Independence of Boolean algebras and forcing

Miloš S. Kurilić
Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia and Montenegro, Yugoslavia

Received 5 January 2003; accepted 20 June 2003
Communicated by T. Jech

Abstract

If $\kappa \geqslant \omega$ is a cardinal, a complete Boolean algebra \mathbf{B} is called κ-dependent if for each sequence $\left\langle b_{\beta}: \beta<\kappa\right\rangle$ of elements of B there exists a partition of the unity, P, such that each $p \in P$ extends b_{β} or b_{β}^{\prime}, for κ-many $\beta \in \kappa$. The connection of this property with cardinal functions, distributivity laws, forcing and collapsing of cardinals is considered.

(C) 2003 Elsevier B.V. All rights reserved.

MSC: 03G05; 06E05; 03E35; 03E40
Keywords: Boolean algebras; Distributive laws; Boolean-valued models; Forcing

1. Introduction

The notation used in this paper is mainly standard. So, if $\left\langle\mathrm{B}, \wedge, \vee^{\prime},{ }^{\prime}, 0,1\right\rangle$ is a Boolean algebra, then B^{+}denotes the set of all positive elements of B . A subset $P \subset \mathrm{~B}^{+}$is an antichain if $p \wedge q=0$ for each different $p, q \in P$. If, in addition $\bigvee P=1$, then P is called a partition of the unity. The cardinal $\mathrm{c}(\mathrm{B})=\sup \{|P|: P$ is an antichain in B$\}$ is the cellularity of B . A subset $D \subset \mathrm{~B}^{+}$is said to be dense if for each $p \in \mathrm{~B}^{+}$there exists $q \in D$ such that $q \leqslant p$. The algebraic density of B is the cardinal $\pi(\mathrm{B})=\min \{|D|: D$ is dense in B$\}$. A set $D \subset \mathrm{~B}$ is called open if for each $p \in D$ and $q \leqslant p$ there holds $q \in D$. If $\kappa \geqslant \omega$ and $\lambda \geqslant 2$ are cardinals, by ${ }^{<\kappa} \lambda$ we denote the set $\bigcup_{\xi<\kappa}^{\xi} \lambda$ ordered by the reversed inclusion and by $\operatorname{Col}(\kappa, \lambda)$ the Boolean completion of this partial order, the (κ, λ)-collapsing algebra.

In order to simplify notation, for $p \in \mathbf{B}$ and $B \subset \mathbf{B}$ we write $p \prec B$ if $p \leqslant b$ for some $b \in B$. Also, if $p, b \in \mathrm{~B}^{+}$, we say that b splits p (p is splitted by b) if $p \wedge b>0$ and

[^0]$p \wedge b^{\prime}>0$, that is if $p \nprec\left\{b, b^{\prime}\right\}$. Specially, a set X splits a set A if the sets $A \cap X$ and $A \backslash X$ are non-empty. Finally, if κ is a cardinal, we say that a property $P(\beta)$ holds for almost all $\beta \in \kappa$ if $|\{\beta \in \kappa: \neg P(\beta)\}|<\kappa$.

The property of complete Boolean algebras investigated in this paper can be introduced as a modification of the ($\kappa, 2$)-distributive law (see [4,6,7]). Namely, a complete Boolean algebra B is said to be $(\kappa, 2)$-distributive if and only if the equality $\bigwedge_{\beta<\kappa} \bigvee_{n<2} p_{\beta n}=\bigvee_{f: \kappa \rightarrow 2} \bigwedge_{\beta<\kappa} p_{\beta f(\beta)}$ holds for each double sequence $\left\langle p_{\beta n}:\langle\beta, n\rangle\right.$ $\in \kappa \times 2\rangle$ of elements of B , if and only if in each generic extension $V_{\mathrm{B}}[G]$ every subset of κ belongs to the ground model V and, finally, if and only if
for each sequence $\left\langle b_{\beta}: \beta<\kappa\right\rangle \in^{\kappa} \mathrm{B}$ there exists a partition of the unity, P, such that each $p \in P$ satisfies $p \prec\left\{b_{\beta}, b_{\beta}^{\prime}\right\}$ for all $\beta \in \kappa$.

So, a complete Boolean algebra B will be called κ-dependent if and only if
for each sequence $\left\langle b_{\beta}: \beta<\kappa\right\rangle \in^{\kappa} \mathrm{B}$ there exists a partition of the unity, P, such that each $p \in P$ satisfies $p \prec\left\{b_{\beta}, b_{\beta}^{\prime}\right\}$ for κ-many $\beta \in \kappa$.
Otherwise, B will be called κ-independent. The algebra B will be called strongly κ independent, if and only if
there exists a sequence $\left\langle b_{\beta}: \beta<\kappa\right\rangle \in{ }^{\kappa} \mathrm{B}$ such that each positive $p \in \mathrm{~B}$ is splitted by b_{β} for almost all $\beta \in \kappa$.

In this paper we investigate what can be said about κ-independence of complete Boolean algebras in general. So, in Sections 2 and 3, after establishing some algebraic and forcing equivalents of the property, we restrict our attention firstly to atomless Boolean algebras (since atomic algebras are κ-dependent for all infinite cardinals κ) and secondly, considering an atomless algebra B, to cardinals which are either regular and between $\mathfrak{h}_{2}(B)=\min \{\kappa$: B is not $(\kappa, 2)$-distributive $\}$ and $\pi(B)$, or singular of cofinality $\leqslant \pi(\mathrm{B})$ (since for all other cardinals B is κ-dependent). Regarding regular cardinals it turns out that "everything is possible" if, for example, the GCH holds.

In Section 4 we show that, under some reasonable conditions (specially, under the GCH), collapse of cardinals implies independence, and that (in ZFC) the algebras $\operatorname{Col}(\kappa, \lambda)$ are θ-independent for all possible values of θ.

In Section 5 singular cardinals are considered. It is shown that for a singular κ, $\operatorname{cf}(\kappa)$-independence implies κ-independence and investigated when dependence of B on an unbounded subset of a singular cardinal κ implies κ-dependence of B.

2. Algebraic and forcing equivalents

If B is a complete Boolean algebra in the universe (ground model) V and $G \subset B$ a B-generic filter over V, then $V_{\mathrm{B}}[G]$ or briefly $V[G]$ will denote the corresponding generic extension. If κ is a cardinal in V, then by Old_{κ} we denote the set of all κ sized subsets of κ belonging to V, that is $\operatorname{Old}_{\kappa}=\left([\kappa]^{\kappa}\right)^{V}$. A subset X of κ belonging
to $V[G]$ is called independent if it splits all $A \in \operatorname{Old}_{k}$. Otherwise, if $A \subset X$ or $A \subset \kappa \backslash X$ for some $A \in \operatorname{Old}_{\kappa}$, the set X is called dependent.

Theorem 1. For each complete Boolean algebra B and each infinite cardinal κ the following conditions are equivalent:
(a) B is κ-dependent, that is for each sequence $\left\langle b_{\beta}: \beta<\kappa\right\rangle \in{ }^{\kappa} \mathrm{B}$ there exists a partition of the unity, P, such that for each $p \in P, p \prec\left\{b_{\beta}, b_{\beta}^{\prime}\right\}$ for κ-many $\beta \in \kappa$.
(b) $\bigvee_{A \in[\kappa]^{\kappa}}\left(\bigwedge_{\beta \in A} b_{\beta}\right) \vee\left(\bigwedge_{\beta \in A} b_{\beta}^{\prime}\right)=1$, for each sequence $\left\langle b_{\beta}: \beta<\kappa\right\rangle \in^{\kappa} \mathrm{B}$.
(c) In each generic extension $V_{\mathrm{B}}[G]$ each subset of κ is dependent.
(d) In each generic extension $V_{\mathrm{B}}[G]$ each unbounded subset of κ is dependent.

If κ is a regular cardinal, then each of these conditions is equivalent to the condition
(e) For each $C \in[B]^{\kappa}$ the set $D_{C}=\left\{p \in \mathrm{~B}^{+}: p \prec\left\{c, c^{\prime}\right\}\right.$ for κ-many $\left.c \in C\right\}$ is dense in B .

