute
duration (in seconds) of that behavior in the ith time bin and TD is the
total duration of that behavior in the total recording period sleep.

From the individual raw and RD data, the scores for each animal
were calculated for indices related to the temporal structure of these
behaviors and the sequential relationships between them. These indices
included the latency for each behavior (the time, in seconds, to the first
occurrence of the behavior) and the time-to-peak (TTP) of each behavior
(the time bin when the behavior first reached its maximum duration in
the session). These indices were intended as measures of the absolute
position in time and in sequence of each behavioral item, aiming to
assess potential changes in their order and time of appearance after
food presentation (latency) and the time to reach its maximum (TTP).

To measure changes in the temporal relationships between feeding
and BSS behaviors, we measured the inter-peak interval (IPI) between
the peaks of feeding and drinking, feeding and preening, and feeding
and sleeping (in seconds). To verify for changes in the relative preva-
lence of feeding upon other behaviors throughout the recording period,
we calculated the first intersection (ItS) between feeding and drinking,
between feeding and preening, and between feeding and sleeping
curves. The ItS was calculated from the RD transformed data, as the
first time bin when the relative duration of feeding was 5% lower than
that of drinking, preening or sleeping. We also scored an intersection
when the relative durations of the 2 behaviors were equal to each
other for at least 5 consecutive time bins.

2.3. Data analysis and graphical presentation

In all of the experiments, food andwater intake, aswell as the behav-
ioral data (hourly sums or totals for the entire recording sessions) were
analyzed using 2-way repeated-measures ANOVA, with the experimen-
tal conditions as factor and the different periods of time (1st and 2nd
hours of recording, consecutive re-tests) as repeated measures (using
Statistica 8.0, Statsoft, Tulsa, Oklahoma, USA) followed by post-hoc
Duncan's tests when appropriate. Most of the behavioral indices failed
to show a significant Gaussian distribution (as indicated by Shapiro–
Wilk's W-test for sample normality of distribution) and some of the
tests also failed to be homoscedastic within a given time bin (as judged
by applying a Brown–Forsythe modification of the Levene test to the
data). Thus, latency, IPI, ItS and TTP data were analyzed using a
non-parametric test (Kruskal–Wallis ANOVA by ranks) followed
by a post-hoc Mann–Whitney U-Test when appropriate. Pearson's
product–moment tests were used to probe for correlations between
intake and behavioral data.
A graphical representation of the temporal changes in the recorded
behaviors used the medians (minus 25% and plus 75%) of the relative
durations of feeding, drinking, preening and sleeping in each experi-
mental group (the other behaviors were removed for the purpose
of clarity). Also in the interest of clearness, a least square estimate
(distance-weighted least squares fitting) for each curve was plotted in
these graphs. The curves were calculated using a stiffness parameter
(=zero) and a 2nd order polynomial regression to avoid excessive
smoothing of the raw data.

The use of parametric or non-parametric ANOVA approaches to com-
pare pairs of curvesmay be troublesome, particularlywhen numerous re-
peated measurements describing the treatment effects are unidentified
nonlinear functions of, e.g., time. In this report, comparisons between
two curves of a given behavior throughout the recording period (e.g.,
free-feeding versus 24-h fasting condition) were performed using
the Cramér–von Mises statistic procedure (HL-test, [44]) with
bootstrapping. Briefly, this method tested for differences between two
regression curves (e.g., curves that represented the population of
4-min-bin data of the controls and of a given experimental group over
2 h). This test assumes that Y and Z are, respectively, the population of
scores in two experiments (e.g., Y = durations of feeding in free-
feeding animals, and Z = durations of feeding in pigeons presented
with SM food) at the different periods of time (X). In the durations of
feeding, Y and Z, are assumed as being functions of X, such as f(X) and
g(X). Comparison of the two treatment effectswas equivalent to checking
if g(X) = f(X), and theHL-test is used to test for an statistically significant
similarity between these two functions. The null hypothesis was rejected
if the proportion of bootstrap statistics (5000 bootstrapping samples in
the present study) exceeding HL was less than or equal to the nominal
level. For a more detailed description of this test, please refer to the Sup-
plementary material, Appendix.

