
Burop.1. Combinatorics (1987) 8, 145-149 

A Note on Pseudo-reflections 

OFER GABBER 

In this note, we show that if V is a finite dimensional vector space equipped with a non-degenerate 
bilinear form, and one has a set of pseudo-reflections on V, preserving the form and having no 
non-zero common fixed vector, then the group G generated by this set is 'sufficiently large' in 
the sense that for every linear transformation T: V -> V, there exists an element g E G such that 
g - T is invertible. 

Recall (cf. [1], Dec. 1 page 66) that if D is a (skew-)field and Y is a D vector space, 
then a linear transformation T: Y ~ Y is called a pseudo-reflection iff rank (T - id y ) = 1, 
i.e. iff T is of the form x~x+f(x)v for some vE Y-{O} and fE yV_{O}. [Here yv 
denotes the right D-module HomD( V, D) (on which the right D action is defined by 
fd = (v~ f(v)d) 'tIf E yv, 'tidE D).] Clearly f (resp. v) is uniquely determined by T up 
to right (resp. left) multiplication by an element of D*. 

In this note, we consider the following situation B: Y is of dimension n over D, and 
1:: Y ~ Y (1,,;;; i,,;;; n) are invertible pseudo-reflections s.t. if we write Ti = (x~ X + };(x) Vi) 
then (VJI";;i,,;;n is a basis of Y and (};)I";;i",n is a basis of yv. 

We shall use the following notations: !.l is the set {I, 2, ... , n} = {k E ZIO < k,,;;; n}, and 
R is the set of pairs (A, <), where A is a subset of !.l and < is a strict total order on A. 
Equivalently (up to a canonical bijection) R can be described as the set of pairs 
(k, (it. ... , ik )) where 0,,;;; k ,,;;; n and the ijs (1,,;;; j ,,;;; k) are distinct elements of !.l. 

For any element (A, <) of R, we consider the linear transformation 1(A,<) = defllaEA Ta, 

where the product of the Tas is taken according to the totall ordering < of A, in other 
words if we use the second description of R then 1(A.<) = 1:1 . Ti2 ..... 1:.-

Our main result is the following: 

THEOREM 1. (Under situation B.) If S: Y ~ Y is any linear transformation, then 
(i) there exists an element (A, <) of R S.t. the transformation S -1(A,<) E End( Y) is 

invertible*. . 

(ii) There exists an element (A, <) of R S.t. S1(A,<) -1 and 1(A,<)S -1 are invertible. 
(iii) If D is commutative and D ~ jj is an algebraic closure of D, and A E jj*, then there 

exists an element (A, <) E R S.t. A is not an eigenvalue of ST A ,<). 

PROOF. (ii)~(iii): Apply part (ii) with S replaced by A -IS. (i)~(ii): We notice that 
Til = (x ~ };(x )aivJ where aj = (1 + );( vJ )-1 E D*, so that (": T~\ ... , T;;!) still satisfies 
the hypotheses of B. Applying (i) to (V, T~I, ... , T;;!), we get that there exists (A, <) E R 
S.t. S - T;;! ... T~I = S - (1:k ..... 1:)-1 is invertible, i.e. S.t. S· Tik · .... Til -1 y is 
invertible, equivalently (Tik ..... 1:) . S - 1 y is invertible. 

The proof of Theorem l(i) will be based on the consideration of a 'largest invertible 
principal minor'. We wish to find an element (A, <) E R s.t. S' - (1(A,<) - id y ) is invertible, 
where S' =def S -id y , i.e. S.t. 'tIv E Y -{O} we have that S'v,e 1(A,<) v - v. Since flo'" ,fn 
form a basis of yv, we can speak about the dual basis v~, ... , v~ of Y defined by the 
condition that};{vj) = 8ij. We represent S': Y ~ Y by a matrix M [as in [3] Chapter XIII, 
Section 3] by taking v~, . .. , v~ to be a basis for the source space, and V h ••• , Vn to be a 

* The hypothesis that the TiS are invertible will not be needed in the proof of part (i). 
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basis for the target space. We have S'vj = L Mijvj, i.e. 

