A Note on Pseudo-reflections

Ofer Gabber

Abstract

In this note, we show that if V is a finite dimensional vector space equipped with a non-degenerate bilinear form, and one has a set of pseudo-reflections on V, preserving the form and having no non-zero common fixed vector, then the group G generated by this set is 'sufficiently large' in the sense that for every linear transformation $T: V \rightarrow V$, there exists an element $g \in G$ such that $g-T$ is invertible.

Recall (cf. [1], Déf. 1 page 66) that if D is a (skew-)field and V is a D vector space, then a linear transformation $T: V \rightarrow V$ is called a pseudo-reflection iff rank $\left(T-\mathrm{id}_{V}\right)=1$, i.e. iff T is of the form $x \mapsto x+f(x) \nu$ for some $\nu \in V-\{0\}$ and $f \in V^{v}-\{0\}$. [Here V^{v} denotes the right D-module $\operatorname{Hom}_{D}(V, D)$ (on which the right D action is defined by $\left.f d=(\nu \mapsto f(\nu) d) \forall f \in V^{v}, \forall d \in D\right)$.] Clearly f (resp. ν) is uniquely determined by T up to right (resp. left) multiplication by an element of D^{*}.

In this note, we consider the following situation $\mathrm{B}: V$ is of dimension n over D, and $T_{i}: V \rightarrow V(1 \leqslant i \leqslant n)$ are invertible pseudo-reflections s.t. if we write $T_{i}=\left(x \mapsto x+f_{i}(x) \nu_{i}\right)$ then $\left(\nu_{i}\right)_{1 \leqslant i \leqslant n}$ is a basis of V and $\left(f_{i}\right)_{1 \leqslant i \leqslant n}$ is a basis of V^{v}.

We shall use the following notations: \underline{n} is the set $\{1,2, \ldots, n\}=\{k \in \mathbb{Z} \mid 0<k \leqslant n\}$, and R is the set of pairs $(A,<)$, where A is a subset of \underline{n} and $<$ is a strict total order on A. Equivalently (up to a canonical bijection) R can be described as the set of pairs (k, $\left(i_{1}, \ldots, i_{k}\right)$) where $0 \leqslant k \leqslant n$ and the $i_{j} \mathrm{~s}(1 \leqslant j \leqslant k)$ are distinct elements of n.

For any element $(A,<)$ of R, we consider the linear transformation $T_{(A,<)}={ }^{\text {def }} \prod_{a \in A} T_{a}$, where the product of the $T_{a} s$ is taken according to the total ordering $<$ of A, in other words if we use the second description of R then $T_{(A,<)}=T_{i_{1}} \cdot T_{i_{2}} \cdots \cdot T_{i_{k}}$.

Our main result is the following:
Theorem 1. (Under situation B.) If $S: V \rightarrow V$ is any linear transformation, then
(i) there exists an element $(A,<)$ of R s.t. the transformation $S-T_{(A,<)} \in \operatorname{End}(V)$ is invertible*.
(ii) There exists an element $(A,<)$ of R s.t. $S T_{(A,<)}-1$ and $T_{(A,<)} S-1$ are invertible.
(iii) If D is commutative and $D \hookrightarrow \bar{D}$ is an algebraic closure of D, and $\lambda \in \bar{D}^{*}$, then there exists an element $(A,<) \in R$ s.t. λ is not an eigenvalue of $S T_{(\mathrm{A},<)}$.