2.4. Evoking the BSS: Ingestive and behavioral responses to a 24 h-food
deprivation period and to a “palatable” food

To probe for different protocols to observe the sequences of post-
prandial behaviors, we compared the intake and behaviors in free-
feeding animals to those observed in two conditions of increasingly
highermotivation to feed. Six pigeons (5males, 1 female, 340–400 g bw
at the beginning of the experiments) were adapted to lab conditions for
15 days prior to the experiments. Their behaviorswere recorded in their
home-cages for 2 consecutive hours (from 14:00 to 16:00 h) in 3
sessions (sessions 7 days apart and distributed to the birds according
to a Latin-squared design) in the following conditions: 1) the pigeons
were maintained in a free-feeding regimen (for at least 7 days) and
had their RC food cup replaced by a new cupwith fresh RC (FF sessions);
2) the pigeons were in a free-feeding regimen (for at least 7 days) and
had their RC food cup replaced by a new cup with fresh RC and were
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simultaneously presented to a similar cup with fresh PF (FF + SM
sessions); and 3) the pigeons were deprived of food for 24 h and then
given access to cups containing fresh RC and SM (FD24h + SM sessions).
Food andwater were weighed 1 and 2 h after food presentations and the
PF cup was removed at the end of the 4th hour.

3. Results

In experiment 1, food intake increased significantly after SM plus RC
presentation to free-feeding pigeons (FF + SM) as well as to pigeons
Fig. 1. Food/water intake (A–B) and duration (C–H) of ingestive and non-ingestive behaviors in
ture (FF + SM), and in 24-h-food deprived animals presented to the seedmixture and regular
the FF data in the 1st recording hour. (#) p b 0.05 compared to the FD24h + SD results.
subjected to 24-h food deprivation (FD24h + SM; nutritional state
effect: F(2,30) = 8.53, p = 0.001; time after food presentation effect:
F(1,30) = 72.61, p b 10−6; interaction: F(2,30) = 17.37, p b 10−6)
(Fig. 1A). Total food intake increased in the 1st hour and was similar
to FF controls in the subsequent period in both conditions. SM intake
in the 1st and 2nd hourwas significantly higher than the RC in all nutri-
tional conditions (data not shown). Food intake after FD24h was also
higher compared to that observed in FF + SM animals. No differences
in water intake were observed across the different nutritional states or
among the different hours of recording (Fig. 1B). Significant changes
free-feeding pigeons (FF), in free-feeding pigeons after food presentation to the seedmix-
chow (FD24h + SM). Data were expressed as themean ± SEM. (*) p b 0.05 compared to
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in the duration of feeding [time period: F(1,30) = 12.44, p b 0.001;
nutritional state: non-significant (NS); interactions: F(2,30) = 5.32,
p = 0.01], and drinking [time period: F(1,30) = 10.25, p b 0.003;
nutritional state: NS; interactions: F(2,30) = 3.29, p = 0.05] were
observed.

In the FF + SM and FD24h + SM conditions, feeding and drinking
were significantly higher than those of the FF animals and were also
higher in the 1st compared to the 2nd hour (Fig. 1C, D). Sleep duration
[nutritional state: F(2,30) = 4.61, p = 0.01; time period: F(1,30) =
7.55, p b 0.01; interactions: (NS)] increased only in the FD24h + SM
animals in the 2nd (as compared to FF pigeons), while preening,
exploratory/locomotor, and alert immobility were not significantly
changed (Fig. 1E–H; Table 2). Pearson's test indicated a strong positive
correlation between total food intake and sleep duration (r2 = 0.72, in
the 1st hour after food presentation) only in the FD24h + SM animals.