Proof. ($\mathrm{a} \Rightarrow \mathrm{b}$). Let (a) hold and $\left\langle b_{\beta}: \beta<\kappa\right\rangle \in{ }^{\kappa} \mathrm{B}$. If P is the corresponding partition of the unity provided by (a) then each $p \in P$ extends b_{β} for κ-many $\beta \in \kappa$ or extends b_{β}^{\prime} for κ-many $\beta \in \kappa$, so, there is $A \in[\kappa]^{\kappa}$ such that $p \leqslant \bigwedge_{\beta \in A} b_{\beta}$ or $p \leqslant \bigwedge_{\beta \in A} b_{\beta}^{\prime}$. Hence $1=\bigvee P \leqslant \bigvee_{A \in[\kappa]^{k}}\left(\bigwedge_{\beta \in A} b_{\beta}\right) \vee\left(\bigwedge_{\beta \in A} b_{\beta}^{\prime}\right)$.
($\mathrm{b} \Rightarrow \mathrm{c}$). Let condition (b) hold and let $V[G]$ be a generic extension containing $X \subset \kappa$. Then $X=\tau_{G}$ for some B -name τ. Applying (b) to the sequence $b_{\beta}=\|\check{\beta} \in \tau\|, \beta<\kappa$, we obtain $\left\|\exists A \in \operatorname{Old}_{\kappa^{\iota}}(A \subset \tau \vee A \subset \check{\kappa} \backslash \tau)\right\|=1$, so there is $A \in \operatorname{Old}_{\kappa}$ such that $A \subset X$ or $A \subset \kappa \backslash X$ and (c) is true.
($\mathbf{c} \Rightarrow \mathrm{a}$). Let (c) hold and $\left\langle b_{\beta}: \beta<\kappa\right\rangle \in^{\kappa} \mathrm{B}$. Then $\tau=\left\{\left\langle\check{\beta}, b_{\beta}\right\rangle: \beta \in \kappa\right\}$ is a B-name and $1 \Vdash \tau \subset \check{\kappa}$ so by (c) $1 \Vdash \exists A \in \operatorname{Old}_{k^{\prime}}(A \subset \tau \vee A \subset \breve{\kappa} \backslash \tau)$ or equivalently $1 \Vdash \neg \forall A \in \operatorname{Old}_{k^{\circ}}$ ($\neg A \subset \tau \wedge \neg A \subset \breve{\kappa} \backslash \tau)$. The last condition is equivalent to the condition

$$
\forall b \in \mathrm{~B}^{+} \exists p \leqslant b \exists A \in \operatorname{Old}_{\kappa}\left(\forall \beta \in A\left(p \leqslant b_{\beta}\right) \vee \forall \beta \in A\left(p \leqslant b_{\beta}^{\prime}\right)\right) .
$$

So the set $D=\left\{p \in \mathrm{~B}^{+}: p \prec\left\{b_{\beta}, b_{\beta}^{\prime}\right\}\right.$ for κ-many $\left.\beta \in \kappa\right\}$ is dense in B and open. Let $P \subset D$ be a maximal antichain of elements of D. Clearly P is a partition of the unity satisfying the condition from (a).
($c \Leftrightarrow d$). The direction " \Rightarrow " is trivial. Let (d) hold and $X \in V[G]$, where $X \subset \kappa$. If the set X is unbounded in κ then by (d) there exists $A \in \operatorname{Old}_{\kappa}$ such that $A \subset X$ or $A \subset \kappa \backslash X$. Otherwise, $X \subset \xi$ for some $\xi<\kappa$ and for $A=\kappa \backslash \xi$ we have $A \in \operatorname{Old}_{\kappa}$ and $A \subset \kappa \backslash X$.
($a \Rightarrow \mathrm{e}$). Let condition (a) hold. If $\kappa>|\mathrm{B}|$ then (e) is vacuously true. Let $\kappa \leqslant|\mathrm{B}|, C$ $\in[\mathrm{B}]^{\kappa}$ and let $C=\left\{c_{\beta}: \beta<\kappa\right\}$ be an 1-1 enumeration of C. By (a) there exists a partition of the unity, P, such that each $p \in P$ satisfies $p \prec\left\{c_{\beta}, c_{\beta}^{\prime}\right\}$, for κ-many $\beta \in \kappa$. Now, if $b \in \mathbf{B}^{+}$then there is $p \in P$ such that $p \wedge b=p_{1}>0$, thus $p_{1} \in D_{C}$ and $p \leqslant b$, so the set D_{C} is dense in B.
(e $\Rightarrow \mathrm{a}$, for a regular κ). Let condition (e) hold and $\kappa \in$ Reg. For a sequence $\left\langle b_{\beta}\right.$: $\beta<\kappa\rangle \in^{\kappa} \mathrm{B}$ we will prove that the set $D=\left\{p \in \mathrm{~B}^{+}: p \prec\left\{b_{\beta}, b_{\beta}^{\prime}\right\}\right.$ for κ-many $\left.\beta \in \kappa\right\}$ is dense in B.

If $\left|\left\{b_{\beta}: \beta<\kappa\right\}\right|=\kappa$ and $C=\left\{b_{\beta}: \beta<\kappa\right\}$ then, clearly, $\kappa \leqslant|\mathbf{B}|$ and by (e) the set D_{C} is dense in B. For $p \in D_{C}$ if $p \leqslant c$ for κ-many $c \in C$ then $p \leqslant b_{\beta}$ for κ-many $\beta \in \kappa$,
so $p \in D$. Otherwise $p \leqslant c^{\prime}$ for κ-many $c \in C$ and $p \in D$ again. So $D_{C} \subset C$ and D is dense in B.

If $\left|\left\{b_{\beta}: \beta<\kappa\right\}\right|<\kappa$, then, by the regularity of κ, there exists $b \in \mathrm{~B}$ such that $b_{\beta}=b$ for κ-many $\beta \in \kappa$. Let $q \in \mathrm{~B}^{+}$. Firstly, if $p_{1}=q \wedge b>0$ then $p_{1} \leqslant b_{\beta}$ for κ-many $\beta \in \kappa$ so $p \in D$. Otherwise, if $q \wedge b=0$, then $q \leqslant b_{\beta}^{\prime}$ for κ-many $\beta \in \kappa$ and $q \in D$. Thus D is dense in B.

Now, let $P \subset D$ be a maximal antichain in D. Then P is a partition of the unity satisfying (a).

Theorem 1 can be restated in the following way:
Theorem 2. For each complete Boolean algebra B and each infinite cardinal κ the following conditions are equivalent:
(a) B is κ-independent, that is there exist a sequence $\left\langle b_{\beta}: \beta<\kappa\right\rangle \in^{\kappa} \mathrm{B}$ and $q \in \mathrm{~B}^{+}$ such that each non-zero $p \leqslant q$ is splitted by b_{β} for almost all $\beta \in \kappa$.
(b) $\bigvee_{A \in[\kappa]^{\kappa}}\left(\bigwedge_{\beta \in A} b_{\beta}\right) \vee\left(\bigwedge_{\beta \in A} b_{\beta}^{\prime}\right)<1$, for some sequence $\left\langle b_{\beta}: \beta<\kappa\right\rangle \in{ }^{\kappa} \mathrm{B}$.
(c) In some extension $V_{\mathrm{B}}[G]$ there exists an independent subset $X \subset \kappa$.

Theorem 3. For each complete Boolean algebra B and each infinite cardinal κ the following conditions are equivalent:
(a) B is strongly κ-independent, that is there exists a sequence $\left\langle b_{\beta}: \beta<\kappa\right\rangle \in{ }^{\kappa} \mathrm{B}$ such that each positive $p \in \mathrm{~B}$ is splitted by b_{β} for almost all $\beta \in \kappa$.
(b) $\bigvee_{A \in[k]^{\kappa}}\left(\bigwedge_{\beta \in A} b_{\beta}\right) \vee\left(\bigwedge_{\beta \in A} b_{\beta}^{\prime}\right)=0$, for some sequence $\left\langle b_{\beta}: \beta<\kappa\right\rangle \in^{\kappa} B$.
(c) In each extension $V_{\mathrm{B}}[G]$ there exists an independent subset $X \subset \kappa$.