Proof. (ii) \Rightarrow (iii): Apply part (ii) with S replaced by $\lambda^{-1} S$. (i) \Rightarrow (ii): We notice that $T_{i}^{-1}=\left(x \mapsto f_{i}(x) \alpha_{i} \nu_{i}\right)$ where $\alpha_{\mathrm{i}}=\left(1+f_{i}\left(\nu_{i}\right)\right)^{-1} \in D^{*}$, so that $\left(V, T_{1}^{-1}, \ldots, T_{n}^{-1}\right)$ still satisfies the hypotheses of B. Applying (i) to ($V, T_{1}^{-1}, \ldots, T_{n}^{-1}$), we get that there exists $(A,<) \in R$ s.t. $S-T_{i_{1}}^{-1} \cdots T_{i_{k}}^{-1}=S-\left(T_{i_{k}} \cdots \cdot T_{i_{1}}\right)^{-1}$ is invertible, i.e. s.t. $S \cdot T_{i_{k}} \cdots \cdot T_{i_{1}}-1_{V}$ is invertible, equivalently ($T_{i_{k}} \cdots \cdots T_{i_{1}}$) $S-1_{V}$ is invertible.

The proof of Theorem 1(i) will be based on the consideration of a 'largest invertible principal minor'. We wish to find an element $(A,<) \in R$ s.t. $S^{\prime}-\left(T_{(A,<)}-\mathrm{id}_{V}\right)$ is invertible, where $S^{\prime}={ }^{\text {def }} S-\mathrm{id}_{V}$, i.e. s.t. $\forall \nu \in V-\{0\}$ we have that $S^{\prime} \nu \neq T_{(A,<)} \nu-\nu$. Since f_{1}, \ldots, f_{n} form a basis of V^{v}, we can speak about the dual basis $\nu_{1}^{\prime}, \ldots, \nu_{n}^{\prime}$ of V defined by the condition that $f_{i}\left(\nu_{j}^{\prime}\right)=\delta_{i j}$. We represent $S^{\prime}: V \rightarrow V$ by a matrix M [as in [3] Chapter XIII, Section 3] by taking $\nu_{1}^{\prime}, \ldots, \nu_{n}^{\prime}$ to be a basis for the source space, and ν_{1}, \ldots, ν_{n} to be a

[^0]basis for the target space. We have $S^{\prime} \nu_{j}^{\prime}=\sum_{i} M_{i j} \nu_{i}$, i.e.
$$
S^{\prime} \nu=\sum_{i, j} M_{i j} f_{j}(\nu) \nu_{i} \quad \forall \nu \in V
$$

For every subset $I \subset \underline{n}$ we can consider the square $I \times I$ submatrix m_{I} of M obtained by restricting the value of the indices (i, j) to be in $I \times I$. Let $P(\underline{n})_{\text {inv }}=\left\{I \subset \underline{n} \mid M_{I}\right.$ is invertible\}; we partially order $P(\underline{n})_{\text {inv }}$ by inclusion. The ring Mat ${ }_{\varnothing}(D)$ of \varnothing by \varnothing matrices with entries in D, whose underlying set is [by definition, compare [3, XIII § 1] and [2, Section 10, No. 1-7]] the set of functions from $\varnothing \times \varnothing$ to D, has exactly one element (namely the function [with graph] \varnothing) which is thus both the identity element and the zero element, and hence every element in that ring is invertible. Hence M_{\varnothing} is invertible, i.e. $\varnothing \in P(\underline{n})_{\mathrm{inv}}$, so $P(\underline{n})_{\mathrm{inv}}$ is non-empty and hence admits a maximal element \bar{I}.

Let $\mathscr{L}(M): D^{n} \rightarrow D^{n}$ be the linear transformation represented by M. [Thus the choice of the basis (ν_{i}^{\prime}) (resp. $\left(\nu_{j}\right)$) for $V_{\text {source }}\left(\right.$ resp. $V_{\text {target }}$) allows us to 'identify' S^{\prime} with $\mathscr{L}(M)$.] Thus the composition $D^{n} \rightarrow{ }_{S(M)} D^{n} \rightarrow_{\mathrm{pr}_{I}} D^{\bar{I}}$ maps $D^{\bar{I}}$ (regarded as a subspace of D^{n}) isomorphically onto $D^{\bar{I}}$, and thus the linear subspace $W={ }^{\operatorname{def}} \operatorname{Ker}\left(\operatorname{pr}_{\bar{I}} \circ \mathscr{L}(M)\right) \subset D^{n}$ is such that $D^{n}=D^{\bar{i}} \oplus W$. In other words, if C denotes $\underline{n}-\bar{I}$, pr_{C} induces an isomorphism $W \rightarrow{ }^{5} D^{C}$. Composing the inverse of this isomorphism with $\mathscr{L}(M)$ we get a map $D^{C} \rightarrow_{\zeta}^{-1} W \rightarrow{ }_{\mathscr{L}(M)} D^{C}\left(\subset D^{n}\right)$. Let N be the $C \times C$ matrix representing the last linear transform.

