A Note on Pseudo-reflections

OFER GABBER

In this note, we show that if V is a finite dimensional vector space equipped with a non-degenerate bilinear form, and one has a set of pseudo-reflections on V, preserving the form and having no non-zero common fixed vector, then the group G generated by this set is 'sufficiently large' in the sense that for every linear transformation $T: V \rightarrow V$, there exists an element $g \in G$ such that g - T is invertible.

Recall (cf. [1], Déf. 1 page 66) that if D is a (skew-)field and V is a D vector space, then a linear transformation $T: V \to V$ is called a pseudo-reflection iff rank $(T - id_V) = 1$, i.e. iff T is of the form $x \mapsto x + f(x)v$ for some $v \in V - \{0\}$ and $f \in V^v - \{0\}$. [Here V^v denotes the right D-module Hom_D(V, D) (on which the right D action is defined by $fd = (v \mapsto f(v)d) \forall f \in V^v, \forall d \in D$.] Clearly f (resp. v) is uniquely determined by T up to right (resp. left) multiplication by an element of D^* .

In this note, we consider the following situation B: V is of dimension n over D, and $T_i: V \to V$ $(1 \le i \le n)$ are invertible pseudo-reflections s.t. if we write $T_i = (x \mapsto x + f_i(x)\nu_i)$ then $(\nu_i)_{1 \le i \le n}$ is a basis of V and $(f_i)_{1 \le i \le n}$ is a basis of V^v .

We shall use the following notations: \underline{n} is the set $\{1, 2, ..., n\} = \{k \in \mathbb{Z} | 0 < k \le n\}$, and R is the set of pairs (A, <), where A is a subset of \underline{n} and < is a strict total order on A. Equivalently (up to a canonical bijection) R can be described as the set of pairs $(k, (i_1, ..., i_k))$ where $0 \le k \le n$ and the $i_j \le (1 \le j \le k)$ are distinct elements of \underline{n} .

For any element (A, <) of R, we consider the linear transformation $T_{(A,<)} = {}^{def} \prod_{a \in A} T_a$, where the product of the T_a s is taken according to the total ordering < of A, in other words if we use the second description of R then $T_{(A,<)} = T_{i_1} \cdot T_{i_2} \cdot \cdots \cdot T_{i_k}$.

Our main result is the following:

THEOREM 1. (Under situation B.) If $S: V \to V$ is any linear transformation, then (i) there exists an element (A, <) of R s.t. the transformation $S - T_{(A,<)} \in \text{End}(V)$ is invertible^{*}.

(ii) There exists an element (A, <) of R s.t. $ST_{(A,<)}-1$ and $T_{(A,<)}S-1$ are invertible.

(iii) If D is commutative and $D \hookrightarrow \overline{D}$ is an algebraic closure of D, and $\lambda \in \overline{D}^*$, then there exists an element $(A, <) \in R$ s.t. λ is not an eigenvalue of $ST_{(A,<)}$.

PROOF. (ii) \Rightarrow (iii): Apply part (ii) with S replaced by $\lambda^{-1}S$. (i) \Rightarrow (ii): We notice that $T_i^{-1} = (x \mapsto f_i(x) \alpha_i \nu_i)$ where $\alpha_i = (1 + f_i(\nu_i))^{-1} \in D^*$, so that $(V, T_1^{-1}, \ldots, T_n^{-1})$ still satisfies the hypotheses of B. Applying (i) to $(V, T_1^{-1}, \ldots, T_n^{-1})$, we get that there exists $(A, <) \in R$ s.t. $S - T_{i_1}^{-1} \cdots T_{i_k}^{-1} = S - (T_{i_k} \cdots T_{i_1})^{-1}$ is invertible, i.e. s.t. $S \cdot T_{i_k} \cdots T_{i_1} - 1_V$ is invertible, equivalently $(T_{i_k} \cdots T_{i_1}) \cdot S - 1_V$ is invertible.

The proof of Theorem 1(i) will be based on the consideration of a 'largest invertible principal minor'. We wish to find an element $(A, <) \in R$ s.t. $S' - (T_{(A,<)} - id_V)$ is invertible, where $S' = {}^{def}S - id_V$, i.e. s.t. $\forall \nu \in V - \{0\}$ we have that $S'\nu \neq T_{(A,<)}\nu - \nu$. Since f_1, \ldots, f_n form a basis of V^v , we can speak about the dual basis ν'_1, \ldots, ν'_n of V defined by the condition that $f_i(\nu'_j) = \delta_{ij}$. We represent $S': V \rightarrow V$ by a matrix M [as in [3] Chapter XIII, Section 3] by taking ν'_1, \ldots, ν'_n to be a basis for the source space, and ν_1, \ldots, ν_n to be a

^{*} The hypothesis that the T_i s are invertible will not be needed in the proof of part (i).