Proof. ($\mathrm{a} \Rightarrow \mathrm{b}$). Let $\left\langle b_{\beta}: \beta<\kappa\right\rangle$ be a sequence provided by (a). Suppose $\Lambda_{\beta \in A} b_{\beta}=$ $p>0$, for some $A \in[\kappa]^{\kappa}$. But then for some $\beta \in A, b_{\beta}$ splits p, which is impossible. So, for each $A \in[\kappa]^{\kappa}$ we have $\bigwedge_{\beta \in A} b_{\beta}=0$ and similarly $\bigwedge_{\beta \in A} b_{\beta}^{\prime}=0$ and (b) is proved. ($\mathrm{b} \Rightarrow \mathrm{c}$). Let $\left\langle b_{\beta}: \beta<\kappa\right\rangle$ be a sequence provided by (b). Then for $\tau=\left\{\left\langle\breve{\beta}, b_{\beta}\right\rangle: \beta \in \kappa\right\}$ we have $1 \Vdash \tau \subset \check{\kappa}$ and (b) implies $\| \tau$ splits all $A \in \operatorname{Old}_{\kappa^{\prime}} \|=1$.
$(\mathrm{c} \Rightarrow \mathrm{a})$. Let (c) hold. Then, by the Maximum principle (see [4]) there exists a name τ such that: (i) $1 \Vdash \tau \subset \check{\kappa}$; (ii) $1 \Vdash \forall A \in \operatorname{Old}_{k^{\wedge}}\left(A \cap \tau \neq \emptyset\right.$); (iii) $1 \Vdash \forall A \in \operatorname{Old}_{k^{\wedge}}(A \backslash \tau \neq \emptyset)$. Putting $b_{\beta}=\|\beta \in \tau\|$, for $\beta<\kappa$ and using (ii) we easily conclude that $\mid\left\{\beta \in \kappa: p \wedge b_{\beta}\right.$ $=0\} \mid<\kappa$, for each $p \in \mathrm{~B}^{+}$. Similarly, by (iii) we have $\left|\left\{\beta \in \kappa: p \wedge b_{\beta}^{\prime}=0\right\}\right|<\kappa$ for each $p \in \mathbf{B}^{+}$so, if $p \in \mathbf{B}^{+}$then $p \prec\left\{b_{\beta}, b_{\beta}^{\prime}\right\}$ for $<\kappa$-many $\beta \in \kappa$ and (a) is proved.

Remark 1. It is known (see [4, p. 65]) that if B is a weakly homogeneous c.B.a., $\varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ a formula of ZFC and $a_{1}, a_{2}, \ldots, a_{n} \in V$, then $\varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ holds in some iff it holds in all generic extensions of V by B. So considering parts (c) of the previous two theorems we conclude that a weakly homogeneous c .B.a. is κ-independent iff it is strongly κ-independent.

Theorem 4. If a complete Boolean algebra B is atomic, then it is κ-dependent for every infinite cardinal κ.

Proof. Although a proof by forcing arguments is evident, we will demonstrate a combinatorial one. Let $\left\langle b_{\beta}: \beta<\kappa\right\rangle \in{ }^{\kappa} B$. Since the algebra B is atomic, the set $\operatorname{At}(B)$ of all its atoms is a partition of the unity and (because atoms cannot be splitted) if $p \in \operatorname{At}(\mathrm{~B})$, then $p \prec\left\{b_{\beta}, b_{\beta}^{\prime}\right\}$ for all $\beta \in \kappa$. So, B is κ-dependent by definition.

3. Dependence, supportedness and distributivity

In this section we compare κ-dependence with some other forcing related properties of complete Boolean algebras and determine the position of the cardinals κ for which a given algebra can be κ-independent.

Theorem 5. A complete Boolean algebra B is κ-dependent for each cardinal κ satisfying $\operatorname{cf}(\kappa)>\pi(\mathrm{B})$.

Proof. On the contrary, suppose $\mathrm{cf}(\kappa)>\pi(\mathrm{B})$ and B is κ-independent. Then by Theorem 2 there is a sequence $\left\langle b_{\beta}: \beta<\kappa\right\rangle \in^{\kappa} B$ satisfying $\bigvee_{A \in[\kappa]^{\kappa}}\left(\bigwedge_{\beta \in A} b_{\beta}\right) \vee\left(\bigwedge_{\beta \in A} b_{\beta}^{\prime}\right)=$ $c<1$, thus we have: (i) $\bigwedge_{\beta \in A} b_{\beta} \leqslant c$, for each $A \in[\kappa]^{\kappa}$; and (ii) $0<c^{\prime} \leqslant \bigvee_{\beta \in A} b_{\beta}$, for each $A \in[\kappa]^{k}$.

By (ii), c^{\prime} is compatible with b_{β} for almost all $\beta \in \kappa$, thus the set $A_{c^{\prime}}=\left\{\beta \in \kappa: b_{\beta} \wedge c^{\prime}\right.$ $>0\}$ is of size κ. Let $D \subset \mathrm{~B}^{+}$be a dense subset of B of size $\pi(\mathrm{B})$. Now, for each $\beta \in A_{c^{\prime}}$ we pick $d_{\beta} \in D$ such that $d_{\beta} \leqslant b_{\beta} \wedge c^{\prime}$, obtaining a function from $A_{c^{\prime}}$ to D. Since $|D|<\operatorname{cf}(\kappa)$ there exists $d \in D$ such that $d_{\beta}=d$ for κ-many $\beta \in A_{c^{\prime}}$. Thus the set $A_{d}=\left\{\beta \in A_{c^{\prime}}: d \leqslant b_{\beta} \wedge c^{\prime}\right\}$ is of cardinality κ and $\bigwedge_{\beta \in A_{d}} b_{\beta} \wedge c^{\prime} \geqslant d>0$, which is impossible by (i).

In [10] a complete Boolean algebra B is called κ-supported (for a cardinal $\kappa \geqslant \omega$) iff the equality $\bigwedge_{\alpha<\kappa} \bigvee_{\beta>\alpha} b_{\beta}=\bigvee_{A \in[\kappa]^{\kappa}} \bigwedge_{\beta \in A} b_{\beta}$ is satisfied for each sequence $\left\langle b_{\beta}: \beta\right.$ $\langle\kappa\rangle$ of elements of \mathbf{B}. Otherwise, the algebra B is called κ-unsupported. In the sequel we will use the following facts proved in [10]:

Fact 1. Let B be an arbitrary complete Boolean algebra. Then
(a) B is κ-unsupported for each singular cardinal κ.
(b) B is κ-supported if and only if in every generic extension κ is a regular cardinal and each new set $X \in[\kappa]^{\kappa}$ has an old subset of size κ.
(c) $\operatorname{Unsupp}(B)=\{\kappa \in$ Reg: B is κ-unsupported $\} \subset\left[\mathfrak{h}_{2}(B), \pi(B)\right]$.
(d) If $2^{<\mathfrak{h}_{2}(B)}=\mathfrak{h}_{2}(B)$, specially, if $\mathfrak{h}_{2}(B)=\aleph_{0}$, then B is $\mathfrak{h}_{2}(\mathrm{~B})$-unsupported. If $0^{\#} \notin V$ and forcing by B preserves $\mathfrak{h}_{2}(\mathrm{~B})^{+}$, then B is $\mathfrak{h}_{2}(\mathrm{~B})$-unsupported.

Theorem 6. Let B be a c. B. a. and $\operatorname{Indep}(\mathrm{B})=\{\kappa \in \operatorname{Reg}: B$ is κ-independent $\}$. Then
(a) If B is κ-supported, it is κ-dependent.
(b) $\operatorname{Indep}(B) \subset \operatorname{Unsupp}(B) \subset\left[\mathfrak{h}_{2}(B), \pi(B)\right]$.

Proof. The assertion (a) follows from forcing characterizations given in Fact 1(b) and Theorem 1(d). The first inclusion in (b) is a consequence of (a), while the second
is Fact $1(c)$. The inclusion $\operatorname{Indep}(B) \subset\left[\mathfrak{h}_{2}(B), \pi(B)\right]$ also follows from Theorem 5 and the fact that ($\kappa, 2$)-distributivity implies κ-dependence.

Remark 2. There exist κ-dependent algebras which are not κ-supported. Firstly, if κ is a singular cardinal and $\operatorname{cf}(\kappa)>\pi(\mathrm{B})$, then B is κ-dependent by Theorem 5 and κ unsupported by Fact 1 (a). Also there are such examples for regular cardinals κ. Namely, Sacks' perfect set forcing (see [13,3]) and Miller's rational perfect set forcing (see [12]) produce new subsets of ω, but all of them are dependent. So, the corresponding Boolean algebras are ω-dependent by Theorem 1 and ω-unsupported by Fact 1(d). For uncountable regular cardinals we mention the forcing of Kanamori (see [8]) which has the observed property for κ strongly inaccessible.

