

Available at www.**Elsevier**Mathematics.com

Annals of Pure and Applied Logic 124 (2003) 179-191

www.elsevier.com/locate/apal

Independence of Boolean algebras and forcing

Miloš S. Kurilić

Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia and Montenegro, Yugoslavia

Received 5 January 2003; accepted 20 June 2003 Communicated by T. Jech

Abstract

If $\kappa \ge \omega$ is a cardinal, a complete Boolean algebra B is called κ -dependent if for each sequence $\langle b_{\beta}: \beta < \kappa \rangle$ of elements of B there exists a partition of the unity, P, such that each $p \in P$ extends b_{β} or b'_{β} , for κ -many $\beta \in \kappa$. The connection of this property with cardinal functions, distributivity laws, forcing and collapsing of cardinals is considered. © 2003 Elsevier B.V. All rights reserved.

- - -

MSC: 03G05; 06E05; 03E35; 03E40

Keywords: Boolean algebras; Distributive laws; Boolean-valued models; Forcing

1. Introduction

The notation used in this paper is mainly standard. So, if $\langle B, \wedge, \vee, ', 0, 1 \rangle$ is a Boolean algebra, then B⁺ denotes the set of all positive elements of B. A subset $P \subset B^+$ is an antichain if $p \wedge q = 0$ for each different $p, q \in P$. If, in addition $\bigvee P = 1$, then P is called a partition of the unity. The cardinal $c(B) = \sup\{|P|: P \text{ is an antichain in } B\}$ is the cellularity of B. A subset $D \subset B^+$ is said to be dense if for each $p \in B^+$ there exists $q \in D$ such that $q \leq p$. The algebraic density of B is the cardinal $\pi(B) = \min\{|D|: D \text{ is dense in } B\}$. A set $D \subset B$ is called open if for each $p \in D$ and $q \leq p$ there holds $q \in D$. If $\kappa \ge \omega$ and $\lambda \ge 2$ are cardinals, by ${}^{<\kappa}\lambda$ we denote the set $\bigcup_{\xi < \kappa} {}^{\xi}\lambda$ ordered by the reversed inclusion and by $Col(\kappa, \lambda)$ the Boolean completion of this partial order, the (κ, λ) -collapsing algebra.

In order to simplify notation, for $p \in B$ and $B \subset B$ we write $p \prec B$ if $p \leq b$ for some $b \in B$. Also, if $p, b \in B^+$, we say that b splits p (p is splitted by b) if $p \land b > 0$ and

0168-0072/\$ - see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0168-0072(03)00055-1

E-mail address: milos@im.ns.ac.yu (M.S. Kurilić).

 $p \wedge b' > 0$, that is if $p \not\prec \{b, b'\}$. Specially, a set X splits a set A if the sets $A \cap X$ and $A \setminus X$ are non-empty. Finally, if κ is a cardinal, we say that a property $P(\beta)$ holds for almost all $\beta \in \kappa$ if $|\{\beta \in \kappa: \neg P(\beta)\}| < \kappa$.

The property of complete Boolean algebras investigated in this paper can be introduced as a modification of the $(\kappa, 2)$ -distributive law (see [4,6,7]). Namely, a complete Boolean algebra B is said to be $(\kappa, 2)$ -distributive if and only if the equality $\bigwedge_{\beta < \kappa} \bigvee_{n < 2} p_{\beta n} = \bigvee_{f:\kappa \to 2} \bigwedge_{\beta < \kappa} p_{\beta f(\beta)}$ holds for each double sequence $\langle p_{\beta n}: \langle \beta, n \rangle \in \kappa \times 2 \rangle$ of elements of B, if and only if in each generic extension $V_{\mathsf{B}}[G]$ every subset of κ belongs to the ground model V and, finally, if and only if

for each sequence $\langle b_{\beta}: \beta < \kappa \rangle \in {}^{\kappa}B$ there exists a partition of the unity, *P*, such that each $p \in P$ satisfies $p \prec \{b_{\beta}, b'_{\beta}\}$ for all $\beta \in \kappa$.

So, a complete Boolean algebra B will be called κ -dependent if and only if

for each sequence $\langle b_{\beta}: \beta < \kappa \rangle \in {}^{\kappa}\mathsf{B}$ there exists a partition of the unity, P, such that each $p \in P$ satisfies $p \prec \{b_{\beta}, b'_{\beta}\}$ for κ -many $\beta \in \kappa$.