S'v=I Mijjj(v)vj VVE V. 
~j 

For every subset Ie !J we can consider the square I x I submatrix mI of M obtained 
by restricting the value of the indices (i, j) to be in I x 1. Let P(!J )inv = {I C !J I MI is 
invertible}; we partially order P(!J)inv by inclusion. The ring Mat",,(D) of 0 by 0 matrices 
with entries in D, whose underlying set is [by definition, compare [3, XIII § 1] and [2, 
Section 10, No. 1-7]] the set of functions from 0 x 0 to D, has exactly one element 
(namely the function [with graph] 0) which is thus both the identity element and the 
zero element, and hence every element in that ring is invertible. Hence M"" is invertible, 
i.e. 0 E P(!J )inv, so P(!J )inv is non-empty and hence admits a maximal element I 

Let :£( M) : Dr! ~ Dr! be the linear transformation represented by M. [Thus the choice 
ofthe basis (vD (resp. (vj » for v'ource (resp._ Vtarget) all~ws us to 'identify'S' with :£(M).] 
Thus the composition pr! ~ I£(M)Dr! ~ pr,D 1 maps DI (regarded as a subspace of Dr!) 
isomorphically onto D 1

, and thus the linear subspace W =defKer(prl ° :£(M» C Dr! is 
such that Dr! = D i EB W. In other words, if C denotes !J - 1, pr C induces an isomorphism 
W ~ 'Dc. Composing the inverse of this isomorphism with :£(M) we get a map 
DC ~ ,-I W ~ I£(M)Dc ( c Dr!). Let N be the ex C matrix representing the last linear 
transform. 

CLAIM. For every non empty subset] c C, the matrix NJ is not invertible. 

PROOF. If NJ were invertible, we claim that it would follow that MluJ is invertible, 
contradicting the maximality of I in P(n)inv. To show this implication, we observe that 
the decomposition Dr! = DI EB W restricts to give an isom_orphism D 1uJ = DI EB~-I(DJ). 
The transformation prluJ ° :£(M) on this space carries D

j 
isomorphically onto a comple

ment of the subspace D J of D 1uJ, and it carries ~-I(DJ) into DJ. Therefore we see that 
:£(MluJ) =prluJ o:£(M)11uJ=idv'EBNJ, and thus it is invertible iff N J is. 

CLAIM. The set C can be totally ordered S.t. with respect to the resulting bijection 
C = {1, 2, ... , s} (s = I C I) one has that the matrix N is strictly upper triangular, i. e. N af3 = 0 
for f3 ~ a, a, f3 E C. 

PROOF. We use only the conclusion of the previous claim. The proof will be by 
induction on the size of C. If I CI = 0 on 1, then N = 0 by the hypotheses. If CI E C is an 
element such that Nd,cl = 0 V dEC, then we take CI to be the first element of C, and using 
the induction hypothesis we totally order C - {c l } so as to make NC-{cl} strictly upper 
triangular. So it remains to show that such a CI exists. If not, then V C E C, 3 dEC s.t. 
Ndc ,c O. Since by our hypotheses the diagonal entries of N are zero, we see that d ,c c. 
Starting from an arbitrary Co E C (recall that we may assume I CI > 1), we get a sequence 
co, CI, C2, ••• S.t. (Vi) NCi+bC, ,c 0, Ci+I,c Cj • If we continue the sequence until cICI, we see 
that two members of the sequence must be equal. Hence there exists a sequence of 
elements of C of the form ao, ai, ... , ak = ao, s.t. k ~ 2, Na'+ba,,c 0 VO ~ i < k. We call a 
(k+ 1)-tuple of elements of C having the above properties an allowed cycle of length k. 
(In the definition of 'allowed cycle', one may replace the condition k ~ 2 by k ~ 1; note 
that as the diagonal entries of N are zero, there is no allowed cycle oflength 1.) Consider 
an allowed cycle (ao, a h ... ,ak) of minimal length k. Then ao, ... , ak-I are distinct 
(because if a,=a., 0~r<s~k-1, we get a shorter allowed cycle (a"a'+l, ... ,as ». 
Furthermore, we have that N ajoa, = 0 if j 'F i + 1 (mod k). (Indeed, if j 'F i + 1 (mod k) and 
Naj.a,,cO, we get a shorter allowed cycle (aj,aj,aj+l, ... ,aj+t) of length t+1, where 
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O~ t < k -1 is s.t. j + t == i (mod k). (Here we define 'tin E 71., an = ar where r = n - [n/ k]k, 
i.e. m~am is regarded as a function on 71./ k71..).) Hence the matrix N, for J = {at. ... , ad 
is invertible (since the linear transformation it defines on D' sends Deai isomorphically 
onto Deai+

" 
'tIi E 71./ k71.). 