O. Gabber

basis for the target space. We have $S'\nu'_i = \sum_i M_{ij}\nu_i$, i.e.

$$S'\nu = \sum_{i,j} M_{ij} f_j(\nu) \nu_i \quad \forall \nu \in V.$$

For every subset $I \subseteq \underline{n}$ we can consider the square $I \times I$ submatrix m_I of M obtained by restricting the value of the indices (i, j) to be in $I \times I$. Let $P(\underline{n})_{inv} = \{I \subseteq \underline{n} | M_I \text{ is} invertible\}$; we partially order $P(\underline{n})_{inv}$ by inclusion. The ring $Mat_{\emptyset}(D)$ of \emptyset by \emptyset matrices with entries in D, whose underlying set is [by definition, compare [3, XIII § 1] and [2, Section 10, No. 1-7]] the set of functions from $\emptyset \times \emptyset$ to D, has exactly one element (namely the function [with graph] \emptyset) which is thus both the identity element and the zero element, and hence every element in that ring is invertible. Hence M_{\emptyset} is invertible, i.e. $\emptyset \in P(\underline{n})_{inv}$, so $P(\underline{n})_{inv}$ is non-empty and hence admits a maximal element \overline{I} .

Let $\mathscr{L}(M): D^n \to D^n$ be the linear transformation represented by M. [Thus the choice of the basis (ν'_i) (resp. (ν_j)) for V_{source} (resp. V_{target}) allows us to 'identify' S' with $\mathscr{L}(M)$.] Thus the composition $D^n \to \mathscr{L}(M) D^n \to_{\text{pr}_i} D^{\overline{I}}$ maps $D^{\overline{I}}$ (regarded as a subspace of D^n) isomorphically onto $D^{\overline{I}}$, and thus the linear subspace $W = {}^{\text{def}} \operatorname{Ker}(\operatorname{pr}_{\overline{I}} \circ \mathscr{L}(M)) \subset D^n$ is such that $D^n = D^{\overline{I}} \oplus W$. In other words, if C denotes $\underline{n} - \overline{I}$, pr_C induces an isomorphism $W \to {}^{\ell} D^C$. Composing the inverse of this isomorphism with $\mathscr{L}(M)$ we get a map $D^C \to {}^{-1}_{\zeta} W \to {}_{\mathscr{L}(M)} D^C (\subset D^n)$. Let N be the $C \times C$ matrix representing the last linear transform.

CLAIM. For every non empty subset $J \subset C$, the matrix N_J is not invertible.

PROOF. If N_J were invertible, we claim that it would follow that $M_{\bar{I}\cup J}$ is invertible, contradicting the maximality of \bar{I} in $P(n)_{inv}$. To show this implication, we observe that the decomposition $D^n = D^{\bar{I}} \oplus W$ restricts to give an isomorphism $D^{\bar{I}\cup J} = D^{\bar{I}} \oplus \zeta^{-1}(D^J)$. The transformation $\operatorname{pr}_{\bar{I}\cup J} \circ \mathscr{L}(M)$ on this space carries $D^{\bar{I}}$ isomorphically onto a complement of the subspace D^J of $D^{\bar{I}\cup J}$, and it carries $\zeta^{-1}(D^J)$ into D^J . Therefore we see that $\mathscr{L}(M_{\bar{I}\cup J}) = \operatorname{pr}_{\bar{I}\cup J} \circ \mathscr{L}(M)|_{D}^{\bar{I}\cup J} \simeq \operatorname{id}_{D^I} \oplus N_J$, and thus it is invertible iff N_J is.

CLAIM. The set C can be totally ordered s.t. with respect to the resulting bijection $C \simeq \{1, 2, ..., s\}$ (s = |C|) one has that the matrix N is strictly upper triangular, i.e. $N_{\alpha\beta} = 0$ for $\beta \leq \alpha$, α , $\beta \in C$.