Otherwise, B will be called κ -independent. The algebra B will be called strongly κ -independent, if and only if

there exists a sequence $\langle b_{\beta}: \beta < \kappa \rangle \in {}^{\kappa}B$ such that each positive $p \in B$ is splitted by b_{β} for almost all $\beta \in \kappa$.

In this paper we investigate what can be said about κ -independence of complete Boolean algebras in general. So, in Sections 2 and 3, after establishing some algebraic and forcing equivalents of the property, we restrict our attention firstly to atomless Boolean algebras (since atomic algebras are κ -dependent for all infinite cardinals κ) and secondly, considering an atomless algebra B, to cardinals which are either regular and between $\mathfrak{h}_2(B) = \min{\{\kappa: B \text{ is not } (\kappa, 2)\text{-distributive}\}}$ and $\pi(B)$, or singular of cofinality $\leq \pi(B)$ (since for all other cardinals B is κ -dependent). Regarding regular cardinals it turns out that "everything is possible" if, for example, the GCH holds.

In Section 4 we show that, under some reasonable conditions (specially, under the GCH), collapse of cardinals implies independence, and that (in ZFC) the algebras $Col(\kappa, \lambda)$ are θ -independent for all possible values of θ .

In Section 5 singular cardinals are considered. It is shown that for a singular κ , cf(κ)-independence implies κ -independence and investigated when dependence of B on an unbounded subset of a singular cardinal κ implies κ -dependence of B.

2. Algebraic and forcing equivalents

If B is a complete Boolean algebra in the universe (ground model) V and $G \subset B$ a B-generic filter over V, then $V_B[G]$ or briefly V[G] will denote the corresponding generic extension. If κ is a cardinal in V, then by Old_{κ} we denote the set of all κ sized subsets of κ belonging to V, that is $Old_{\kappa} = ([\kappa]^{\kappa})^{V}$. A subset X of κ belonging to V[G] is called independent if it splits all $A \in Old_{\kappa}$. Otherwise, if $A \subset X$ or $A \subset \kappa \setminus X$ for some $A \in Old_{\kappa}$, the set X is called dependent.

Theorem 1. For each complete Boolean algebra B and each infinite cardinal κ the following conditions are equivalent:

- (a) B is κ -dependent, that is for each sequence $\langle b_{\beta}: \beta < \kappa \rangle \in {}^{\kappa}B$ there exists a partition of the unity, P, such that for each $p \in P$, $p \prec \{b_{\beta}, b'_{\beta}\}$ for κ -many $\beta \in \kappa$.
- (b) V_{A∈[κ]^κ} (Λ_{β∈A} b_β) ∨ (Λ_{β∈A} b'_β) = 1, for each sequence (b_β: β < κ) ∈ ^κB.
 (c) In each generic extension V_B[G] each subset of κ is dependent.
- (d) In each generic extension $V_{B}[G]$ each unbounded subset of κ is dependent.
- If κ is a regular cardinal, then each of these conditions is equivalent to the condition
- (e) For each $C \in [B]^{\kappa}$ the set $D_C = \{ p \in B^+: p \prec \{c, c'\} \text{ for } \kappa\text{-many } c \in C \}$ is dense in B.

Proof. (a \Rightarrow b). Let (a) hold and $\langle b_{\beta}: \beta < \kappa \rangle \in {}^{\kappa}B$. If P is the corresponding partition of the unity provided by (a) then each $p \in P$ extends b_{β} for κ -many $\beta \in \kappa$ or extends b'_{β} for κ -many $\beta \in \kappa$, so, there is $A \in [\kappa]^{\kappa}$ such that $p \leq \bigwedge_{\beta \in A} b_{\beta}$ or $p \leq \bigwedge_{\beta \in A} b'_{\beta}$. Hence $1 = \bigvee P \leq \bigvee_{A \in [\kappa]^{\kappa}} (\bigwedge_{\beta \in A} b_{\beta}) \lor (\bigwedge_{\beta \in A} b'_{\beta}).$

 $(b \Rightarrow c)$. Let condition (b) hold and let V[G] be a generic extension containing $X \subset \kappa$. Then $X = \tau_G$ for some B-name τ . Applying (b) to the sequence $b_\beta = \|\dot{\beta} \in \tau\|$, $\beta < \kappa$, we obtain $\|\exists A \in Old_{\kappa} (A \subset \tau \lor A \subset \check{\kappa} \setminus \tau)\| = 1$, so there is $A \in Old_{\kappa}$ such that $A \subset X$ or $A \subset \kappa \setminus X$ and (c) is true.