CLAIM. The set C with its ordering iI, ... , ik considered in the previous claim is such 
that S - 1;1 . . . . . 1;. is invertible 

PROOF. We have to show that if v E V - {O} then 

k 

S'v;':(T ..... T )v-v= ~ (T -l)«T ..... T )v) 
11 'k '- 1m '",+1 'k· 

m=J 

Indeed, suppose that 

k 

S'V= L (1;m -l)«1;m+l' .... 1;.)v) 
m=1 

holds. Since Im( 1;m - 1) = Deim, we have that the right-hand side of the equality (*) lies 
in L:=1 Deim, the subspace of Vlar,e! corresponding to DC c Dr!. Hence if we write 
('tII~ i~ n) Wi = j;(v), so that w =de (wt. ... , wn) E D n and L~=1 (2(M)w)iei = S'v, then 
(prD' 0 2(M))(w) = 0, i.e. w lies in the subspace W of Dr! defined above. Under the 
isomorphism W ~ prc/wDc, which was denoted above by (, the point w corresponds to 
the point (Wj)jeo Hence, by the definition of N, we have that 

2(N):.(wj)jeC ~(~j)jec, 

where 

(0) k 

L &ej=S'v = L j;J1;m+,' .... 1;.V)eik' 
jeC m=1 

i.e. we have 

Case (i): 1;Jv) = v 'til ~ a ~ k. In this case we have by the formula 1;Jx) = x+ j;Jx) Via 
that A (V) = 0 ('til ~ a ~ k). Thus the C-coordinates of ware zero, and since wE Wand 
( is an isomorphism we get that w = 0, i.e. v = 0, which gives a contradiction. 

Case (ii): 31 ~ a ~ k s.t. 1;Jv);,: v. Put 

der 
m =max{1~a~kITiJV);': v}. 

Thus j;J v) ;': 0 and k (v) = 0 'tim < A ~ k. 
(a) As (1;m+' . . . . . 1;.) v = v, (**) gives that ~im = j;m ( v) ;': 0, i.e. the im th coordinate of 

2(N)«wj)jec) is non-zero. 
(b) But 2(N)«Wj)jec) = (LjEC Nijwj);ec and N is strictly upper triangular for the 

above ordering of C, so ~im=LjECNim,jWj=Lm'>mNim,im,Wim'=O (as the Wim,=j;m'(v) are 
zero). This is a contradiction. 

REMARK 1. If we take in Theorem 1 (ii) S = id y, i.e. S' = Oy, then in the preceeding 
proof M = On> P(!J )inv = 0, i = 0, N = On> so the proof specializes to the fact that for 
every (A, <) E R s.t. A = !J, we have that 1(A,<) -1 is invertible. This implies that if V' ~ V" 
are subspaces of V stable under the operators (1;)I .. i .. n, and W =der V"/ V', then the 
transformations 1;: W ~ W induced by the 1;s cannot all be 1 w. (Indeed, if they were 
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alII, then R =def 1(.4.< ) -1 would induce the map 1 w -1 w = Ow on V"/ V', i.e. R( V") c V', 
but as R is invertible V" ~ RR( V"), so the inclusion V'::> R( V") gives an inequality 
dim V' ~ dim V" contradicting the fact that dim V" = dim V' + dim W> dim V' by 
hypothesis.) 

THEOREM 2. Suppose that V is a vector space of dimension n over a commutative field 
D, 0 c AutD ( V) a group generated by pseudo-reflections, and assume that there exists a 
non-degenerate O-invariant bilinear form B: V x V ~ D. Then the condition 

(0) VO=O 

implies 

(i) 3g E 0 s.t. g - S is invertible, 

and 

( ii) 3gE 0 s.t. 1 - gS and 1 - Sg are invertible. 