Remark 3. κ-dependence and weak (κ, κ)-distributivity are unrelated properties. A complete Boolean algebra B is called weakly (κ, λ)-distributive if and only if the equality $\bigwedge_{\alpha<\kappa} \bigvee_{\beta<\lambda} b_{\alpha \beta}=\bigvee_{f: \kappa \rightarrow \lambda} \bigwedge_{\alpha<\kappa} \bigvee_{\beta<f(\alpha)} b_{\alpha \beta}$ holds for each double sequence $\left\langle b_{\alpha \beta}:\langle\alpha, \beta\rangle \in \kappa \times \lambda\right\rangle$ of elements of B , if and only if in each generic extension $V_{\mathrm{B}}[G]$ every function $f: \kappa \rightarrow \lambda$ is majorized by some function $g: \kappa \rightarrow \lambda$ belonging to V. Since both κ-dependence and weak (κ, κ)-distributivity are weakenings of ($\kappa, 2$)-distributivity (and, moreover, of κ-supportedness) it is natural to ask whether these two properties are related. The answer is "No". It is easy to check that a c.B.a. B is weakly (ω, ω)-distributive iff forcing by B does not produce weak dominating functions from ω to $\omega\left(f \in{ }^{\omega} \omega \cap V[G]\right.$ is a w.d.f. iff for each $g \in{ }^{\omega} \omega \cap V$ the set $\{n \in \omega: g(n)<f(n)\}$ is infinite). Now, firstly, it is well-known that adding a random real to V produces independent subsets of ω, but does not produce w.d.f.'s. Secondly, Miller's rational perfect set forcing produces w.d.f.'s, but does not produce independent subsets of ω (see [12]).

According to Theorems 5 and 6 , the question on κ-independence of a given Boolean algebra remains open for $\kappa \in \operatorname{Reg} \cap\left[\mathfrak{h}_{2}(B), \pi(B)\right]$ and for singular κ satisfying $\operatorname{cf}(\kappa)$ $\leqslant \pi(B)$. In the sequel we show that for regular cardinals everything is possible if, for example, the GCH is assumed. Singular cardinals will be considered later.

Theorem 7. Let $\mathrm{B}_{i}, \quad i \in I$, be a family of complete Boolean algebras. Then $\operatorname{Indep}\left(\prod_{i \in I} \mathrm{~B}_{i}\right)=\bigcup_{i \in I} \operatorname{Indep}\left(\mathrm{~B}_{i}\right)$.

Proof. Let $\mathrm{B}=\prod_{i \in I} \mathrm{~B}_{i}$. It is known that if $V_{\mathrm{B}}[G]$ is a B -generic extension, then $V_{\mathrm{B}}[G]=V_{\mathrm{B}_{i}}[H]$ for some $i \in I$ and some B_{i}-generic filter H, and conversely, if $V_{\mathrm{B}_{i}}[H]$ is a B_{i}-generic extension, then $V_{\mathrm{B}_{i}}[H]=V_{\mathrm{B}}[G]$ for some B -generic filter G. Now, using characterization given in Theorem 2(c), we easily finish the proof.

Theorem 8. For each set S of regular cardinals κ satisfying $2^{<\kappa}=\kappa$ there exists a complete Boolean algebra B such that $\operatorname{Indep}(\mathrm{B})=S$. If $|S|>1$, then B is not strongly λ-independent for any regular λ. Specially, under the GCH, for each set $S \subset \operatorname{Reg}$ there is a complete Boolean algebra B satisfying $\operatorname{Indep}(\mathrm{B})=S$.

Proof. It is easy to show that if κ is a regular cardinal, then $\mathfrak{h}_{2}(\operatorname{Col}(\kappa, 2))=\kappa$ and $\pi(\operatorname{Col}(\kappa, 2))=2^{<\kappa}$, so, under the assumptions, for each $\kappa \in S$ we have $\operatorname{Indep}(\operatorname{Col}(\kappa, 2))$
$\subset\{\kappa\}$. On the other hand, if G is a $<\kappa 2$-generic filter over V, then a simple density argument shows that $f_{G}=\bigcup G: \kappa \rightarrow 2$ is the characteristic function of an independent subset of κ. Thus $\operatorname{Indep}(\operatorname{Col}(\kappa, 2))=\{\kappa\}$ and by the previous theorem $\mathrm{B}=\prod_{\kappa \in S} \operatorname{Col}(\kappa, 2)$ satisfies $\operatorname{Indep}(\mathrm{B})=S$. If $|S|>1$ and $\lambda \in \operatorname{Reg}$, then we choose $\kappa \in S \backslash\{\lambda\}$. In extensions by $\operatorname{Col}(\kappa, 2)$ each subset of λ is dependent, so, by Theorem 3, B is not strongly λ-independent. Finally, the GCH implies $2^{<\kappa}=\kappa$ for each κ.

4. Independence and collapsing

Theorem 9. Let λ be a cardinal in V and let $V[G]$ be a generic extension of V. Then (a) If $\left|\left(\lambda^{+}\right)^{V}\right|^{V[G]}=|\lambda|^{V[G]}$ and if λ obtains an independent subset in $V[G]$, then $\left(\lambda^{+}\right)^{V}$ obtains an independent subset too.
(b) If $|\lambda|^{V[G]}=\kappa$ and if $\left(\mu^{\kappa}\right)^{V} \leqslant \lambda$ for each V-cardinal $\mu<\lambda$, then each $\theta \in \operatorname{Card}^{V}$ satisfying $\kappa \leqslant \theta \leqslant \lambda$ obtains an independent subset in $V[G]$.
(c) If $\left|\left(2^{\lambda}\right)^{V}\right|^{V[G]}=|\lambda|^{V[G]}$, then each $\theta \in \operatorname{Card}^{V}$ satisfying $|\lambda|^{V[G]} \leqslant \theta \leqslant\left(2^{\lambda}\right)^{V}$ obtains an independent subset in $V[G]$.

Proof. (a) Let $\left|\lambda^{+}\right|^{V[G]}=|\lambda|^{V[G]}=\kappa$. Then $\mathrm{cf}^{V[G]}\left(\lambda^{+}\right)=\rho \leqslant \kappa$ and in $V[G]$ there is an increasing sequence $\left\langle\alpha_{\xi}: \xi<\rho\right\rangle$ of elements of λ^{+}, unbounded in λ^{+}.
We will show that in $V[G]$ there exists a sequence $\left\langle\beta_{\xi}: \xi<\rho\right\rangle \in^{\rho}\left(\lambda^{+}\right)$such that $\lambda^{+}=\bigcup_{\xi<\rho}\left[\beta_{\xi}, \beta_{\xi+1}\right)$ and $\left|\left[\beta_{\xi}, \beta_{\xi+1}\right)\right|^{V}=\lambda$, for each $\xi<\rho$. Firstly, let $\rho>\omega$. Using recursion in $V[G]$ we define $\beta_{\xi}, \xi<\rho$, by: $\beta_{0}=0 ; \beta_{\xi+1}=\max \left\{\alpha_{\xi}, \beta_{\xi}+\lambda\right\}$ (where $\beta_{\xi}+\lambda$ is the ordinal addition) and $\beta_{\gamma}=\sup \left\{\beta_{\xi}: \xi<\gamma\right\}$, if γ is a limit ordinal. Since the ordinal addition is an absolute operation and since each subset of λ^{+}of size $<\rho$ is bounded in λ^{+}, an easy induction shows that $\beta_{\xi} \in \lambda^{+}$, for each $\xi<\rho$. So $\bigcup_{\xi<\rho}\left[\beta_{\xi}, \beta_{\xi+1}\right) \subset \lambda^{+}$ and we will prove the equality. Let $\delta<\lambda^{+}$. The sequence $\left\langle\beta_{\xi}: \xi<\rho\right\rangle$ is (clearly) unbounded in λ^{+}so there exists $\xi_{0}=\min \left\{\xi<\rho: \delta<\beta_{\xi}\right\}$. Now, ξ_{0} is a successor ordinal (otherwise we would have $\xi_{0} \leqslant \delta$) say $\xi_{0}=\xi^{\prime}+1$. Thus $\delta \in\left[\beta_{\xi^{\prime}}, \beta_{\xi^{\prime}+1}\right.$) and the equality is proved. If $\rho=\omega$, then the sequence $\left\langle\beta_{\xi}: \xi<\omega\right\rangle$ defined by: $\beta_{0}=0$ and $\beta_{\xi+1}=\max \left\{\alpha_{\xi}, \beta_{\xi+1}+\lambda\right\}$, satisfies two desired properties.