Latency to start feeding [Kruskal–Wallis test; H(2,18) = 14.76, p =
0.0006], preening [H(2,18) = 5.49, p = 0.05] and sleeping [H (2,18) =
11.28, p = 0.003] was affected by the nutritional state while latency to
drink remained unchanged (Fig. 2A). Feeding started significantly earlier
in the FF + SM and FD24h + SM animals compared to the FF animals.
Table 2
Ingestive and behavioral responses to fasting and palatable food in pigeons.

Free-feeding (FF) (n = 6)

Food intake (g/100 g bw)
1st hour 0.89 ± 0.34
2nd hour 0.75 ± 0.45

Feeding (duration, s)
1st hour 292 ± 142
2nd hour 436 ± 369
Latency (s) 2321 (529, 2710)c

TTP (bins) 12.5 (12, 3)

Water intake (ml/100 g bw)
1st hour 1.11 ± 0.32
2nd hour 1.06 ± 1.08

Drinking (duration, s)
1st hour 25.56 ± 8.46
2nd hour 17.05 ± 13.59
Latency (s) 863 (442, 2053)
Time to peak (bins) 8.50 (3.00, 9.00)

Preening (duration, s)
1st hour 758 ± 219
2nd hour 715 ± 534
Latency (s) 304 (143, 529)
TTP (bins) 4 (4, 8)

Sleep (duration, s)
1st hour 516 ± 125
2nd hour 470 ± 247
Latency (s) 870 (184, 1281)
TTP (bins) 7 (6, 9)

Exploratory (duration, s)
1st hour 1908 ± 166
2nd hour 1845 ± 463

Alert immobility (duration, s)
1st hour 81 ± 53
2nd hour 30 ± 57
IPI feeding/drinking (bins) −4 (−12, −2)
IPI feeding/preening (bins) −7.5 (−8,−5)
IPI feeding/sleep (bins) −6,5 (−7,−4)
ItS feeding/drinking (bins) 4 (2, 9)
ItS feeding/preening (bins) 1.5 (1, 3)
ItS feeding/sleep (bins) 4 (1, 6)

a p b 0.05 as compared to FF data in the 1st recording hour.
b p b 0.05 as compared to FD24h + SD results.
c Values of latency, inter-peak interval (IPI), time-to-peak (TTP) and intersections (ItS) are e

behaviors as expressed as mean ± SEM.
Latency to the 1st preening episode was increased in the FD24h + SM
animals, and the 1st sleep episode occurred later in the FF + SM and
FD4h + SM pigeons compared to the FF pigeons. Moreover, FD24h +
SD animals increased their latency to start preening and decreased
their latencies to start sleepingwhen compared to the FF + SManimals.
No significant differences between the latencies for feeding, drinking,
preening and sleep were observed in the FF animals, while feeding
occurred significantly earlier thandrinking and sleep in the FF + SMan-
imals [H(3,24) = 14.85, p = 0.002] and earlier than drinking, preening
and sleep in the FD24h + SD animals [H(3,24) = 13.83, p = 0.003]
(Fig. 2A, Table 2).

The amount of time to reach the peak (TTP) of feeding [H(2,18) =
12.12, p = 0.002], preening [H(2,18) = 10.21, p = 0.006] and sleep
[H(2,18) = 9.18, p = 0.01] after food presentation was also changed
in the different nutritional states (Fig. 2B). TTP decreased for feeding
and increased for preening. Furthermore, sleep increased significantly
for all conditions compared to the FF animals, while drinking reached
its maximum at similar times in all conditions. Compared to the
FF + SM animals, the time to reach preening peak increased signifi-
cantly in the FD24h + SD animals, and their latencies for the peak of
FF + seed mixture (n = 6) 24-h food deprivation (n = 6)

