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A Note on Pseudo-reflections

OrerR GABBER

In this note, we show that if V is a finite dimensional vector space equipped with a non-degenerate
bilinear form, and one has a set of pseudo-refiections on V, preserving the form and having no
non-zero common fixed vector, then the group G generated by this set is ‘sufficiently large’ in
the sense that for every linear transformation 7: V- V, there exists an element g € G such that
g — T is invertible.

Recall (cf. [1], Déf. 1 page 66) that if D is a (skew-)field and V is a D vector space,
then a linear transformation T: V- V is called a pseudo-reflection iff rank (T—idy) =1,
ie. iff T is of the form x> x+f(x)v for some ve V—{0} and fe V°—{0}. [Here V*
denotes the right D-module Hom(V, D) (on which the right D action is defined by
fd=(v—f(v)d) Vfe V*, ¥d e D).] Clearly f (resp. v) is uniquely determined by T up
to right (resp. left) multiplication by an element of D*.

In this note, we consider the following situation B: V is of dimension n over D, and
T;: V- V (1 <i=<n) are invertible pseudo-reflections s.t. if we write T; = (x> x+ f;(x)v;)
then (v;),<i<, is a basis of V and (f;),<;<n is a basis of V*.

We shall use the following notations: n is the set {1,2, ..., n}={keZ|0<k=<n}, and
R is the set of pairs (A, <), where A is a subset of n and < is a strict total order on A.
Equivalently (up to a canonical bijection) R can be described as the set of pairs
(k, (iy, ..., ix)) where 0< k=<n and the i;s (1<j<k) are distinct elements of n.

For any element (A, <) of R, we consider the linear transformation T 4 <, =%M],ca To,
where the product of the T,s is taken according to the total ordering < of A, in other
words if we use the second description of R then Ty ,=T, - T,- - -+ - T,,.

Our main result is the following:

THEOREM 1. (Under situation B.) If S: V> V is any linear transformation, then

(i) there exists an element (A, <) of R s.t. the transformation S— T4 .y€ End(V) is
invertible*. '

(ii) There exists an element (A, <) of R s.t. STia<y—1 and To S —1 are invertible.

(iii) If D is commutative and D~ D is an algebraic closure of D, and A € D*, then there
exists an element (A, <) e R s.t. A is not an eigenvalue of ST 5 <.

Proor. (ii)=>(iii): Apply part (i} with S replaced by A~'S. (i)=>(ii): We notice that
T:'=(x~ fi(x)a;w;) where a; = (1+fi(v,)) '€ D*, so that (V, T, ..., T,') still satisfies
the hypotheses of B. Applying (i) to (V, T7',..., T,"), we get that there exists (A, <)e R
st. =T T'=8S—(T,,- -+ -+ T,)”" is invertible, ie. st. S- T, - -+ - T, —1y is
invertible, equivalently (T, - - - - - T;) - S—1y is invertible.

The proof of Theorem 1(i) will be based on the consideration of a ‘largest invertible
principal minor’. We wish to find an element (A, <)e R s.t. §'— (T4 <) —idy) is invertible,
where §'=9"§—idy, i.e. s.t. Yve V—{0} we have that S'v # Tia<yv—v. Since fi,..., f,
form a basis of V*, we can speak about the dual basis v},..., v, of V defined by the
condition that f;(v}) = 8;. We represent S": V- V by a matrix M [as in [3] Chapter XIII,
Section 3] by taking »i,..., v} to be a basis for the source space, and v,,..., v, tobe a

* The hypothesis that the T;s are invertible will not be needed in the proof of part (i).
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basis for the target space. We have S'vj=Y . Mv, i.e.

Sv=Y M;f(v)v; VveV.
L

For every subset I © n we can consider the square I X I submatrix m; of M obtained
by restricting the value of the indices (i,j) to be in I x I Let P(n)in,={I<n|M; is
invertible}; we partially order P(n),,, by inclusion. The ring Mat( D) of J by J matrices
with entries in D, whose underlying set is [by definition, compare [3, XIII § 1] and [2,
Section 10, No. 1-7]] the set of functions from J X J to D, has exactly one element
(namely the function [with graph} &) which is thus both the identity element and the
zero element, and hence every element in that ring is invertible. Hence M, is invertible,
i.e. @€ P(n)in, 50 P(n);,, is non-empty and hence admits a maximal element I.

Let £(M): D" > D" be the linear transformation represented by M. [Thus the choice
of the basis (7]) (resp. (¥;)) for V,gurce (resSp. Viarger) allows us to ‘identify’ S’ with £(M).]
Thus the composition D" - g(M)D!'»an' maps D' (regarded as a subspace of D")
isomorphically onto D', and thus the linear subspace W ="Ker(pryo £(M))< D® is
such that D® = D'@® W. In other words, if C denotes n— I, prc induces an isomorphism
W-*DC Composing the inverse of this isomorphism with £(M) we get a map
D€/ 'W> 4D (< D"). Let N be the Cx C matrix representing the last linear
transform.