In V, the sets $\left[\beta_{\xi}, \beta_{\xi+1}\right.$) are of size λ, so, working in $V[G]$ we can pick bijections $f_{\xi}: \lambda \rightarrow\left[\beta_{\xi}, \beta_{\xi+1}\right), \xi<\rho$, belonging to V. Let $X \in V[G]$ be an independent subset of λ. We will prove that $Y=\bigcup_{\xi<\rho} f_{\xi}[X]$ is an independent subset of λ^{+}.
Let $A \in \operatorname{Old}_{\lambda^{+}}$. Suppose $\left|A \cap\left[\beta_{\xi}, \beta_{\xi+1}\right)\right|^{V}<\lambda$, for every $\xi<\rho$. Then the ordinals δ_{ξ} $=\operatorname{type}^{V}\left(A \cap\left[\beta_{\xi}, \beta_{\xi+1}\right)\right)$ are less than λ and in $V[G]$ the well-ordered set A is isomorphic to $\sum_{\xi<\rho} \delta_{\xi}$. Clearly, if $\operatorname{type}^{V}(\rho \cdot \lambda)=\eta$, where $\rho \cdot \lambda$ denotes the ordinal product, then $|\eta|^{V}=\lambda<\lambda^{+}$. In $V[G]$ the set A is isomorphic to a subset of η, so type ${ }^{V[G]}(A) \leqslant \eta$ and, since type is an absolute notion, we have type ${ }^{V}(A) \leqslant \eta<\lambda^{+}$. But $A \in \operatorname{Old}_{\lambda^{+}}$implies $\operatorname{type}^{V}(A)=\lambda^{+}$. A contradiction. Thus there exists $\xi_{0}<\rho$ such that $\left|A \cap\left[\beta_{\xi_{0}}, \beta_{\xi_{0}+1}\right)\right|^{V}=\lambda$ hence $A \cap\left[\beta_{\xi_{0}}, \beta_{\xi_{0}+1}\right) \cap f_{\xi_{0}}[X] \neq \emptyset$ and $A \cap\left[\beta_{\xi_{0}}, \beta_{\xi_{0}+1}\right) \backslash f_{\xi_{0}}[X] \neq \emptyset$ which implies $A \cap Y \neq \emptyset$ and $A \backslash Y \neq \emptyset$.
(b) In $V[G] \lambda$ is an ordinal of size κ, so $\operatorname{cf}^{V[G]}(\lambda)=\rho \leqslant \kappa$ and there exists an increasing sequence $\left\langle\alpha_{\delta}: \delta<\rho\right\rangle$ unbounded in λ. W.l.o.g. we suppose $\alpha_{\delta} \geqslant \kappa$. In V,
each ordinal α_{δ} is of size $<\lambda$ so, by the assumption, the set $\left[\alpha_{\delta}\right]^{\kappa}$ is of size $\leqslant \lambda$ in V and of size κ in $V[G]$. Consequently in $V[G]$ the set $\bigcup_{\delta<\rho}\left(\left[\alpha_{\delta}\right]^{\kappa}\right)^{V}$ is of size κ, hence there exists an enumeration $\bigcup_{\delta<\rho}\left(\left[\alpha_{\delta}\right]^{\kappa}\right)^{V}=\left\{A_{\xi}: \xi<\kappa\right\}$. By recursion in $V[G]$ we define the sequences $\left\langle\alpha_{\xi}: \xi<\kappa\right\rangle$ and $\left\langle\beta_{\xi}\right.$: $\left.\xi<\kappa\right\rangle$ by

$$
\begin{aligned}
& \alpha_{\xi}=\min \left(A_{\xi} \backslash\left(\left\{\alpha_{\zeta}: \zeta<\xi\right\} \cup\left\{\beta_{\zeta}: \zeta<\xi\right\}\right)\right), \\
& \beta_{\xi}=\min \left(A_{\xi} \backslash\left(\left\{\alpha_{\zeta}: \zeta \leqslant \xi\right\} \cup\left\{\beta_{\zeta}: \zeta<\xi\right\}\right)\right) .
\end{aligned}
$$

Since $\xi<\kappa$ implies $|\xi|^{V}<\kappa$, the sequences are well-defined.
Let $Y=\left\{\alpha_{\xi}: \xi<\kappa\right\}$ and let θ be a cardinal in V, where $\kappa \leqslant \theta \leqslant \lambda$. We will prove that $Y_{\theta}=Y \cap \theta$ is an independent subset of θ.

If $A \in \operatorname{Old}_{\theta}$, then type ${ }^{V}(A)=\theta$ and in V there exists an isomorphism $f: \theta \rightarrow A$. If $\theta<\lambda$, then $f[\kappa] \subset \theta<\lambda$ and if $\theta=\lambda$ then $\kappa<\lambda$ implies $f[\kappa] \subset f(\kappa)<\lambda$. So, $f[\kappa]$ is a bounded subset of λ and there exists $\delta<\rho$ such that $f[\kappa] \subset \alpha_{\delta}$. Clearly, the set $f[\kappa]$ is of size κ in V so $f[\kappa] \in\left(\left[\alpha_{\delta}\right]^{\kappa}\right)^{V}$ and consequently there exists $\xi_{0}<\kappa$ such that $f[\kappa]=A_{\xi_{0}}$. Now, $\alpha_{\xi_{0}} \in f[\kappa] \cap Y_{\theta}$ and $\beta_{\xi_{0}} \in f[\kappa] \backslash Y_{\theta}$, which implies $A \cap Y_{\theta} \neq \emptyset$ and $A \backslash Y_{\theta} \neq \emptyset$.
(c) Let $\left|\left(2^{\lambda}\right)^{V}\right|^{V[G]}=|\lambda|^{V[G]}=\kappa$. In V, for $\mu<2^{\lambda}$ we have $\mu^{\kappa} \leqslant 2^{\lambda \kappa}=2^{\lambda}$ (since $\kappa \leqslant \lambda$) and we apply (b).

Corollary 1. (GCH) If in some extension $V_{\mathrm{B}}[G]$ a cardinal λ is collapsed to κ, then each cardinal θ satisfying $\kappa \leqslant \theta \leqslant \lambda$ obtains an independent subset in $V_{B}[G]$ and consequently the algebra B is θ-independent for all such θ.

Proof. Under the assumptions, for each $\mu<\lambda$ there holds $\mu^{\kappa} \leqslant \max \left\{\kappa^{\kappa}, \mu^{\mu}\right\}=$ $\max \left\{\kappa^{+}, \mu^{+}\right\} \leqslant \lambda$ and we apply (b) of the previous theorem.

Problem 1. Is Corollary 1 a theorem of ZFC?

Example 1 (Independence of the algebras of Bukovský and Namba). Let $\kappa \geqslant \aleph_{2}$ be a regular cardinal such that $2^{<\kappa}<2^{\kappa}, \aleph_{\kappa}$ and that $\mu^{\omega}<\kappa$, for all $\mu<\kappa$. Let $\mathrm{B}=$ r.o. $(\mathrm{Nm}(\kappa))$ or $\mathrm{B}=$ r.o. $(\operatorname{Pf}(\kappa))$, where $\mathrm{Nm}(\kappa)$ is the generalized Namba forcing and $\operatorname{Pf}(\kappa)$ the generalized perfect forcing (see [5]). Since by Theorem 3.5 of [2] the condition $2^{<\kappa}<2^{\kappa}, \aleph_{\kappa}$ implies the existence of a 2^{κ}-sized mad family on κ, using Theorem 14 of [11] we conclude that if in a generic extension $V_{\mathrm{B}}[G]$ the cardinal κ is collapsed to κ_{0}, then each cardinal θ satisfying $\kappa_{0} \leqslant \theta \leqslant 2^{\kappa}$ is collapsed to κ_{0} too and $V_{\mathrm{B}}[G]$ is a $|\theta|=\kappa_{0}$-minimal extension. Now, since $\mu<2^{\kappa}$ implies $\mu^{\kappa_{0}} \leqslant 2^{\kappa}$, using Theorem 9(b) we conclude that B is θ-independent for all such θ. We note that if $\kappa=\aleph_{2}$ or if $0^{\#}$ does not exist, then $\kappa_{0}=\aleph_{1}^{V}$ (see [11]).

Theorem 10. If $\kappa \geqslant \omega$ and $\lambda \geqslant 2$ are cardinals, then the algebra $\mathrm{B}=\operatorname{Col}(\kappa, \lambda)$ is strongly θ-independent for each cardinal $\theta \in\left[\operatorname{cf}(\kappa), \lambda^{<\kappa}\right]=\left[\mathfrak{h}_{2}(\mathrm{~B}), \pi(\mathrm{B})\right]$.