PROOF. We use only the conclusion of the previous claim. The proof will be by induction on the size of C. If |C| = 0 on 1, then N = 0 by the hypotheses. If $c_1 \in C$ is an element such that $N_{d,c_1} = 0 \forall d \in C$, then we take c_1 to be the first element of C, and using the induction hypothesis we totally order $C - \{c_1\}$ so as to make $N_{C-\{c_1\}}$ strictly upper triangular. So it remains to show that such a c_1 exists. If not, then $\forall c \in C, \exists d \in C$ s.t. $N_{dc} \neq 0$. Since by our hypotheses the diagonal entries of N are zero, we see that $d \neq c$. Starting from an arbitrary $c_0 \in C$ (recall that we may assume |C| > 1), we get a sequence c_0, c_1, c_2, \dots s.t. $(\forall i) N_{c_{i+1}, c_i} \neq 0, c_{i+1} \neq c_i$. If we continue the sequence until $c_{|C|}$, we see that two members of the sequence must be equal. Hence there exists a sequence of elements of C of the form $a_0, a_1, \ldots, a_k = a_0$, s.t. $k \ge 2$, $N_{a_{i+1},a_i} \ne 0 \ \forall 0 \le i < k$. We call a (k+1)-tuple of elements of C having the above properties an allowed cycle of length k. (In the definition of 'allowed cycle', one may replace the condition $k \ge 2$ by $k \ge 1$; note that as the diagonal entries of N are zero, there is no allowed cycle of length 1.) Consider an allowed cycle (a_0, a_1, \ldots, a_k) of minimal length k. Then a_0, \ldots, a_{k-1} are distinct (because if $a_r = a_s$, $0 \le r \le s \le k-1$, we get a shorter allowed cycle $(a_r, a_{r+1}, \ldots, a_s)$). Furthermore, we have that $N_{a_k a_i} = 0$ if $j \neq i+1 \pmod{k}$. (Indeed, if $j \neq i+1 \pmod{k}$ and $N_{a_i,a_i} \neq 0$, we get a shorter allowed cycle $(a_i, a_j, a_{j+1}, \ldots, a_{j+\ell})$ of length t+1, where

 $0 \le t < k-1$ is s.t. $j+t \equiv i \pmod{k}$. (Here we define $\forall n \in \mathbb{Z}, a_n = a_r$ where $r = n - \lfloor n/k \rfloor k$, i.e. $m \mapsto a_m$ is regarded as a function on $\mathbb{Z}/k\mathbb{Z}$.).) Hence the matrix N_J for $J = \{a_1, \ldots, a_k\}$ is invertible (since the linear transformation it defines on D^J sends De_{a_i} isomorphically onto $De_{a_{i+1}}, \forall i \in \mathbb{Z}/k\mathbb{Z}$).

CLAIM. The set C with its ordering i_1, \ldots, i_k considered in the previous claim is such that $S - T_{i_1} \cdot \cdots \cdot T_{i_k}$ is invertible

PROOF. We have to show that if $\nu \in V - \{0\}$ then

$$S'\nu \neq (T_{i_1} \cdots T_{i_k})\nu - \nu = \sum_{m=1}^k (T_{i_m} - 1)((T_{i_{m+1}} \cdots T_{i_k})\nu).$$

Indeed, suppose that

$$S'\nu = \sum_{m=1}^{k} (T_{i_m} - 1)((T_{i_{m+1}} \cdot \cdots \cdot T_{i_k})\nu)$$
 (*)

holds. Since $\operatorname{Im}(T_{i_m}-1) = De_{i_m}$, we have that the right-hand side of the equality (*) lies in $\sum_{m=1}^{k} De_{i_m}$, the subspace of V_{target} corresponding to $D^C \subset D^n$. Hence if we write $(\forall l \leq i \leq n) \ \omega_i = f_i(\nu)$, so that $\vec{\omega} = {}^{\operatorname{def}}(\omega_1, \ldots, \omega_n) \in D^n$ and $\sum_{i=1}^n (\mathscr{L}(M)\vec{\omega})_i e_i = S'\nu$, then $(\operatorname{pr}_{D^I} \circ \mathscr{L}(M))(\vec{\omega}) = 0$, i.e. $\vec{\omega}$ lies in the subspace W of D^n defined above. Under the isomorphism $W \rightarrow_{\operatorname{pr}_C/W} D^C$, which was denoted above by ζ , the point $\vec{\omega}$ corresponds to the point $(\omega_j)_{j \in C}$. Hence, by the definition of N, we have that

$$\mathscr{L}(N):(\omega_j)_{j\in C}\mapsto (\xi_j)_{j\in C},$$

where

$$\sum_{j\in C} \xi_j e_j = S' \nu \stackrel{(*)}{=} \sum_{m=1}^k f_{i_m} (T_{i_{m+1}} \cdot \cdots \cdot T_{i_k} \nu) e_{i_k},$$

i.e. we have

$$\xi_{i_m} = f_{i_m}((T_{i_{m+1}} \cdots T_{i_k})\nu), \quad \forall 1 \le m \le k.$$

$$(**)$$

Case (i): $T_{i_{\alpha}}(\nu) = \nu \forall 1 \le \alpha \le k$. In this case we have by the formula $T_{i_{\alpha}}(x) = x + f_{i_{\alpha}}(x)\nu_{i_{\alpha}}$ that $f_{i_{\alpha}}(\nu) = 0$ ($\forall 1 \le \alpha \le k$). Thus the C-coordinates of $\vec{\omega}$ are zero, and since $\vec{\omega} \in W$ and ζ is an isomorphism we get that $\vec{\omega} = 0$, i.e. $\nu = 0$, which gives a contradiction.