CrLAM. For every non empty subset J = C, the matrix N is not invertible.

Proor. If N, were invertible, we claim that it would follow that My, is invertible,
contradicting the maximality of I in P(n);,,. To show this implication, we observe that
the decomposition D?= D’@ W restricts to give an isomorphism D'~/ =D'®¢7'(D’).
The transformation pry,,; ° £(M) on this space carries D' isomorphically onto a comple-
ment of the subspace D’ of D'”, and it carries {~'(D’) into D’. Therefore we see that
L(Mr,,)=priose L(M)| 5 =idp'@® N, and thus it is invertible iff N; is.

CrLAaM. The set C can be totally ordered s.t. with respect to the resulting bijection
C={1,2,..., s} (s=|C|) one has that the matrix N is strictly upper triangular, i.e. N,z =0
forB=a, a BeC.

ProOF. We use only the conclusion of the previous claim. The proof will be by
induction on the size of C. If |C|=0 on 1, then N =0 by the hypotheses. If ¢;€ C is an
element such that N, =0 Vd € C, then we take ¢, to be the first element of C, and using
the induction hypothesis we totally order C —{c,} so as to make Nc_.,; strictly upper
triangular. So it remains to show that such a ¢, exists. If not, then Vce C, 3de C s.t.
N, #0. Since by our hypotheses the diagonal entries of N are zero, we see that d # c.
Starting from an arbitrary ¢;€ C (recall that we may assume |C|> 1), we get a sequence
Co, €15 oy ... 8.8 (V)N . #0, ¢y # ¢;. If we continue the sequence until ¢, we see
that two members of the sequence must be equal. Hence there exists a sequence of
elements of C of the form ay, a,,...,ar=a,, s.t. k=2, N, . #0V0=<i<k Wecall a
(k+1)-tuple of elements of C having the above properties an allowed cycle of length k.
(In the definition of ‘allowed cycle’, one may replace the condition k=2 by k= 1; note
that as the diagonal entries of N are zero, there is no allowed cycle of length 1.) Consider
an allowed cycle (a,, a,, ..., a;) of minimal length k. Then aq,..., a;_, are distinct
(because if a,=a,, 0sr<s<sk—1, we get a shorter allowed cycle (a,, a,+,, ..., a)).
Furthermore, we have that N, , =0 if j# i+1 (mod k). (Indeed, if j# i +1 (mod k) and
N,.a,#0, we get a shorter allowed cycle (a;, a;, @14, - - ., a;4,) of length ¢+1, where
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O0<t<k-—1isst j+t=i(mod k). (Here we define Yne Z, a, = a, where r=n—[n/k]k,
i.e. m— a,, is regarded as a function on Z/kZ.).) Hence the matrix N, for J={a,, ..., a.}
is invertible (since the linear transformation it defines on D’ sends De, isomorphically
onto De, ,, VieZ/kZ).

CLAaM. The set C with its ordering i,, ..., i, considered in the previous claim is such
that S—T, - --- - T, is invertible

ProoF. We have to show that if ve V—{0} then

k
SvA(T, -+ Tv=v= T (T,~D((T,,,- - T,)v).
m=1
Indeed, suppose that
k
S'v= Z_I(T.-m—l)((T.-mH- T )v) (*)

holds. Since Im(T; —1)= De; , we have that the right-hand side of the equality (*) lies
in E‘;=1 De, , the subspace of V. corresponding to D < D”. Hence if we write
(VIsi=n) w;=f(v), so that ="' (w,,...,w,)e D" and ¥|_, (£(M)&)e;=S'v, then
(prp'° ZL(M))(@) =0, i.e. & lies in the subspace W of D? defined above. Under the
isomorphism W- . _,w D€, which was denoted above by ¢, the point & corresponds to
the point (w;);cc. Hence, by the definition of N, we have that

Z(N):(@j)jec>(&)jcos

where
* k
L &e=Sv=Y £, (T, ., - Te,
jeC m=1
i.e. we have
&. =5 (T,, - T)v), Vismsk (%%)

Case (i): T, (v) = v V1< a < k. In this case we have by the formula T, (x)=x+f_(x)v,
that f, (v) =0 (V1< a <k). Thus the C-coordinates of & are zero, and since & € W and
{ is an isomorphism we get that & =0, i.e. »=0, which gives a contradiction.

Case (ii): 1<a<kst T, (v)#v. Put

def
m =max{1<a <k|T, (v)# v}.

Thus f, (¥)#0 and f, (»)=0Vm<A<k

(a) As(T;,,, - -+ T,)v=uv, (**) gives that §_=f, (v)#0, i.e. the i,th coordinate of
Z(N)((w;);ec) is non-zero.