Proof. We distinguish the cases κ is regular and κ is singular and firstly prove two auxiliary claims

Claim 1. If κ is a regular cardinal and $\lambda \geqslant \kappa$, then for each cardinal μ satisfying $\kappa \leqslant \mu \leqslant \lambda$ the algebra $\operatorname{Col}(\kappa, \lambda)$ is strongly μ-independent.

Proof of Claim 1. Let G be an arbitrary ${ }^{<\kappa} \lambda$-generic filter. Then $f_{G}=\bigcup G: \kappa \rightarrow \lambda$ and we will show that the set

$$
Y=\left\{\zeta \in \mu \cap f_{G}[\kappa]: \min f_{G}^{-1}[\{\zeta\}] \in \operatorname{Even}\right\}
$$

(where Even is the class of even ordinals) is an independent subset of μ. Let $A \in$ $\left([\mu]^{\mu}\right)^{V}$. Working in V we prove that the set

$$
D_{A}=\left\{\varphi \in^{<\kappa} \lambda: \exists \zeta \in A \exists \xi \in \kappa \cap \operatorname{Even} \varphi(\xi)=\zeta \notin \varphi[\xi]\right\}
$$

is dense in ${ }^{<\kappa} \lambda$. Let $\psi \in{ }^{<\kappa} \lambda$ be arbitrary and let dom $\psi=\alpha$. Clearly $\psi\left[\psi^{-1}[\mu]\right] \subset \mu$ and since $\alpha<\kappa$, we have

$$
\left|\psi\left[\psi^{-1}[\mu]\right]\right| \leqslant\left|\psi^{-1}[\mu]\right| \leqslant|\alpha|<\kappa \leqslant \mu
$$

Now, since $|A|=\mu$, we can choose $\zeta \in A \backslash \psi\left[\psi^{-1}[\mu]\right]$. Also, we choose $\xi \in$ Even $\cap \kappa \backslash \alpha$ and $\zeta^{\prime} \in \mu \backslash\{\zeta\}$ and define $\varphi: \xi+1 \rightarrow \lambda$ by

$$
\varphi(\beta)= \begin{cases}\psi(\beta) & \text { if } \beta \in \operatorname{dom} \psi \\ \zeta^{\prime} & \text { if } \beta \in \xi \backslash \operatorname{dom} \psi \\ \zeta & \text { if } \beta=\xi\end{cases}
$$

Clearly $\varphi \leqslant \psi$ and for the proof that $\varphi \in D_{A}$ it remains to be shown $\zeta \notin \varphi[\xi]$. For $\gamma \in \xi$, if $\gamma \notin \operatorname{dom} \psi$ then $\varphi(\gamma)=\zeta^{\prime} \neq \zeta$. Otherwise, if $\gamma \in \operatorname{dom} \psi$, then $\varphi(\gamma)=\psi(\gamma)$ and we have two possibilities. Firstly, if $\psi(\gamma) \notin \mu$, then $\varphi(\gamma) \neq \zeta$ since $\zeta \in \mu$. Secondly, if $\psi(\gamma) \in \mu$, then $\gamma \in \psi^{-1}[\mu]$ thus $\varphi(\gamma) \in \psi\left[\psi^{-1}[\mu]\right]$ so, by choice of ζ, we have $\varphi(\gamma) \neq \zeta$. The set D_{A} is dense.

Let $\varphi \in G \cap D_{A}, \zeta \in A, \xi \in \kappa \cap$ Even, $\varphi(\xi)=\zeta \notin \varphi[\xi]$. Since $\varphi \in G$ we have $\varphi \subset f_{G}$ so $f_{G}(\xi)=\zeta \notin f_{G}[\xi]$, and consequently $\min f_{G}^{-1}[\{\zeta\}]=\xi \in$ Even. Thus $\zeta \in A \cap Y$ and $A \cap Y \neq \emptyset$. The proof of $A \backslash Y \neq \emptyset$ is analogous and Y is an independent subset of μ.

Thus, in each generic extension by ${ }^{<\kappa} \lambda$, or equivalently by $\operatorname{Col}(\kappa, \lambda)$, the cardinal μ obtains an independent set, so, by Theorem 3 the algebra $\operatorname{Col}(\kappa, \lambda)$ is strongly μ-independent and Claim 1 is proved.

Claim 2. If κ is a singular cardinal and $\lambda \geqslant 2$, then in each generic extension by $\operatorname{Col}(\kappa, \lambda)$ the cardinal $\lambda^{<\kappa}$ is collapsed to $\operatorname{cf}(\kappa)$.

Proof of Claim 2. In V, let $\operatorname{cf}(\kappa)=\rho$ and let $\left\langle\kappa_{\xi}: \xi<\rho\right\rangle$ be an increasing sequence of cardinals less than κ, unbounded in κ. We prove that $\left|\left(\lambda^{\kappa_{\xi}}\right)^{V}\right|^{V[G]}=\rho$, for each $\xi<\rho$. In V let the bijections $f_{\xi, \zeta}: \kappa_{\xi} \rightarrow\left[\kappa_{\zeta}, \kappa_{\zeta}+\kappa_{\xi}\right), \zeta \in[\xi, \rho)$, be defined by $f_{\xi, \zeta}(\alpha)=\kappa_{\zeta}+\alpha$ (here + denotes the ordinal addition). If G is a $\operatorname{Col}(\kappa, \lambda)$-generic filter over V and
$f_{G}=\bigcup G: \kappa \rightarrow \lambda$, we prove that

$$
\left(^{\kappa_{\xi}} \lambda\right)^{V} \subset\left\{f_{G} \circ f_{\xi, \zeta}: \zeta \in[\xi, \rho)\right\}
$$

If $F \in\left({ }^{\kappa_{\xi}} \lambda\right)^{V}$ then it is easy to show that the set $D_{F}=\left\{\varphi \in\left({ }^{<\kappa} \lambda\right)^{V}: \exists \zeta \geqslant \xi\left(\kappa_{\zeta}+\right.\right.$ $\left.\left.\kappa_{\xi} \subset \operatorname{dom} \varphi \wedge \varphi \circ f_{\xi, \zeta}=F\right)\right\}$ is dense in $\left({ }^{<\kappa} \lambda\right)^{V}$. So, if $\varphi \in G \cap D_{F}$ then $\varphi \circ f_{\xi, \zeta}=F$ for a $\zeta \geqslant \xi$, and $f_{G} \circ f_{\xi, \zeta}=F \in\left\{f_{G} \circ f_{\xi, \zeta}: \zeta \in[\xi, \rho)\right\}$.

Thus, in $V[G]$ the sets $\left({ }^{\kappa_{\xi}} \lambda\right)^{V}$ are of size ρ and $\left(\lambda^{<\kappa}\right)^{V}$ is a supremum of ρ many ordinals of cardinality ρ, which implies $\left|\left(\lambda^{<\kappa}\right)^{V}\right|^{V[G]}=\rho$. Claim 2 is proved.

Now, if κ is a regular cardinal, then the algebras $\operatorname{Col}(\kappa, \lambda)$ and $\operatorname{Col}\left(\kappa, \lambda^{<\kappa}\right)$ are isomorphic (see [1, p. 342]). In V, clearly, $\kappa \leqslant \lambda^{<\kappa}$ and we apply Claim 1.

If κ is a singular cardinal, then by Claim 2 we have $\left|\left(\lambda^{<\kappa}\right)^{V}\right|^{V[G]}=\mathrm{cf}^{V}(\kappa)=\rho<\kappa$ and in order to apply Theorem 9 (b) we prove that in V, for each $\mu<\lambda^{<\kappa}$ there holds $\mu^{\rho} \leqslant \lambda^{<\kappa}$. So, if $\mu<\lambda^{<\kappa}$, then $\mu \leqslant \lambda^{\nu}$, for some cardinal $v<\kappa$, hence $\mu^{\rho}=\lambda^{\nu \rho} \leqslant \lambda^{<\kappa}$, and (b) of Theorem 9 can be applied.