2.88 ± 1.08a,b 3.99 ± 1.17a

0.23 ± 0.20 0.23 ± 0.19

1064 ± 75a 818 ± 349a

118 ± 23a 50 ± 65a

185 (144, 221)a 56 (39, 61)a

2.5 (3, 2)a 2 (1, 3)a

2.01 ± 1.31 1.89 ± 1.05
0.46 ± 0.37 1.80 ± 1.00

48.31 ± 21.75a 43.74 ± 24.99a

5.48 ± 5.05 24.66 ± 24.02
1387 (881, 2306) 822 (580, 3065)
8.0 (4, 12) 5 (4, 6)

311 ± 223 608 ± 772
496 ± 369 374 ± 359
251 (98, 694) 986 (863, 1025)a

13 (12, 14)a 9.5 (7, 12)a

276 ± 441 520 ± 405
669 ± 599 1512 ± 807
2880 (2533, 4560)a 1854 (1263, 2131)a

19.5 (16, 22)a 10 (7, 14)a

1783 ± 513 1733 ± 408
2062 ± 432 1415 ± 531

0.0 26 ± 41
0.0 95 ± 75
2.5 (2, 8)a 2.5 (1, 4)a

11 (9, 12)a 6.5 (5, 10)a

17 (7, 19)a 8.5 (6, 11)a

4 (4, 10) 4 (3, 4)
6.5 (5, 13)a 8.5 (7, 9)a

12 (10, 16)a 9.5 (7, 14)a

xpressed as medians (minus 25% and plus 75%), while food/water intake and duration of



Fig. 2. Latency to thefirst occurrence (A), time-to-peak (B), intersection point (C), and inter-peak intervals (D) of ingestive andnon-ingestive behaviors in free-feeding pigeons (FF) in free-
feeding pigeons after food presentation to the seed mixture (FF + SM) and in 24-h-food deprived animals presented to the seed mixture and regular chow (FD24h + SM). Data were
expressed as the median (symbols) plus the 75th percentile and minus the 25th percentile (whiskers). (*) p b 0.05 compared to the FF data and (#) p b 0.05 compared to the feeding
score in the same experimental condition.
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sleeping were decreased. The peaks of drinking, preening and sleep
behaviors occurred significantly later than the peaks of feeding in
FF + SM [H(3,24) = 13.36, p = 0,004] and FD24h + SD animals
[H(3,24) = 13.58, p = 0,003], and the peaks of preening and sleep
appeared significantly after the peaks of drinking in both contexts
(Fig. 2B, Table 2).

Despite the significant changes in feeding latency and time to the
feeding peak, the intersection point (ItS) between feeding and drinking
was not changed in the different experimental conditions (Fig. 2C). How-
ever, ItS of the feeding–preening curves [H(2,18) = 8.98, p = 0.01] and
feeding–sleep curves [H(2,18) = 11.20, p = 0.003] was significantly
postponed in both FF + SM and FD24h + SD conditions compared to
the FF animals (Figs. 2C, 4E–G); the ItS between feeding and drinking
curves occurred significantly earlier than the ItS of feeding and sleep in
the FF + SM and in the FD24h + SD but not the FF birds. The inter-
peak intervals (IPI) between feeding and drinking [H(2,18) = 6.82,
p = 0.03], between feeding and preening [H(2,18) = 12.25, p =
0.002], and between feeding and sleep [H(2,18) = 11.93, p = 0.002],
which were all negative and similar in the FF animals, were significantly
changed in the FF + SM and FD24h + SD pigeons (Fig. 2D and Table 2).

The temporal progression and peaks of the different behaviors
throughout the recording sessions are depicted in Figs. 3 and 4A–G as
the distance-weighted least squares line curves; the smoothing effect
of these procedures on feeding and sleep individual data and in the
medians can be observed in Fig. 3. Comparisons between pairs of curves
of behaviors in different nutritional conditions using the Cramér–von
Mises-based H-L test (Fig. 4A–D) indicated significant differences
in the feeding curves of FF + SM (p b 0.0001) and FD24h + SD
(p b 0.0001) animals compared to FF animals, but the FF + SM and
FD24h + SD curves were similar (p b 0.479). There were no significant
differences in the drinking curves in the different nutritional conditions,
while the preening curves of FF + SM (p b 0.0001) and FD24h + SD
(p b 0.0001) animals were significantly different from the FF animals.
The sleep behavior curves of the FF + SM (p b 0.027) and FD24h + SD
(p b 0.0001) pigeons were significantly different from that of the FF
animals, and the FF + SM sleep curve was also different from that of
the FD24h + SD animals (p b 0.0001). Comparisons using Cramér–
von Mises test are further described in the Supplementary material
(Appendix 1).