PROOF. Clearly, as in the proof of Theorem 1 (ii), replacing g by g-I we have that 
(i)~ (ii). To prove (i) assuming (0), we use Theorem 1; it thus suffices to know that there 
exist n elements gi = (x ~ X + j; (x) Vj) (1 ,,;;;; i,,;;;; n) in 0 s.t. (Vj) are linearly independent in 
V and (j;) are linearly independent in Vv. Fix a generating set ~ c 0 consisting of 
pseudo-reflections. Write ~ = {Yj = (x~x + h(x)v)lj E J}. The fact that V O = 0 means that 
(Vl: = )njEJ Ker(h) = O. Hence (by the 'duality' U ~ U.l. between subspaces of V and 
V.!., cf. [2, Section 7 No.5]) the hS generate VV, and hence it is possible to choose a 
basis for VV of the form (hi' ... ,h), jj E J. We take gj = Yj,(1,,;;;; i,,;;;; n), and check the 
following 

CLAIM. gh ... , gn satisfy condition B. 

PROOF. As hi' ... ,hn form a basis of VV, it remains to show that vit' ... ' Vjn form a 
basis of V. Note that the bilinear form B defines two D-isomorphisms V ~ VV, ¢I: v~ 
(x~B(x, v» and ¢2: v~(x~B(v, x)). The ¢J.L are O-equivariant, where 0 acts on VV 
by the contragredient action (g~(gt)-l). One checks that (1';)-1 is given by f~ 
f+j;aJ(v;), where aj=(1+j;(v;})-I E D*. Hence Im«y;)-I-l) = (h), while Im(Yj-l)= 
(vj ). 'V,uE{I,2}, the map ¢J.L: V~ VV must induce an isomorphism Im(Yj-1)~ 

Im( ( or;) -I -1), so ¢J.L (Vj) is proportional to h. Thus the statement that the one-dimensional 
spaces (Vj) are linearly independent (resp. span V) is equivalent to the statement that 
the one-dimensional spaces (h) are linearly independent (resp. span VV). So (Vj" ... , Vj) 
is a basis of V, as desired. 

REMARK 2. Under the hypotheses of Theorem 2, the following conditions are 
equivalent: 

(0) VO=O, 

(0)' V 0 = 0 (recall that V 0 = V / C~ 0 (g -1) V) ), 

condition (i) above, 
condition (ii) above, 

(iii) 3 I' E 0 s.t. I' -1 is invertible, 
(iv) When we regard V as a DO-module as in [2, page 453], V has no non zero 

DO-module subquotient which has a trivial 0 action. 
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PROOF. The fact that (O)¢:> (0)' follows by considering the G-isomorphism 4J1L (J-L = 1 
or 2), which induces an isomorphism 

Va .:;( VV)O = {j: V ~ D, D-linearlVg E GJ(g-l V ) = l(v)Vv E V} = (Vat. 

The statement «O)[or (O)']~(i) 1\ (ii» holds by Theorem 2. For the implication (i)~(iii)~ 
(iv) see Remark 1. Finally (0) (resp. (0)') is a special case of (iv), when the subquotient 
considered is a submodule of V (resp. a quotient module of V). 

REMARK 3. Theorem 2 and Remark 2 can be extended to the case where D is not 
necessarily commutative, u: D ~ D an anti-homomorphism, and B: V x V ~ D is a non 
degenerate G-invariant form which is u-sesquilinear (in the sense of [Bourbaki, Algebre, 
Chapter IX, Section 1]), i.e. B is Z-bilinear and B(av, ~lJ) = aB(v, lJ)u(~)Va, ~ E D, 
Vv, lJ) E V. In the proof of Remark 3, one uses the G-isomorphism 4Jl: u, V ~ VV or 
4J2: V ~ (u, vt, where u, V is the right D-module associated to the left DOP-module 
(DOP) ®v V, where the ® product is taken with respect to the ring homomorphism 
D~O"Dop. 
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