5. Independence at singular cardinals

Theorem 11. Let B be a complete Boolean algebra and κ a singular cardinal. If B is (strongly) $\operatorname{cf}(\kappa)$-independent, it is (strongly) κ-independent too.
Proof. Let $\mathrm{cf}^{V}(\kappa)=\rho$. Working in V we choose an increasing unbounded sequence $\left\langle\xi_{\alpha}: \alpha \in \rho\right\rangle \in{ }^{\rho}{ }_{\kappa}$ and using recursion define a sequence of cardinals $\left\langle\kappa_{\alpha}: \alpha<\rho\right\rangle$ by: $\kappa_{0}=0 ; \kappa_{\alpha+1}=\min \left\{\lambda \in \operatorname{Card}: \lambda>\max \left\{\kappa_{\alpha}, \xi_{\alpha}\right\}\right\}$ and $\kappa_{\gamma}=\sup \left\{\kappa_{\alpha}: \alpha<\gamma\right\}$, for a limit $\gamma<\rho$. It is easy to show that $\kappa_{\alpha}<\kappa$ for all $\alpha<\rho$ and that this sequence is increasing, unbounded in κ and continuous. Consequently, $\kappa=\bigcup_{\alpha<\rho}\left[\kappa_{\alpha}, \kappa_{\alpha+1}\right)$ is a partition of κ.

Let $V[G]$ be a generic extension containing an independent set $X \subset \rho$. We will prove that $Y=\bigcup_{\alpha \in X}\left[\kappa_{\alpha}, \kappa_{\alpha+1}\right)$ is an independent subset of κ.

Suppose $B \subset Y$ for some $B \in \operatorname{Old}_{\kappa}$. Since B is an unbounded subset of κ, the set $A=\left\{\alpha \in \rho: B \cap\left[\kappa_{\alpha}, \kappa_{\alpha+1}\right) \neq \emptyset\right\}$ is an unbounded subset of ρ and, clearly, belongs to V. So, $A \in \operatorname{Old}_{\rho}$ and $A \subset X$, which is impossible by the independence of X. Thus $B \backslash Y \neq \emptyset$ and analogously $B \cap Y \neq \emptyset$, for each $B \in \operatorname{Old}_{\kappa}$, so Y is an independent subset of κ and the algebra B is κ-independent by Theorem 2.

Example 2 (The converse of the previous theorem does not hold). The algebra Col $\left(\aleph_{1}, \aleph_{\omega+1}\right)$ is strongly \aleph_{ω}-independent (Theorem 10) but \aleph_{0}-dependent, since it is $\left(\aleph_{0}, 2\right)$-distributive.

Theorem 12. In V, let κ be a singular cardinal and B a complete Boolean algebra and let in each generic extension $V[G]$ the following conditions hold:
(i) The set D of all $\lambda \in \kappa \cap \operatorname{Card}^{V}$ such that each subset of λ is dependent, is unbounded in κ.
(ii) Each $Y \subset\left(2^{<\kappa}\right)^{V}$ of size $\mathrm{cf}^{V[G]}(\kappa)$ has a subset $A \in V$ such that $|A|^{V[G]}=$ $\mathrm{cf}^{V[G]}(\kappa)$.
Then the algebra B is κ-dependent.

Proof. Let $V[G]$ be a generic extension and $V[G] \ni X \subset \kappa$. Let $\mathrm{cf}^{V[G]}(\kappa)=\rho$ and let $f: \rho \rightarrow \kappa$ be an increasing cofinal mapping belonging to $V[G]$. In $V[G]$ we define the sequence $\left\langle\lambda_{\alpha}: \alpha<\rho\right\rangle$ of elements of D by $\lambda_{\alpha}=\min \left(D \backslash\left(\bigcup_{\beta<\alpha} \lambda_{\beta} \cup f(\alpha)\right)+1\right), \alpha<\rho$. Clearly, the sequence is increasing and unbounded in κ. Now, using (i), for each $\alpha<\rho$ we choose an $A_{\alpha} \in\left(\left[\lambda_{\alpha}\right]^{\lambda_{\alpha}}\right)^{V}$ such that $A_{\alpha} \subset \lambda_{\alpha} \cap X$ or $A_{\alpha} \subset \lambda_{\alpha} \backslash X$. Since each A_{α} is unbounded in λ_{α} and since $\alpha<\beta$ implies $\lambda_{\alpha}<\lambda_{\beta}$, the set $\left\{A_{\alpha}: \alpha<\rho\right\}$, belonging to $V[G]$, is of size ρ. Obviously $\left\{A_{\alpha}: \alpha<\rho\right\} \subset S=\left(\bigcup_{\lambda \in \kappa \cap \operatorname{Card}}[\lambda]^{\lambda}\right)^{V}$ and $|S|^{V}=\left(2^{<\kappa}\right)^{V}$.
If the set $\mathscr{Y}=\left\{A_{\alpha}: \alpha<\rho \wedge A_{\alpha} \subset \lambda_{\alpha} \cap X\right\}$ is of size ρ, then $\mathscr{Y} \subset S$ and using (ii) we easily show that there exists a subset $\mathscr{A}=\left\{A_{\alpha}: \alpha \in I\right\} \subset \mathscr{Y}$ belonging to V such that $|\mathscr{A}|^{V[G]}=\rho$. So, the set $A=\bigcup_{\alpha \in I} A_{\alpha} \subset X$ belongs to V too. Clearly I is an unbounded subset of ρ, hence for each $\lambda \in D$ we have $|A|^{V} \geqslant \lambda$, and consequently $|A|^{V}=\kappa$.

Otherwise, if $|\mathscr{Y}|^{V[G]}<\rho$, then the set $\mathscr{Z}=\left\{A_{\alpha}: \alpha<\rho \wedge A_{\alpha} \subset \lambda_{\alpha} \backslash X\right\}$ is of cardinality ρ and, proceeding as above, we obtain a set $A \subset \kappa \backslash X$ such that $A \in V$ and $|A|^{V}=\kappa$.

We note that the assumptions of the previous theorem imply $1 \Vdash \operatorname{cf}(\check{\kappa})=\mathrm{cf}^{V}(\kappa)^{\breve{ }}$ and B is $\mathrm{cf}^{V}(\kappa)$-supported.

Example 3. (Condition (ii) in the previous theorem cannot be replaced by the weaker condition (ii'): In each generic extension $V[G]$ each $Y \subset \operatorname{cf}^{V[G]}(\kappa)$ of size $\mathrm{cf}^{V[G]}(\kappa)$ has a subset $A \in V$ of the same size). Let the GCH holds in V, let B be the Boolean completion of the Namba forcing, $\operatorname{Nm}\left(\omega_{2}\right)$, and $\kappa=\aleph_{\omega_{2}}$. Since $\pi(\mathrm{B})=\aleph_{3}$, the algebra B is λ-dependent for all regular $\lambda<\aleph_{\omega_{2}}$ bigger than \aleph_{3} (Theorem 5) so condition (i) is satisfied. Condition (ii') is also satisfied, since $1 \Vdash \operatorname{cf}(\breve{\kappa})=\check{\omega}$ and the algebra B is ($\omega, 2$)-distributive, so forcing by B does not produce new subsets of ω. But, since $\aleph_{2}=2^{\aleph_{1}}$ is collapsed to \aleph_{1}^{V}, by Theorem 9 (c) the algebra B is \aleph_{2}-independent and, by Theorem 11, B is $\aleph_{\omega_{2}}=\kappa$-independent.

Example 4 (B is \aleph_{n}-independent for each $n>0$ but \aleph_{ω}-dependent). Let in V the GCH holds and let $\mathrm{B}=\prod_{n>0} \operatorname{Col}\left(\aleph_{n}, 2\right)$. Then like in the proof of Theorem 8 we conclude B is \aleph_{n}-independent for all $n>0$. But B is \aleph_{ω}-dependent, since each generic extension $V_{B}[G]$ is equal to a generic extension $V_{\operatorname{Col}\left(\aleph_{n}, 2\right)}[H]$ which, clearly, satisfies conditions (i) and (ii) of the previous theorem.

Theorem 13. Suppose κ is a singular cardinal of cofinality ρ, the algebra B is ρ supported and the set $D=\{\lambda \in \operatorname{Card} \cap \kappa$: B is λ-dependent $\}$ is unbounded in κ. Then each of the conditions given below implies B is κ-dependent.
(a) $\rho<\mathfrak{h}$ (B);
(b) $\rho \geqslant \mathrm{c}(\mathrm{B})$;
(c) 0^{\ddagger} does not exist in V and forcing by B preserves $\left(\rho+\aleph_{1}\right)^{+}$.

Proof. Firstly we note that, since the algebra B is ρ-supported, ρ is a regular cardinal in each generic extension $V[G]$, so $\mathrm{cf}^{V[G]}(\kappa)=\operatorname{cf}^{V[G]}(\rho)=\rho$. In order to apply Theorem 12 we show that each extension $V[G]$ satisfies conditions (i) and (ii). Clearly, since
the set D is unbounded in κ, condition (i) holds. For the proof of (ii) we assume $Y \in V[G]$ is a subset of $B=\left(2^{<\kappa}\right)^{V}$ of size ρ.