Claim. For every non empty subset $J \subset C$, the matrix N_{J} is not invertible.
Proof. If N_{J} were invertible, we claim that it would follow that $M_{I \cup J}$ is invertible, contradicting the maximality of \bar{I} in $P(n)_{\text {inv. }}$. To show this implication, we observe that the decomposition $D^{\underline{n}}=D^{\bar{I}} \oplus W$ restricts to give an isomorphism $D^{\bar{I} \cup J}=D^{\bar{I}} \oplus \zeta^{-1}\left(D^{J}\right)$. The transformation $\mathrm{pr}_{\bar{I} \cup J} \circ \mathscr{L}(M)$ on this space carries $D^{\bar{i}}$ isomorphically onto a complement of the subspace D^{J} of $D^{\bar{I} \cup J}$, and it carries $\zeta^{-1}\left(D^{J}\right)$ into D^{J}. Therefore we see that $\mathscr{L}\left(M_{\bar{I} \cup J}\right)=\left.\operatorname{pr}_{\bar{I} \cup J} \circ \mathscr{L}(M)\right|_{D} ^{\bar{T} \cup J} \simeq \mathbf{i d}_{D^{\prime}} \oplus N_{J}$, and thus it is invertible iff N_{J} is.

Claim. The set C can be totally ordered s.t. with respect to the resulting bijection $C \simeq\{1,2, \ldots, s\}(s=|C|)$ one has that the matrix N is strictly upper triangular, i.e. $N_{\alpha \beta}=0$ for $\beta \leqslant \alpha, \alpha, \beta \in C$.

Proof. We use only the conclusion of the previous claim. The proof will be by induction on the size of C. If $|C|=0$ on 1 , then $N=0$ by the hypotheses. If $c_{1} \in C$ is an element such that $N_{d, c_{1}}=0 \forall d \in C$, then we take c_{1} to be the first element of C, and using the induction hypothesis we totally order $C-\left\{c_{1}\right\}$ so as to make $N_{C-\left\{c_{1}\right\}}$ strictly upper triangular. So it remains to show that such a c_{1} exists. If not, then $\forall c \in C, \exists d \in C$ s.t. $N_{d c} \neq 0$. Since by our hypotheses the diagonal entries of N are zero, we see that $d \neq c$. Starting from an arbitrary $c_{0} \in C$ (recall that we may assume $|C|>1$), we get a sequence $c_{0}, c_{1}, c_{2}, \ldots$ s.t. ($\left.\forall i\right) N_{c_{i+1}, c_{i}} \neq 0, c_{i+1} \neq c_{i}$. If we continue the sequence until $c_{\mid C}$, we see that two members of the sequence must be equal. Hence there exists a sequence of elements of C of the form $a_{0}, a_{1}, \ldots, a_{k}=a_{0}$, s.t. $k \geqslant 2, N_{a_{i+1}, a_{i}} \neq 0 \forall 0 \leqslant i<k$. We call a ($k+1$)-tuple of elements of C having the above properties an allowed cycle of length k. (In the definition of 'allowed cycle', one may replace the condition $k \geqslant 2$ by $k \geqslant 1$; note that as the diagonal entries of N are zero, there is no allowed cycle of length 1.) Consider an allowed cycle ($a_{0}, a_{1}, \ldots, a_{k}$) of minimal length k. Then a_{0}, \ldots, a_{k-1} are distinct (because if $a_{r}=a_{s}, 0 \leqslant r<s \leqslant k-1$, we get a shorter allowed cycle ($a_{r}, a_{r+1}, \ldots, a_{s}$)). Furthermore, we have that $N_{a_{j} a_{i}}=0$ if $j \not \equiv i+1(\bmod k)$. (Indeed, if $j \neq i+1(\bmod k)$ and $N_{a_{j} a_{i}} \neq 0$, we get a shorter allowed cycle $\left(a_{i}, a_{j}, a_{j+1}, \ldots, a_{j+t}\right)$ of length $t+1$, where
$0 \leqslant t<k-1$ is s.t. $j+t \equiv i(\bmod k)$. (Here we define $\forall n \in \mathbb{Z}, a_{n}=a_{r}$ where $r=n-[n / k] k$, i.e. $m \mapsto a_{m}$ is regarded as a function on $\mathbb{Z} / k \mathbb{Z}$.).) Hence the matrix N_{J} for $J=\left\{a_{1}, \ldots, a_{k}\right\}$ is invertible (since the linear transformation it defines on D^{J} sends $D e_{a_{i}}$ isomorphically onto $\left.D e_{a_{+1}}, \forall i \in \mathbb{Z} / k \mathbb{Z}\right)$.