The evolution of feeding, drinking, preening and sleeping curves in
each experimental condition is shown in Fig. 4E–G and is expressed
as the percentage of time spent in that behavior in each 4-min bin
relative to the total duration of the behavior. In these figures, the
point of intersection between the feeding and sleeping curves
(median minus 25% and plus 75% of 6 animals) is indicated, showing a
significant increase in the FF + SM and FD24h + SD conditions. A
noticeable peak of drinking appears after the first third of the feeding
curve in the FF + SM and FD24h + SD curves, while the preening
and sleep curves gradually waxes throughout the recording period,
resulting in peaks that are more evident in the last third of the record-
ings. Furthermore, as indicated by the analysis of the IPI, ItS and TTP
indices, the peaks of preening and sleep cannot be temporally segregated
(visually or statistically); and only the latency of the first sleep event was
significantly higher than that of preening. The individual data from the
only female in the experimental group did not differ significantly from
those of the 5 males (as judged by an outlier analysis using the group
means ± 2× standard deviation as the exclusion criterion), and thus,
they were included in the analyses.

4. Discussion

The analyses carried out for the total hourly pooled data indicated that
the intense bouts of feeding evoked by both the FF + SM and
FD24h + SM conditions affected drinking duration but failed to change
the total water intake as well as the duration of exploratory or preening
behaviors. Moreover, the time spent in the sleep behavior increased
significantly only in the FD24h + SM condition, despite the fact that
food intake in both conditions was distinctly different from the FF con-
trols. Accordingly, a significant positive correlation between food intake
and sleep duration was observed only in the FD24h + SM animals.
From these coarse analyses, the presence of a clear-cut BSS similar
to that of rodents [10,11,19] could not be easily perceived in pigeons.

image of Fig.�2


Fig. 3. Time course of the recorded behaviors during the 2 h subsequent to food presentation: each line represented the least square estimate (distance-weighted least squares fitting) for
themedian (filled circles,minus 25% and plus 75%) of the durations of each behavior (in seconds) of feeding, drinking, preening and sleeping in each experimental condition. Empty circles
represented the individual data of the subjects in each time bin.
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Furthermore, the relationship between the total food intake and magni-
tude of the subsequent resting state in the pigeon could not be fully com-
pared to those ofmammals. In rats, a positive correlation between the size
of ameal and the duration of the electrographic signals of sleep during the
following inter-meal interval has been shown [45,46]. However, food
deprivation for 3, 6 or 12 h in rats evoked significantly different 1-h
total food intakes and durations in feeding behavior in the early part of
the BSS 1-h test but failed to affect the total amount of resting, grooming
or exploratory behaviors compared to free-feeding rats eating a palatable
mash [47]. Thus, at least in the range of intakes evoked by short fasting
periods and presentation of palatable food, the magnitude of the post-
prandial signs in pigeons appeared to be more susceptible to differences
in meal size compared to rodents.