 $(c \Rightarrow a)$. Let (c) hold and $\langle b_{\beta}: \beta < \kappa \rangle \in {}^{\kappa}B$. Then $\tau = \{\langle \check{\beta}, b_{\beta} \rangle: \beta \in \kappa\}$ is a B-name and $1 \Vdash \tau \subset \check{\kappa}$ so by (c) $1 \Vdash \exists A \in Old_{\kappa'} (A \subset \tau \lor A \subset \check{\kappa} \setminus \tau)$ or equivalently $1 \Vdash \neg \forall A \in Old_{\kappa'}$ $(\neg A \subset \tau \land \neg A \subset \check{\kappa} \setminus \tau)$. The last condition is equivalent to the condition

$$\forall b \in \mathsf{B}^+ \exists p \leqslant b \exists A \in \mathrm{Old}_{\kappa} \ (\forall \beta \in A(p \leqslant b_{\beta}) \lor \forall \beta \in A \ (p \leqslant b_{\beta})).$$

So the set $D = \{ p \in B^+: p \prec \{ b_\beta, b_\beta' \}$ for κ -many $\beta \in \kappa \}$ is dense in B and open. Let $P \subset D$ be a maximal antichain of elements of D. Clearly P is a partition of the unity satisfying the condition from (a).

 $(c \Leftrightarrow d)$. The direction " \Rightarrow " is trivial. Let (d) hold and $X \in V[G]$, where $X \subset \kappa$. If the set X is unbounded in κ then by (d) there exists $A \in Old_{\kappa}$ such that $A \subset X$ or $A \subset \kappa \setminus X$. Otherwise, $X \subset \xi$ for some $\xi < \kappa$ and for $A = \kappa \setminus \xi$ we have $A \in Old_{\kappa}$ and $A \subset \kappa \backslash X.$

 $(a \Rightarrow e)$. Let condition (a) hold. If $\kappa > |B|$ then (e) is vacuously true. Let $\kappa \leq |B|$, C $\in [B]^{\kappa}$ and let $C = \{c_{\beta}: \beta < \kappa\}$ be an 1-1 enumeration of C. By (a) there exists a partition of the unity, P, such that each $p \in P$ satisfies $p \prec \{c_{\beta}, c'_{\beta}\}$, for κ -many $\beta \in \kappa$. Now, if $b \in B^+$ then there is $p \in P$ such that $p \wedge b = p_1 > 0$, thus $p_1 \in D_C$ and $p \leq b$, so the set D_C is dense in B.

 $(e \Rightarrow a, \text{ for a regular } \kappa)$. Let condition (e) hold and $\kappa \in \text{Reg.}$ For a sequence $\langle b_{\beta} :$ $\beta < \kappa \in B$ we will prove that the set $D = \{p \in B^+: p \prec \{b_\beta, b_\beta\}$ for κ -many $\beta \in \kappa \}$ is dense in B.

If $|\{b_{\beta}: \beta < \kappa\}| = \kappa$ and $C = \{b_{\beta}: \beta < \kappa\}$ then, clearly, $\kappa \leq |\mathsf{B}|$ and by (e) the set D_C is dense in B. For $p \in D_C$ if $p \leq c$ for κ -many $c \in C$ then $p \leq b_\beta$ for κ -many $\beta \in \kappa$, so $p \in D$. Otherwise $p \leq c'$ for κ -many $c \in C$ and $p \in D$ again. So $D_C \subset C$ and D is dense in B.

If $|\{b_{\beta}: \beta < \kappa\}| < \kappa$, then, by the regularity of κ , there exists $b \in B$ such that $b_{\beta} = b$ for κ -many $\beta \in \kappa$. Let $q \in B^+$. Firstly, if $p_1 = q \wedge b > 0$ then $p_1 \leq b_\beta$ for κ -many $\beta \in \kappa$ so $p \in D$. Otherwise, if $q \wedge b = 0$, then $q \leq b'_{\beta}$ for κ -many $\beta \in \kappa$ and $q \in D$. Thus D is dense in B.