Claim. The set C with its ordering i_{1}, \ldots, i_{k} considered in the previous claim is such that $S-T_{i_{1}} \cdots \cdot T_{i_{k}}$ is invertible

Proof. We have to show that if $\nu \in V-\{0\}$ then

$$
S^{\prime} \nu \neq\left(T_{i_{1}} \cdots T_{i_{k}}\right) \nu-\nu=\sum_{m=1}^{k}\left(T_{i_{m}}-1\right)\left(\left(T_{i_{m+1}} \cdots \cdot T_{i_{k}}\right) \nu\right)
$$

Indeed, suppose that

$$
\begin{equation*}
S^{\prime} \nu=\sum_{m=1}^{k}\left(T_{i_{m}}-1\right)\left(\left(T_{i_{m+1}} \cdots \cdot T_{i_{k}}\right) \nu\right) \tag{*}
\end{equation*}
$$

holds. Since $\operatorname{Im}\left(T_{i_{m}}-1\right)=D e_{i_{m}}$, we have that the right-hand side of the equality (*) lies in $\sum_{m=1}^{k} D e_{i_{m}}$, the subspace of $V_{\text {target }}$ corresponding to $D^{C} \subset D^{n}$. Hence if we write $(\forall l \leqslant i \leqslant n) \omega_{i}=f_{i}(\nu)$, so that $\vec{\omega}={ }^{\operatorname{def}}\left(\omega_{1}, \ldots, \omega_{n}\right) \in D^{n}$ and $\sum_{i=1}^{n}(\mathscr{L}(M) \vec{\omega})_{i} e_{i}=S^{\prime} \nu$, then $\left(\operatorname{pr}_{D^{I}} \circ \mathscr{L}(M)\right)(\vec{\omega})=0$, i.e. $\vec{\omega}$ lies in the subspace W of D^{n} defined above. Under the isomorphism $W \rightarrow_{\mathrm{pr}_{C} / W} D^{C}$, which was denoted above by ζ, the point $\vec{\omega}$ corresponds to the point $\left(\omega_{j}\right)_{j \in C}$. Hence, by the definition of N, we have that

$$
\mathscr{L}(N):\left(\omega_{j}\right)_{j \in C} \mapsto\left(\xi_{j}\right)_{j \in C}
$$

where

$$
\sum_{j \in C} \xi_{j} e_{j}=S^{\prime} \nu \stackrel{(*)}{=} \sum_{m=1}^{k} f_{i_{m}}\left(T_{i_{m+1}} \cdots \cdot T_{i_{k}} \nu\right) e_{i_{k}}
$$

i.e. we have

$$
\begin{equation*}
\xi_{i_{m}}=f_{i_{m}}\left(\left(T_{i_{m+1}} \cdots T_{i_{k}}\right) \nu\right), \quad \forall 1 \leqslant m \leqslant k \tag{**}
\end{equation*}
$$