Case (ii): $\exists 1 \leq \alpha \leq k$ s.t. $T_{i_{\alpha}}(\nu) \neq \nu$. Put

$$m \stackrel{\text{der}}{=} \max\{1 \le \alpha \le k | T_{i_{\alpha}}(\nu) \neq \nu\}.$$

Thus $f_{i_m}(\nu) \neq 0$ and $f_{i_\lambda}(\nu) = 0 \quad \forall m < \lambda \leq k$.

(a) As $(T_{i_{m+1}} \cdots T_{i_k}) \nu = \nu$, (**) gives that $\xi_{i_m} = f_{i_m}(\nu) \neq 0$, i.e. the i_m th coordinate of $\mathscr{L}(N)((\omega_j)_{j \in C})$ is non-zero.

(b) But $\mathscr{L}(N)((\omega_j)_{j\in C}) = (\sum_{j\in C} N_{ij}\omega_j)_{i\in C}$ and N is strictly upper triangular for the above ordering of C, so $\xi_{i_m} = \sum_{j\in C} N_{i_m,j}\omega_j = \sum_{m'>m} N_{i_m,i_m'}\omega_{i_{m'}} = 0$ (as the $\omega_{i_{m'}} = f_{i_m'}(\nu)$ are zero). This is a contradiction.

REMARK 1. If we take in Theorem 1 (ii) $S = id_V$, i.e. $S' = 0_V$, then in the preceeding proof $M = 0_n$, $P(\underline{n})_{inv} = \emptyset$, $\overline{I} = \emptyset$, $N = 0_n$, so the proof specializes to the fact that for every $(A, <) \in R$ s.t. $A = \underline{n}$, we have that $T_{(A, <)} - 1$ is invertible. This implies that if $V' \subsetneq V''$ are subspaces of V stable under the operators $(T_i)_{1 \le i \le n}$, and $W = {}^{def} V''/V'$, then the transformations $T_i: W \to W$ induced by the T_i s cannot all be 1_W . (Indeed, if they were all 1, then $R = {}^{\text{def}} T_{(A,<)} - 1$ would induce the map $1_W - 1_W = 0_W$ on V''/V', i.e. $R(V'') \subset V'$, but as R is invertible $V'' \rightarrow {}^{\sim}_R R(V'')$, so the inclusion $V' \supset R(V'')$ gives an inequality dim $V' \ge \dim V''$ contradicting the fact that dim $V'' = \dim V' + \dim W > \dim V'$ by hypothesis.)

THEOREM 2. Suppose that V is a vector space of dimension n over a commutative field $D, G \subset \operatorname{Aut}_D(V)$ a group generated by pseudo-reflections, and assume that there exists a non-degenerate G-invariant bilinear form $B: V \times V \rightarrow D$. Then the condition

$$V^G = 0$$

implies

(i)
$$\forall S \in \operatorname{End}_D(V), \quad \exists g \in G \quad \text{s.t. } g - S \text{ is invertible,}$$

and

(ii) $\forall S \in \text{End}_D(V)$, $\exists g \in G \text{ s.t.} \quad 1-gS \text{ and } 1-Sg \text{ are invertible.}$

PROOF. Clearly, as in the proof of Theorem 1 (ii), replacing g by g^{-1} we have that (i) \Leftrightarrow (ii). To prove (i) assuming (0), we use Theorem 1; it thus suffices to know that there exist n elements $g_i = (x \mapsto x + f_i(x)\nu_i)$ $(1 \le i \le n)$ in G s.t. (ν_i) are linearly independent in V and (f_i) are linearly independent in V^{\vee} . Fix a generating set $\Sigma \subset G$ consisting of pseudo-reflections. Write $\Sigma = \{\gamma_j = (x \mapsto x + f_j(x)\nu_j) | j \in J\}$. The fact that $V^G = 0$ means that $(V^{\Sigma} =) \bigcap_{j \in J} \operatorname{Ker}(f_j) = 0$. Hence (by the 'duality' $U \mapsto U^{\perp}$ between subspaces of V and V^{\perp} , cf. [2, Section 7 No. 5]) the f_j s generate V^{\vee} , and hence it is possible to choose a basis for V^{\vee} of the form $(f_{j_1}, \ldots, f_{j_n}), j_i \in J$. We take $g_i = \gamma_{j_i} (1 \le i \le n)$, and check the following

CLAIM. g_1, \ldots, g_n satisfy condition B.