Now, let $P \subset D$ be a maximal antichain in D. Then P is a partition of the unity satisfying (a). \Box

Theorem 1 can be restated in the following way:

Theorem 2. For each complete Boolean algebra B and each infinite cardinal κ the following conditions are equivalent:

- (a) B is κ -independent, that is there exist a sequence $\langle b_{\beta}: \beta < \kappa \rangle \in {}^{\kappa}B$ and $q \in B^+$ such that each non-zero $p \leq q$ is splitted by b_{β} for almost all $\beta \in \kappa$.
- (b) $\bigvee_{A \in [\kappa]^{\kappa}} (\bigwedge_{\beta \in A} b_{\beta}) \lor (\bigwedge_{\beta \in A} b'_{\beta}) < 1$, for some sequence $\langle b_{\beta}: \beta < \kappa \rangle \in {}^{\kappa}\mathsf{B}$.
- (c) In some extension $V_{\mathsf{B}}[G]$ there exists an independent subset $X \subset \kappa$.

Theorem 3. For each complete Boolean algebra B and each infinite cardinal κ the following conditions are equivalent:

- (a) B is strongly κ -independent, that is there exists a sequence $\langle b_{\beta}: \beta < \kappa \rangle \in {}^{\kappa}B$ such that each positive $p \in B$ is splitted by b_{β} for almost all $\beta \in \kappa$.
- (b) V_{A∈[κ]^κ} (Λ_{β∈A} b_β) ∨ (Λ_{β∈A} b'_β) = 0, for some sequence ⟨b_β: β < κ⟩∈^κB.
 (c) In each extension V_B[G] there exists an independent subset X ⊂ κ.

Proof. (a \Rightarrow b). Let $\langle b_{\beta}: \beta < \kappa \rangle$ be a sequence provided by (a). Suppose $\bigwedge_{\beta \in A} b_{\beta} =$ p > 0, for some $A \in [\kappa]^{\kappa}$. But then for some $\beta \in A$, b_{β} splits p, which is impossible. So, for each $A \in [\kappa]^{\kappa}$ we have $\bigwedge_{\beta \in A} b_{\beta} = 0$ and similarly $\bigwedge_{\beta \in A} b'_{\beta} = 0$ and (b) is proved.

 $(b \Rightarrow c)$. Let $\langle b_{\beta}: \beta < \kappa \rangle$ be a sequence provided by (b). Then for $\tau = \{\langle \dot{\beta}, b_{\beta} \rangle: \beta \in \kappa\}$ we have $1 \Vdash \tau \subset \check{\kappa}$ and (b) implies $\|\tau$ splits all $A \in Old_{\check{\kappa}} = 1$.

 $(c \Rightarrow a)$. Let (c) hold. Then, by the Maximum principle (see [4]) there exists a name τ such that: (i) $1 \Vdash \tau \subset \check{\kappa}$; (ii) $1 \Vdash \forall A \in Old_{\kappa}(A \cap \tau \neq \emptyset)$; (iii) $1 \Vdash \forall A \in Old_{\kappa}(A \setminus \tau \neq \emptyset)$. Putting $b_{\beta} = \|\beta \in \tau\|$, for $\beta < \kappa$ and using (ii) we easily conclude that $|\{\beta \in \kappa: p \land b_{\beta}\}$ $=0\}|<\kappa$, for each $p\in B^+$. Similarly, by (iii) we have $|\{\beta\in\kappa: p\wedge b'_{\beta}=0\}|<\kappa$ for each $p \in B^+$ so, if $p \in B^+$ then $p \prec \{b_\beta, b'_\beta\}$ for $<\kappa$ -many $\beta \in \kappa$ and (a) is proved. \Box

Remark 1. It is known (see [4, p. 65]) that if B is a weakly homogeneous c.B.a., $\varphi(v_1, v_2, \dots, v_n)$ a formula of ZFC and $a_1, a_2, \dots, a_n \in V$, then $\varphi(a_1, a_2, \dots, a_n)$ holds in some iff it holds in all generic extensions of V by B. So considering parts (c) of the previous two theorems we conclude that a weakly homogeneous c.B.a. is κ -independent iff it is strongly κ -independent.

Theorem 4. If a complete Boolean algebra B is atomic, then it is κ -dependent for every infinite cardinal κ .