Conversely, the more fine-grained temporal/sequential descrip-
tion of these behaviors indicated that feeding after fasting, as well
as after the mere presentation of a palatable food to a free-feeding
animal, onsistently evoked sequential and temporal patterns of post-
consummatory behaviors in the pigeon that were similar to those
observed in primates and rodents. These animals showed definite post-
prandial sequences of increased drinking and preening and then
increased resting similar to the mammalian BSS. In contrast to the FF
animals, latency to drink and the peak of drinking were placed ahead
of feeding latency and of the feeding peak in FD24h + SM and
FF + SM animals, which was similar to the results for the preening
and sleep peaks. Thus, in both conditions, a definite, statistically verifi-
able sequence of feeding, drinking, preening and resting occurred. The
temporal relationships among the components of this sequence were
also changed in a similar fashion after fasting- and palatable food-
evoked feeding compared to FF animals. Drinking behavior peaks
increased at similar time intervals from the peak of feeding and crossed
the declining feeding curve after comparable periods of time. Drinking,
preening and sleep peaks occurred after feeding at equivalent time
intervals and were predominant over the curve of feeding behavior at
similar time points in both feeding-evoking protocols.

These data indicated that, beyond the differences in food intake and
in the magnitude of feeding and sleeping total durations, FD24h + SM
and FF + SM-evoked feeding was followed by a BSS-like pattern with
comparable sequential and temporal parameters. These findings sug-
gested that the mechanisms that establish the pace of BSS events in
pigeons may not be as affected by the differences in the amount of
food consumed or by the different motivational processes mediating
feeding consummatory responses, which are driven by the homeostatic
state (food reward in food-deprived pigeons) or by hedonic mecha-
nisms (in satiated animals). Thus, it is apparent from these data that
interconnected but distinct mechanisms control the magnitude of the
BSS components and their time course in the pigeon. Nevertheless,
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Fig. 4. Temporal changes in the recorded behaviors during the 2 h subsequent to food presentation: each line represented a least square estimate (distance-weighted least squares fitting)
for the median (minus 25% and plus 75%) of the durations of each behavior (in seconds, A–D) or of the relative durations (in % of each 4-min bin, E–G) of feeding, drinking, preening and
sleeping in each experimental condition. In A–D figures, the (*) indicated p b 0.05 in the Cramér–vonMisesH-L test compared to the FF data,while (#) indicated p b 0.05 compared to the
FD24h + SM animals. The shadowed regions in E, F and G indicated themedian (straight line) minus 25% (left dotted line) and plus 75% (right dotted line) for the intersections between
feeding and sleeping. In E–G, (*) denotes p b 0.05 compared to the FF data.
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similar to pigeons, the mere presentation of a palatable mash to free-
feeding rats increased feeding and evoked a noticeable BSS response.
However, different fasting conditions in rats (3, 6 or 12 h) produced
different feeding profiles and a delay in the BSS, as observed by the
occurrence of transition points between eating and resting, which were
postponed in food-deprived animals compared to non-deprived animals
[47]. Although, the total amount of postprandial sleep appeared to be
more sensitive to the food intake amount in pigeons compared to rats
(see above). In addition, the temporal structure of the BSS in rat appears
to bemore sensitive to different volumes of feeding compared to pigeons,
suggesting that mechanisms controlling the timing of BSS components
may be different in pigeons and rats.

Prandial drinking has been suggested to be an integral part of the
meal in rats [14] and accounts for nearly two-thirds of the daily total
fluid intake in humans and other mammals (e.g., [15,48–50]). Prandial
drinking is evoked by specific, pre-absorptive food-related signals in
rodents [13,51,52]. Peri- and postprandial drinking are frequently
recorded but usually not analyzed within the BSS context in rodent
studies, most likely due to the low probability of occurrence of this
behavior during the tests [10,47,53]. A low incidence of short drinking
episodes was also observed after FD24h + SM and FF + SM-evoked
feeding in pigeons and these procedures failed to change the total hourly
water intake. Furthermore, the high positive correlation between 24-h
food intake and water intake observed in pigeons (e.g., [43,54]) could
not be demonstrated in our 2-h long recordings. Nevertheless, a detailed
analysis of the drinking and feeding in free-feeding pigeons [55] revealed
that 50% of the total time spent drinking occurredwithin 1 min following
a feedingbout and that 70%of all drinking occurredbetween3 minbefore
and 3 min after feeding. Furthermore, the total duration of drinking
increased, and a distinctive peak of drinking was detected at 12–24 min
after the test foodwas offered. A rather rigid temporal link between feed-
ing and drinking behaviors has been suggested by the stability of the
latency to drink, the drinking TTP, the feeding–drinking ItS and the
feeding–drinking IPI indices in both high-feeding conditions. It is appar-
ent that a feeding episode could concentrate the drinking events in the
late, waning period of the feeding event and that the mechanisms that
establish the pace of the feeding–drinking relationships during the
pigeon's BSS are not affected by different food intakes or by different
feeding-inducing stimuli.