PROOF. As f_{j_1}, \ldots, f_{j_n} form a basis of V^v , it remains to show that $\nu_{j_1}, \ldots, \nu_{j_n}$ form a basis of V. Note that the bilinear form B defines two D-isomorphisms $V \to V^v$, $\phi_1: \nu \mapsto (x \mapsto B(x, \nu))$ and $\phi_2: \nu \mapsto (x \mapsto B(\nu, x))$. The ϕ_{μ} are G-equivariant, where G acts on V^v by the contragredient action $(g \mapsto (g^t)^{-1})$. One checks that $(\gamma_j^t)^{-1}$ is given by $f \mapsto f + f_i \alpha_i f(\nu_i)$, where $\alpha_i = (1 + f_i(\nu_i))^{-1} \in D^*$. Hence $\operatorname{Im}((\gamma_j^t)^{-1} - 1) = \langle f_j \rangle$, while $\operatorname{Im}(\gamma_j - 1) = \langle \nu_j \rangle$. $\forall \mu \in \{1, 2\}$, the map $\phi_{\mu}: V \to V^v$ must induce an isomorphism $\operatorname{Im}(\gamma_j - 1) \to \operatorname{Im}((\gamma_j^t)^{-1} - 1)$, so $\phi_{\mu}(\nu_j)$ is proportional to f_j . Thus the statement that the one-dimensional spaces $\langle \nu_{j_i} \rangle$ are linearly independent (resp. span V^v). So $(\nu_{j_i}, \ldots, \nu_{j_n})$ is a basis of V, as desired.

REMARK 2. Under the hypotheses of Theorem 2, the following conditions are equivalent:

$$V^G = 0,$$

(0)'
$$V_G = 0 \quad \left(\text{recall that } V_G = V \middle/ \left(\sum_{g \in G} (g-1) V \right) \right),$$

condition (i) above, condition (ii) above,

(iii) $\exists \gamma \in G$ s.t. $\gamma - 1$ is invertible,

(iv) When we regard V as a DG-module as in [2, page 453], V has no non zero DG-module subquotient which has a trivial G action.

PROOF. The fact that $(0) \Leftrightarrow (0)'$ follows by considering the G-isomorphism ϕ_{μ} ($\mu = 1$ or 2), which induces an isomorphism

$$V^G \xrightarrow{\sim} (V^v)^G = \{f: V \rightarrow D, D\text{-linear} | \forall g \in G, f(g^{-1}v) = f(v) \forall v \in V\} \simeq (V_G)^v$$

The statement $((0)[or (0)'] \Rightarrow (i) \land (ii))$ holds by Theorem 2. For the implication $(i) \Rightarrow (iii) \Rightarrow$ (iv) see Remark 1. Finally (0) (resp. (0)') is a special case of (iv), when the subquotient considered is a submodule of V (resp. a quotient module of V).

REMARK 3. Theorem 2 and Remark 2 can be extended to the case where D is not necessarily commutative, $\sigma: D \to D$ an anti-homomorphism, and $B: V \times V \to D$ is a non degenerate G-invariant form which is σ -sesquilinear (in the sense of [Bourbaki, Algèbre, Chapter IX, Section 1]), i.e. B is \mathbb{Z} -bilinear and $B(\alpha\nu, \beta\omega) = \alpha B(\nu, \omega)\sigma(\beta) \forall \alpha, \beta \in D$, $\forall \nu, \omega \in V$. In the proof of Remark 3, one uses the G-isomorphism $\phi_1: \sigma_1 V \to V^v$ or $\phi_2: V \to (\sigma_1 V)^v$, where $\sigma_1 V$ is the right D-module associated to the left D^{op} -module $(D^{\text{op}}) \otimes_D V$, where the \otimes product is taken with respect to the ring homomorphism $D \to \sigma D^{\text{op}}$.

References

1. N. Bourbaki, Groupes et Algèbres de Lie, (Chap. 4, 5, 6), Hermann, Paris, 1968.

2. N. Bourbaki, Algèbre, Chap. II, 3^e édition, Hermann, Paris, 1962.

3. S. Lang, Algebra, Addison Wesley, 1965.

Received 13 August 1984 and in revised form 19 January 1985

OFER GABBER

Department of Mathematics, Institut des Hautes Etudes Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France