Case (i): $T_{i_{\alpha}}(\nu)=\nu \forall 1 \leqslant \alpha \leqslant k$. In this case we have by the formula $T_{i_{\alpha}}(x)=x+f_{i_{\alpha}}(x) \nu_{i_{\alpha}}$ that $f_{i_{\alpha}}(\nu)=0(\forall 1 \leqslant \alpha \leqslant k)$. Thus the C-coordinates of $\vec{\omega}$ are zero, and since $\vec{\omega} \in W$ and ζ is an isomorphism we get that $\vec{\omega}=0$, i.e. $\nu=0$, which gives a contradiction.

Case (ii): $\exists 1 \leqslant \alpha \leqslant k$ s.t. $T_{i_{\alpha}}(\nu) \neq \nu$. Put

$$
m \stackrel{\text { def }}{=} \max \left\{1 \leqslant \alpha \leqslant k \mid T_{i_{\alpha}}(\nu) \neq \nu\right\} .
$$

Thus $f_{i_{m}}(\nu) \neq 0$ and $f_{i_{\lambda}}(\nu)=0 \forall m<\lambda \leqslant k$.
(a) As $\left(T_{i_{m+1}} \cdots \cdot T_{i_{k}}\right) \nu=\nu$, (**) gives that $\xi_{i_{m}}=f_{i_{m}}(\nu) \neq 0$, i.e. the i_{m} th coordinate of $\mathscr{L}(N)\left(\left(\omega_{j}\right)_{j \in C}\right)$ is non-zero.
(b) But $\mathscr{L}(N)\left(\left(\omega_{j}\right)_{j \in C}\right)=\left(\sum_{j \in C} N_{i j} \omega_{j}\right)_{i \in C}$ and N is strictly upper triangular for the above ordering of C, so $\xi_{i_{m}}=\sum_{j \in C} N_{i_{m} j} \omega_{j}=\sum_{m^{\prime}>m} N_{i_{m} i_{m}} \cdot \omega_{i_{m^{\prime}}}=0$ (as the $\omega_{i_{m^{\prime}}}=f_{i_{m^{\prime}}}(\nu)$ are zero). This is a contradiction.

Remark 1. If we take in Theorem 1 (ii) $S=\mathrm{id}_{v}$, i.e. $S^{\prime}=0_{v}$, then in the preceeding proof $M=0_{n}, P(\underline{n})_{\text {inv }}=\varnothing, \bar{I}=\varnothing, N=0_{n}$, so the proof specializes to the fact that for every $(A,<) \in R$ s.t. $A=\underline{n}$, we have that $T_{(A,<)}-1$ is invertible. This implies that if $V^{\prime} \varsubsetneqq V^{\prime \prime}$ are subspaces of V stable under the operators $\left(T_{i}\right)_{1 \leqslant i \leqslant n}$, and $W={ }^{\operatorname{def}} V^{\prime \prime} / V^{\prime}$, then the transformations $T_{i}: W \rightarrow W$ induced by the $T_{i} s$ cannot all be 1_{W}. (Indeed, if they were
all 1 , then $R={ }^{\text {def }} T_{(A,<)}-1$ would induce the map $1_{W}-1_{W}=0_{W}$ on $V^{\prime \prime} / V^{\prime}$, i.e. $R\left(V^{\prime \prime}\right) \subset V^{\prime}$, but as R is invertible $V^{\prime \prime} \rightarrow \widetilde{R} R\left(V^{\prime \prime}\right)$, so the inclusion $V^{\prime} \supset R\left(V^{\prime \prime}\right)$ gives an inequality $\operatorname{dim} V^{\prime} \geqslant \operatorname{dim} V^{\prime \prime}$ contradicting the fact that $\operatorname{dim} V^{\prime \prime}=\operatorname{dim} V^{\prime}+\operatorname{dim} W>\operatorname{dim} V^{\prime}$ by hypothesis.)