Importantly, the peaks of feeding, drinking and sleeping, but not of
preening, are noticeably different in the high intake conditions com-
pared to the FF conditions: a conspicuous early peak of preening was
only observed in the FD24h + SM BSS curves. Nevertheless, the use of
the IPI, ItS and TTP indices helped to reveal significant feeding-evoked
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changes in the subsequent preening behavior in FF + SM, which were
not apparent from the mere observation of the line plots or raw data.
The results derived from these analytical tools indicated that preening
may be an integral component of the BSS in pigeons. The close temporal
proximity between peaks of preening and of sleeping may add support
to the notion that preening may be a comfort behavior in birds and is
associated with the anticipation of reinforcing (pleasant) events or
with states of relaxation and de-activation [56–59]. Together with
the evidence that fasting-induced feeding is followed by a period of
low-frequency high-amplitude hippocampal EEG typical of SWS
and drowsiness states, as well as of paradoxical sleep periods in the
pigeon [36,37], the present data suggested that the preening and
sleeping scores may be both associatedwith a general resting or relaxed
state. Although preening is a major component of the pigeon's BSS,
its corresponding behavior in rats (grooming) showed a more separate
discernible peak amidst the waning of feeding and waxing of resting
(see, e.g., [10,11,53]). Moreover, grooming occurred after eating and
before resting, which was shown in initial reports of its occurrence as a
major postprandial event in rodents [60,61].

Comparisons between the behavioral curves based on Cramér–von
Mises statistics (the H-L test, [44]) helped to extend these conclusions
in interestingways. Despite differences in the total food intake between
the FF + SMand FD24h + SM conditions, these tests indicated that the
feeding curves were the same in both experiments. In addition, these
tests were sensitive to the effects of the FF + SM-induced feeding on
the preening and sleep behaviors evoked (which were dismissed by
an hourly analysis). These results provided support to the findings of
the IPI, ItS and TTP measures, which cross-validated H-L test findings.
Comparing the curves of the ongoing behavioral data poses statistical
challenges, including incomplete longitudinal observations, small
samples, and inter-subject variability in temporal patterns. The Cramér–
von Mises statistical approach did not require the limiting normality
assumptions of other commonly used tests, which might result in a loss
of efficiency and lead to the rejection of meaningful or useful data. In
addition, the bootstrap method used in this study was a nonparametric
approach and thus avoided the usual underlying distribution assump-
tions, demonstrating excellent coverage probability for small sample
sizes [44,62,63]. Thus, it appears that this procedure may be suitable to
interpret complex curves derived from behavioral flux and to detect
significant behavioral changes that the coarse-grained temporal analysis
and two other popular statistical tests (Wilcoxon and T-tests, see Appen-
dix 1 in the Supplementary material) failed to discover.

In conclusion, the present data indicated that a BSS pattern could be
reliably evoked in the pigeon in a chronological succession and
sequence that strongly resembled that observed in rodents, and that
this pattern could be quantitatively described and compared by differ-
ent, suitable and coordinated behavioral measures. However, before
the present observations can fuel studies on the comparative, evolution-
ary aspects of the mechanisms that shape the post-consummatory
behavioral flux, systematic studies aimed at behavioral calibration
(e.g., [53]) and pharmacological validation (e.g., [10]) must be carried
out for the pigeon's BSS. These experiments will be reported in follow-
ing companion papers to reveal potentially conserved and species-
specific traits of the mechanisms controlling postprandial behaviors in
amniotes.
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