(b) But ZL(N)(@j)jec) =(;cc Nywj)icc and N is strictly upper triangular for the
above ordering of C, so § =Y. o N, ;=% N, ;=0 (as the o; ,=f, (v) are
zero). This is a contradiction.

m'>m s b

ReEMARK 1. If we take in Theorem 1 (ii) S=id,, i.e. S'=0,, then in the preceeding
proof M =0,, P(n)y,, =3, I=C, N=0,, so the proof specializes to the fact that for
every (A,<)e R s.t. A= n, we have that T, ,—1 is invertible. This implies that if V'g V"
are subspaces of V stable under the operators (T:);<i<n, and W=%"V"/V’  then the
transformations T;: W~ W induced by the T;s cannot all be 1y. (Indeed, if they were
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all 1, then R =T, _,—1 would induce the map 1 — 1w =0y on V"/ V',i.e. R(V") = V',
but as R is invertible V"> zR(V"), so the inclusion V'> R(V”") gives an inequality
dim V'=dim V” contradicting the fact that dim V"=dim V'+dim W>dim V' by
hypothesis.)

THEOREM 2. Suppose that V is a vector space of dimension n over a commutative field
D, Gc Autp(V) a group generated by pseudo-reflections, and assume that there exists a
non-degenerate G-invariant bilinear form B: V x V- D. Then the condition

(0) ve=0

implies

(i) VSeEndp(V), dgec G s.t. g—Sis invertible,

and

(ii) VSeEndp(V), JgeGsit. 1—gS and 1 Sg are invertible.

ProOF. Clearly, as in the proof of Theorem 1 (ii), replacing g by g~' we have that
(i)& (ii). To prove (i) assuming (0), we use Theorem 1; it thus suffices to know that there
exist n elements g;=(x—x+f(x)v;) (1si<n) in G s.t. (v;) are linearly independent in
V and (f;) are linearly independent in V. Fix a generating set < G consisting of
pseudo-reflections. Write £ ={y; = (x> x + f;(x)»;)|j € J}. The fact that V? =0 means that
(V= ) jes Ker(f;) =0. Hence (by the ‘duality’ U~ U* between subspaces of V and
V*, cf. [2, Section 7 No. 5]) the f;s generate V*, and hence it is possible to choose a
basis for V* of the form (f,...,f, ), jicJ We take g;=v,(1<i<n), and check the
following

CLAIM. g,,..., &, satisfy condition B.

PROOF. As f,,...,f;, form a basis of V°, it remains to show that v;,..., v, form a
basis of V. Note that the bilinear form B defines two D-isomorphisms V> V®, ¢;:v—
(x— B(x, v)) and ¢,: v+ (x> B(, x)). The ¢, are G-equivariant, where G acts on V*
by the contragredient action (g~>(g‘)™'). One checks that (y})™' is given by f—
f+fof(v;), where o; = (1+£,(v)) ' € D*. Hence Im((y) ™' —1) =(f;), while Im(y;—1) =
(v). Vue{l,2}, the map ¢,:V->V’ must induce an isomorphism Im(y;—1)-
Im((y})™'—1), so ¢,(#;) is proportional to f;. Thus the statement that the one-dimensional
spaces (v, are linearly independent (resp. span V) is equivalent to the statement that
the one-dimensional spaces (f;) are linearly independent (resp. span V*). So (v, ..., %)
is a basis of V, as desired.

REMARK 2. Under the hypotheses of Theorem 2, the following conditions are
equivalent:

(0) Ve =0,

0y V=0 (recall that Vg = V/( Y (g- 1)V)),
geG
condition (i) above,
condition (ii) above,
(iii) 3ye€ G s.t. y—1 is invertible,
(iv) When we regard V as a DG-module as in [2, page 453], V has no non zero
DG-module subquotient which has a trivial G action.



Pseudoreflections 149

ProoF. The fact that (0) & (0) follows by considering the G-isomorphism ¢, (u =1
or 2), which induces an isomorphism

Ve 3(V*)°={f: V- D, D-linearlVg e G, f(g 'v) =f(»)Vve V}=(Vs)"

The statement ((0)[or (0)']=>(i) a (ii)) holds by Theorem 2. For the implication (i)=>(iii)=>
(iv) see Remark 1. Finally (0) (resp. (0)’) is a special case of (iv), when the subquotient
considered is a submodule of V (resp. a quotient module of V).

REMARK 3. Theorem 2 and Remark 2 can be extended to the case where D is not
necessarily commutative, o: D> D an anti-homomorphism, and B: VX V- D is a non
degenerate G-invariant form which is o-sesquilinear (in the sense of [ Bourbaki, Algébre,
Chapter IX, Section 1]), i.e. B is Z-bilinear and B(av, Bw)=aB(y, w)o(B)Va, B D,
Vv,we V. In the proof of Remark 3, one uses the G-isomorphism ¢;:0nV-> V® or
¢5: V> (0, V)", where o,V is the right D-module associated to the left D°?-module
(D) ®p V, where the ® product is taken with respect to the ring homomorphism
D-_D°P.
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