Theorem 2. Suppose that V is a vector space of dimension n over a commutative field $D, G \subset \operatorname{Aut}_{D}(V)$ a group generated by pseudo-reflections, and assume that there exists a non-degenerate G-invariant bilinear form $B: V \times V \rightarrow D$. Then the condition

$$
\begin{equation*}
V^{G}=0 \tag{0}
\end{equation*}
$$

implies

$$
\begin{equation*}
\forall S \in \operatorname{End}_{D}(V) \tag{i}
\end{equation*}
$$

$$
\exists g \in G \quad \text { s.t. } g-S \text { is invertible, }
$$

and
(ii) $\quad \forall S \in \operatorname{End}_{D}(V), \quad \exists g \in G$ s.t. $\quad 1-g S$ and $1-S g$ are invertible.

Proof. Clearly, as in the proof of Theorem 1 (ii), replacing g by g^{-1} we have that (i) \Leftrightarrow (ii). To prove (i) assuming (0), we use Theorem 1 ; it thus suffices to know that there exist n elements $g_{i}=\left(x \mapsto x+f_{i}(x) \nu_{i}\right)(1 \leqslant i \leqslant n)$ in G s.t. $\left(\nu_{i}\right)$ are linearly independent in V and $\left(f_{i}\right)$ are linearly independent in V^{V}. Fix a generating set $\Sigma \subset G$ consisting of pseudo-reflections. Write $\Sigma=\left\{\gamma_{j}=\left(x \mapsto x+f_{j}(x) \nu_{j}\right) \mid j \in J\right\}$. The fact that $V^{G}=0$ means that $\left(V^{\Sigma}=\right) \bigcap_{j \in J} \operatorname{Ker}\left(f_{j}\right)=0$. Hence (by the 'duality' $U \mapsto U^{\perp}$ between subspaces of V and V^{\perp}, cf. [2, Section 7 No. 5]) the f_{j} s generate V^{v}, and hence it is possible to choose a basis for V^{v} of the form $\left(f_{j_{1}}, \ldots, f_{j_{n}}\right), j_{i} \in J$. We take $g_{i}=\gamma_{j_{i}}(1 \leqslant i \leqslant n)$, and check the following

Claim. $\quad g_{1}, \ldots, g_{n}$ satisfy condition B.
Proof. As $f_{j_{1}}, \ldots, f_{j_{n}}$ form a basis of V^{v}, it remains to show that $\nu_{j_{1}}, \ldots, \nu_{j_{n}}$ form a basis of V. Note that the bilinear form B defines two D-isomorphisms $V \rightarrow V^{v}, \phi_{1}: \nu \mapsto$ $(x \mapsto B(x, \nu))$ and $\phi_{2}: \nu \mapsto(x \mapsto B(\nu, x))$. The ϕ_{μ} are G-equivariant, where G acts on V^{ν} by the contragredient action $\left(g \mapsto\left(g^{t}\right)^{-1}\right)$. One checks that $\left(\gamma_{j}^{t}\right)^{-1}$ is given by $f \mapsto$ $f+f_{i} \alpha_{i} f\left(\nu_{i}\right)$, where $\alpha_{i}=\left(1+f_{i}\left(\nu_{i}\right)\right)^{-1} \in D^{*}$. Hence $\operatorname{Im}\left(\left(\gamma_{j}^{t}\right)^{-1}-1\right)=\left\langle f_{j}\right\rangle$, while $\operatorname{Im}\left(\gamma_{j}-1\right)=$ $\left\langle\nu_{j}\right\rangle . \forall \mu \in\{1,2\}$, the map $\phi_{\mu}: V \rightarrow V^{v}$ must induce an isomorphism $\operatorname{Im}\left(\gamma_{j}-1\right) \rightarrow$ $\operatorname{Im}\left(\left(\gamma_{j}^{t}\right)^{-1}-1\right)$, so $\phi_{\mu}\left(\nu_{j}\right)$ is proportional to f_{j}. Thus the statement that the one-dimensional spaces $\left\langle\nu_{j_{i}}\right\rangle$ are linearly independent (resp. span V) is equivalent to the statement that the one-dimensional spaces $\left\langle f_{j_{i}}\right\rangle$ are linearly independent (resp. span V^{v}). So ($\nu_{j_{i}}, \ldots, \nu_{j_{n}}$) is a basis of V, as desired.