Proof. Although a proof by forcing arguments is evident, we will demonstrate a combinatorial one. Let $\langle b_{\beta}: \beta < \kappa \rangle \in {}^{\kappa}B$. Since the algebra B is atomic, the set At(B) of all its atoms is a partition of the unity and (because atoms cannot be splitted) if $p \in At(B)$, then $p \prec \{b_{\beta}, b'_{\beta}\}$ for all $\beta \in \kappa$. So, B is κ -dependent by definition. \Box

3. Dependence, supportedness and distributivity

In this section we compare κ -dependence with some other forcing related properties of complete Boolean algebras and determine the position of the cardinals κ for which a given algebra can be κ -independent.

Theorem 5. A complete Boolean algebra B is κ -dependent for each cardinal κ satisfying $cf(\kappa) > \pi(B)$.

Proof. On the contrary, suppose $cf(\kappa) > \pi(B)$ and B is κ -independent. Then by Theorem 2 there is a sequence $\langle b_{\beta}: \beta < \kappa \rangle \in {}^{\kappa}B$ satisfying $\bigvee_{A \in [\kappa]^{\kappa}} (\bigwedge_{\beta \in A} b_{\beta}) \lor (\bigwedge_{\beta \in A} b_{\beta}') = c < 1$, thus we have: (i) $\bigwedge_{\beta \in A} b_{\beta} \leq c$, for each $A \in [\kappa]^{\kappa}$; and (ii) $0 < c' \leq \bigvee_{\beta \in A} b_{\beta}$, for each $A \in [\kappa]^{\kappa}$.

By (ii), c' is compatible with b_{β} for almost all $\beta \in \kappa$, thus the set $A_{c'} = \{\beta \in \kappa: b_{\beta} \land c' > 0\}$ is of size κ . Let $D \subset B^+$ be a dense subset of B of size $\pi(B)$. Now, for each $\beta \in A_{c'}$ we pick $d_{\beta} \in D$ such that $d_{\beta} \leqslant b_{\beta} \land c'$, obtaining a function from $A_{c'}$ to D. Since $|D| < cf(\kappa)$ there exists $d \in D$ such that $d_{\beta} = d$ for κ -many $\beta \in A_{c'}$. Thus the set $A_d = \{\beta \in A_{c'}: d \leqslant b_{\beta} \land c'\}$ is of cardinality κ and $\bigwedge_{\beta \in A_d} b_{\beta} \land c' \ge d > 0$, which is impossible by (i). \Box

In [10] a complete Boolean algebra B is called κ -supported (for a cardinal $\kappa \ge \omega$) iff the equality $\bigwedge_{\alpha < \kappa} \bigvee_{\beta > \alpha} b_{\beta} = \bigvee_{A \in [\kappa]^{\kappa}} \bigwedge_{\beta \in A} b_{\beta}$ is satisfied for each sequence $\langle b_{\beta}: \beta < \kappa \rangle$ of elements of B. Otherwise, the algebra B is called κ -unsupported. In the sequel we will use the following facts proved in [10]:

Fact 1. Let B be an arbitrary complete Boolean algebra. Then

- (a) B is κ -unsupported for each singular cardinal κ .
- (b) B is κ -supported if and only if in every generic extension κ is a regular cardinal and each new set $X \in [\kappa]^{\kappa}$ has an old subset of size κ .
- (c) Unsupp (B) = { $\kappa \in \text{Reg: } B \text{ is } \kappa \text{-unsupported}$ } $\subset [\mathfrak{h}_2(B), \pi(B)].$
- (d) If $2^{<\mathfrak{h}_2(\mathsf{B})} = \mathfrak{h}_2(\mathsf{B})$, specially, if $\mathfrak{h}_2(\mathsf{B}) = \aleph_0$, then B is $\mathfrak{h}_2(\mathsf{B})$ -unsupported. If $0^{\sharp} \notin V$ and forcing by B preserves $\mathfrak{h}_2(\mathsf{B})^+$, then B is $\mathfrak{h}_2(\mathsf{B})$ -unsupported.

Theorem 6. Let B be a c.B.a. and Indep(B) = { $\kappa \in \text{Reg: } B$ is κ -independent}. Then

- (a) If B is κ -supported, it is κ -dependent.
- (b) Indep(B) \subset Unsupp(B) \subset [$\mathfrak{h}_2(B), \pi(B)$].