If $\rho<\mathfrak{h}(\mathrm{B})$ then $Y \in V$, by the ρ-distributivity of B.
Let $\rho \geqslant \mathrm{c}(\mathrm{B})$ and let $f: \rho \rightarrow Y$ be a bijection belonging to $V[G]$. Since B is ρ^{+}cc applying Lemma 6.8 of [9] we obtain $F \in V$, where $F: \rho \rightarrow P^{V}(B)$, such that $f(\alpha) \in F(\alpha)$ and $|F(\alpha)|^{V} \leqslant \rho$ for every $\alpha<\rho$. Then $Y \subset \bigcup \operatorname{ran}(F)=C \in V$ and $|C|^{V} \leqslant$ $\sum_{\alpha<\rho}|F(\alpha)|^{V}=\rho$. Clearly, $Y \subset C$ implies $|C|^{V}=\rho$ hence in V there is a bijection $g: \rho \rightarrow C$. Since $g^{-1}[Y]$ is an unbounded subset of ρ and the algebra B is ρ-supported, there exists $A \in\left([\rho]^{\rho}\right)^{V}$ such that $A \subset g^{-1}[Y]$. Now $g[A] \in V$ is a subset of Y of size ρ required in (ii).

Let condition (c) hold. Firstly, we suppose $\rho>\omega$. Then, in $V[G], Y$ is an uncountable set of ordinals so, by Jensen's Covering Lemma, there exists $C \in L^{V[G]}=L^{V}$ such that $Y \subset C$ and $|C|^{V[G]}=\rho$. Since $\rho^{+} \in \operatorname{Card}^{V[G]}$ we have $|C|^{V}=\rho$ and consequently there is a bijection $g: \rho \rightarrow C$ belonging to V. Now, as above we obtain $A \in\left([\rho]^{\rho}\right)^{V}$ such that $A \subset g^{-1}[Y]$ and $g[A]$ is an old subset of Y of size ρ. Secondly, let $\rho=\omega$. Then $\aleph_{1}^{V[G]}=\aleph_{1}^{V}$, since the collapse of \aleph_{1} would produce new subsets of ω and then, by Fact 1(d), the algebra B would be ω-unsupported. Now, by Jensen's Covering Lemma, there is $C \in L^{V[G]}=L^{V}$ such that $Y \subset C$ and $|C|^{V[G]}=\aleph_{1}$. Since \aleph_{2} is preserved in $V[G]$, we have $|C|^{V}=\aleph_{1}$ and, consequently, in V there exists a bijection $f: \omega_{1} \rightarrow C$. Since \aleph_{1} is preserved in $V[G]$ there is $\xi<\omega_{1}$ such that $f^{-1}[Y] \subset \xi$. Using the assumption B is ω-supported we easily find a countable set $A \in V$ such that $A \subset Y$.

Under the assumptions of the previous theorem we have $\mathrm{cf}^{V[G]}(\kappa)=\rho$ so the conditions $\rho<\mathfrak{h}^{V}(B)$ and $1 \Vdash \operatorname{cf}(\breve{\kappa})<\mathfrak{h}^{V}(B)^{r}$ are equivalent and the conditions $\rho \geqslant \mathrm{c}^{V}(\mathrm{~B})$ and $1 \Vdash \operatorname{cf}(\breve{\kappa}) \geqslant \mathrm{c}^{V}(\mathrm{~B})^{\breve{ }}$ are equivalent.

Remark 4. In Theorem 5 we proved that $\mathrm{cf}(\kappa)>\pi(\mathrm{B})$ implies B is κ-dependent. Now we give a short proof for a singular κ : by Theorem 6 , B is λ-dependent for each regular cardinal λ satisfying $\pi(\mathrm{B})<\lambda<\kappa$ and, since $\mathrm{cf}(\kappa)>\pi(\mathrm{B})$ implies $\mathrm{cf}(\kappa) \geqslant \mathrm{c}(\mathrm{B})$, we apply Theorem 13.

Example 5 (Independence of \aleph_{ω}-independence of $\operatorname{Col}\left(\aleph_{1}, \aleph_{2}\right)$). Using Theorems 10, 11 and 13 it is easy to check that the algebra $\operatorname{Col}\left(\aleph_{1}, \aleph_{2}\right)$ is $\aleph_{\omega_{1}}$-independent, $\aleph_{\omega_{2}}$-independent and that it is \aleph_{ω}-dependent if and only if $\mathfrak{c}<\aleph_{\omega}$.

Using (c) of Theorem 13 we easily prove
Corollary 2. $\left(0^{\ddagger} \notin V\right)$ Let B be a cardinal preserving c.B.a. and $\kappa>\pi(\mathrm{B})$ a singular cardinal. Then, if B is $\mathrm{cf}(\kappa)$-supported, it is κ-dependent.

Assuming $0^{\ddagger} \notin V, \kappa>\pi(\mathrm{B})$ and $\mathrm{cf}(\kappa)=\rho<\kappa$, we list the situations which are not covered by the previous theorems and ask some related questions.

1. B is ρ-unsupported, but ρ-dependent. Question: Is the Boolean completion of Sacks' forcing \aleph_{ω}-dependent, if $\mathfrak{c}<\aleph_{\omega}$?
2. B is $\rho=\omega$-supported, $\mathfrak{h}(B)=\omega$ and \aleph_{2} is collapsed (then, clearly, $\mathfrak{h}_{2}(B)=\aleph_{1}$ is preserved). Question: Is the Boolean completion of the Namba forcing, $\operatorname{Nm}\left(\omega_{2}\right)$, \aleph_{ω}-dependent, if $2^{\aleph_{2}}<\aleph_{\omega}$? (We note that, according to Example 1, $2^{\aleph_{1}}<\aleph_{\omega}<2^{\aleph_{2}}$ implies \aleph_{ω}-independence of r.o. $\left(\mathrm{Nm}\left(\omega_{2}\right)\right)$.)
3. B is ρ-supported, $\rho>\omega$ and ρ^{+}is collapsed in some extension. We do not know whether such a situation is consistent at all (see Problem 1).

Acknowledgements

Research supported by the MNTRS. (Project 1768: Forcing, Model Theory and Settheoretic topology.)

References

[1] B. Balcar, P. Simon, Disjoint refinement, in: J.D. Monk, R. Bonnet (Eds.), Handbook of Boolean Algebra, Elsevier Science Publishers B.V., Amsterdam, 1989, pp. 333-386.
[2] J. Baumgartner, Almost-disjoint sets, the dense set problem and the partition calculus, Ann. Math. Logic 10 (1976) 401-439.
[3] J. Baumgartner, R. Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979) 271-288.
[4] J.L. Bell, Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon Press, Oxford, 1977.
[5] L. Bukovský, E. Copláková-Hartová, Minimal collapsing extensions of ZFC, Ann. Pure Appl. Logic 46 (3) (1990) 265-298.
[6] T. Jech, Distributive laws, in: J.D. Monk, R. Bonnet (Eds.), Handbook of Boolean Algebra, Elsevier Science Publishers B.V., Amsterdam, 1989, pp. 317-331.
[7] T. Jech, Set Theory, 2nd corr. edition, Springer, Berlin, 1997.
[8] A. Kanamori, Perfect set forcing for uncountable cardinals, Ann. Math. Logic 19 (1-2) (1980) 97-114.
[9] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
[10] M.S. Kurilić, Unsupported Boolean algebras and forcing, Bull. Symbolic Logic 8 (1) (2002) 146.
[11] M.S. Kurilić, Changing cofinalities and collapsing cardinals in models of set theory, Ann. Pure Appl. Logic 120 (1-3) (2003) 225-236.
[12] A.W. Miller, Rational perfect set forcing, in: J.E. Baumgartner, et al. (Eds.), Axiomatic Set Theory, Contemporary Mathematics, Vol. 31, AMS, Providence, RI, 1984, pp. 143-159.
[13] G.E. Sacks, Forcing with perfect closed sets, in: D.S. Scott (Ed.), Axiomatic Set Theory, Proceedings of the Symposium on Pure Mathematics, Vol. 13,1, AMS, Providence, RI, 1971, pp. 331-355.

[^0]: E-mail address: milos@im.ns.ac.yu (M.S. Kurilić).