Remark 2. Under the hypotheses of Theorem 2, the following conditions are equivalent:

$$
\begin{gather*}
V^{G}=0 \tag{0}\\
V_{G}=0 \quad\left(\text { recall that } V_{G}=V /\left(\sum_{g \in G}(g-1) V\right)\right), \tag{0}
\end{gather*}
$$

condition (i) above, condition (ii) above,
(iii) $\exists \gamma \in G$ s.t. $\gamma-1$ is invertible,
(iv) When we regard V as a $D G$-module as in [2, page 453], V has no non zero $D G$-module subquotient which has a trivial G action.

Proof. The fact that $(0) \Leftrightarrow(0)^{\prime}$ follows by considering the G-isomorphism ϕ_{μ} ($\mu=1$ or 2), which induces an isomorphism

$$
V^{G} \leftrightarrows\left(V^{v}\right)^{G}=\left\{f: V \rightarrow D, D \text {-linear } \mid \forall g \in G, f\left(g^{-1} \nu\right)=f(\nu) \forall \nu \in V\right\} \simeq\left(V_{G}\right)^{v}
$$

The statement $\left((0)\left[\right.\right.$ or $\left.\left.(0)^{\prime}\right] \Rightarrow(i) \wedge(i i)\right)$ holds by Theorem 2. For the implication (i) $\Rightarrow(\mathrm{iii}) \Rightarrow$ (iv) see Remark 1. Finally (0) (resp. (0$)^{\prime}$) is a special case of (iv), when the subquotient considered is a submodule of V (resp. a quotient module of V).

Remark 3. Theorem 2 and Remark 2 can be extended to the case where D is not necessarily commutative, $\sigma: D \rightarrow D$ an anti-homomorphism, and $B: V \times V \rightarrow D$ is a non degenerate G-invariant form which is σ-sesquilinear (in the sense of [Bourbaki, Algèbre, Chapter IX, Section 1]), i.e. B is \mathbb{Z}-bilinear and $B(\alpha \nu, \beta \omega)=\alpha B(\nu, \omega) \sigma(\beta) \forall \alpha, \beta \in D$, $\forall \nu, \omega \in V$. In the proof of Remark 3, one uses the G-isomorphism $\phi_{1}: \sigma_{!} V \rightarrow V^{v}$ or $\phi_{2}: V \rightarrow\left(\sigma_{1} V\right)^{v}$, where $\sigma_{1} V$ is the right D-module associated to the left $D^{\circ \mathrm{op}}$-module $\left(D^{\mathrm{op}}\right) \otimes_{D} V$, where the \otimes product is taken with respect to the ring homomorphism $D \rightarrow_{\sigma} D^{\mathrm{op}}$.

References

1. N. Bourbaki, Groupes et Algèbres de Lie, (Chap. 4, 5, 6), Hermann, Paris, 1968.
2. N. Bourbaki, Algèbre, Chap. II, 3^{e} édition, Hermann, Paris, 1962.
3. S. Lang, Algebra, Addison Wesley, 1965.

[^0]: * The hypothesis that the T_{i} s are invertible will not be needed in the proof of part (i).