Proof. The assertion (a) follows from forcing characterizations given in Fact 1(b) and Theorem 1(d). The first inclusion in (b) is a consequence of (a), while the second

is Fact 1(c). The inclusion Indep(B) \subset [$\mathfrak{h}_2(B), \pi(B)$] also follows from Theorem 5 and the fact that (κ , 2)-distributivity implies κ -dependence. \Box

Remark 2. There exist κ -dependent algebras which are not κ -supported. Firstly, if κ is a singular cardinal and $cf(\kappa) > \pi(B)$, then B is κ -dependent by Theorem 5 and κ -unsupported by Fact 1(a). Also there are such examples for regular cardinals κ . Namely, Sacks' perfect set forcing (see [13,3]) and Miller's rational perfect set forcing (see [12]) produce new subsets of ω , but all of them are dependent. So, the corresponding Boolean algebras are ω -dependent by Theorem 1 and ω -unsupported by Fact 1(d). For uncountable regular cardinals we mention the forcing of Kanamori (see [8]) which has the observed property for κ strongly inaccessible.

Remark 3. κ -dependence and weak (κ, κ) -distributivity are unrelated properties. A complete Boolean algebra B is called weakly (κ, λ) -distributive if and only if the equality $\bigwedge_{\alpha < \kappa} \bigvee_{\beta < \lambda} b_{\alpha\beta} = \bigvee_{f:\kappa \to \lambda} \bigwedge_{\alpha < \kappa} \bigvee_{\beta < f(\alpha)} b_{\alpha\beta}$ holds for each double sequence $\langle b_{\alpha\beta}: \langle \alpha, \beta \rangle \in \kappa \times \lambda \rangle$ of elements of B, if and only if in each generic extension $V_{\mathsf{B}}[G]$ every function $f: \kappa \to \lambda$ is majorized by some function $g: \kappa \to \lambda$ belonging to V. Since both κ -dependence and weak (κ, κ) -distributivity are weakenings of $(\kappa, 2)$ -distributivity (and, moreover, of κ -supportedness) it is natural to ask whether these two properties are related. The answer is "No". It is easy to check that a c.B.a. B is weakly (ω, ω) -distributive iff forcing by B does not produce weak dominating functions from ω to ω ($f \in {}^{\omega} \omega \cap V[G]$ is a w.d.f. iff for each $g \in {}^{\omega} \omega \cap V$ the set { $n \in \omega$: g(n) < f(n)} is infinite). Now, firstly, it is well-known that adding a random real to V produces independent subsets of ω , but does not produce w.d.f.'s. Secondly, Miller's rational perfect set forcing produces w.d.f.'s, but does not produce independent subsets of ω (see [12]).

According to Theorems 5 and 6, the question on κ -independence of a given Boolean algebra remains open for $\kappa \in \text{Reg} \cap [\mathfrak{h}_2(\mathsf{B}), \pi(\mathsf{B})]$ and for singular κ satisfying $cf(\kappa) \leq \pi(\mathsf{B})$. In the sequel we show that for regular cardinals everything is possible if, for example, the GCH is assumed. Singular cardinals will be considered later.

Theorem 7. Let B_i , $i \in I$, be a family of complete Boolean algebras. Then $Indep(\prod_{i \in I} B_i) = \bigcup_{i \in I} Indep(B_i)$.

Proof. Let $B = \prod_{i \in I} B_i$. It is known that if $V_B[G]$ is a B-generic extension, then $V_B[G] = V_{B_i}[H]$ for some $i \in I$ and some B_i -generic filter H, and conversely, if $V_{B_i}[H]$ is a B_i -generic extension, then $V_{B_i}[H] = V_B[G]$ for some B-generic filter G. Now, using characterization given in Theorem 2(c), we easily finish the proof. \Box

Theorem 8. For each set S of regular cardinals κ satisfying $2^{<\kappa} = \kappa$ there exists a complete Boolean algebra B such that Indep(B) = S. If |S| > 1, then B is not strongly λ -independent for any regular λ . Specially, under the GCH, for each set $S \subset \text{Reg}$ there is a complete Boolean algebra B satisfying Indep(B) = S.

Proof. It is easy to show that if κ is a regular cardinal, then $\mathfrak{h}_2(\operatorname{Col}(\kappa, 2)) = \kappa$ and $\pi(\operatorname{Col}(\kappa, 2)) = 2^{<\kappa}$, so, under the assumptions, for each $\kappa \in S$ we have $\operatorname{Indep}(\operatorname{Col}(\kappa, 2))$

 $\subset \{\kappa\}$. On the other hand, if *G* is a ${}^{\kappa}2$ -generic filter over *V*, then a simple density argument shows that $f_G = \bigcup G: \kappa \to 2$ is the characteristic function of an independent subset of κ . Thus Indep $(\operatorname{Col}(\kappa, 2)) = \{\kappa\}$ and by the previous theorem $\mathsf{B} = \prod_{\kappa \in S} \operatorname{Col}(\kappa, 2)$ satisfies Indep $(\mathsf{B}) = S$. If |S| > 1 and $\lambda \in \operatorname{Reg}$, then we choose $\kappa \in S \setminus \{\lambda\}$. In extensions by $\operatorname{Col}(\kappa, 2)$ each subset of λ is dependent, so, by Theorem 3, **B** is not strongly λ -independent. Finally, the GCH implies $2^{<\kappa} = \kappa$ for each κ .

4. Independence and collapsing

Theorem 9. Let λ be a cardinal in V and let V[G] be a generic extension of V. Then (a) If $|(\lambda^+)^V|^{V[G]} = |\lambda|^{V[G]}$ and if λ obtains an independent subset in V[G], then $(\lambda^+)^V$ obtains an independent subset too.

- (b) If $|\lambda|^{V[G]} = \kappa$ and if $(\mu^{\kappa})^{V} \leq \lambda$ for each V-cardinal $\mu < \lambda$, then each $\theta \in \operatorname{Card}^{V}$ satisfying $\kappa \leq \theta \leq \lambda$ obtains an independent subset in V[G].
- (c) If $|(2^{\lambda})^{V}|^{V[G]} = |\lambda|^{V[G]}$, then each $\hat{\theta} \in \operatorname{Card}^{V}$ satisfying $|\lambda|^{V[G]} \leq \theta \leq (2^{\lambda})^{V}$ obtains an independent subset in V[G].

Proof. (a) Let $|\lambda^+|^{V[G]} = |\lambda|^{V[G]} = \kappa$. Then $\operatorname{cf}^{V[G]}(\lambda^+) = \rho \leq \kappa$ and in V[G] there is an increasing sequence $\langle \alpha_{\xi} : \xi < \rho \rangle$ of elements of λ^+ , unbounded in λ^+ .

We will show that in V[G] there exists a sequence $\langle \beta_{\xi}: \xi < \rho \rangle \in {}^{\rho}(\lambda^{+})$ such that $\lambda^{+} = \bigcup_{\xi < \rho} [\beta_{\xi}, \beta_{\xi+1})$ and $|[\beta_{\xi}, \beta_{\xi+1})|^{V} = \lambda$, for each $\xi < \rho$. Firstly, let $\rho > \omega$. Using recursion in V[G] we define $\beta_{\xi}, \xi < \rho$, by: $\beta_{0} = 0$; $\beta_{\xi+1} = \max\{\alpha_{\xi}, \beta_{\xi} + \lambda\}$ (where $\beta_{\xi} + \lambda$ is the ordinal addition) and $\beta_{\gamma} = \sup\{\beta_{\xi}: \xi < \gamma\}$, if γ is a limit ordinal. Since the ordinal addition is an absolute operation and since each subset of λ^{+} of size $<\rho$ is bounded in λ^{+} , an easy induction shows that $\beta_{\xi} \in \lambda^{+}$, for each $\xi < \rho$. So $\bigcup_{\xi < \rho} [\beta_{\xi}, \beta_{\xi+1}) \subset \lambda^{+}$ and we will prove the equality. Let $\delta < \lambda^{+}$. The sequence $\langle \beta_{\xi}: \xi < \rho \rangle$ is (clearly) unbounded in λ^{+} so there exists $\xi_{0} = \min\{\xi < \rho: \delta < \beta_{\xi}\}$. Now, ξ_{0} is a successor ordinal (otherwise we would have $\xi_{0} \leq \delta$) say $\xi_{0} = \xi' + 1$. Thus $\delta \in [\beta_{\xi'}, \beta_{\xi'+1}]$ and the equality is proved. If $\rho = \omega$, then the sequence $\langle \beta_{\xi}: \xi < \omega \rangle$ defined by: $\beta_{0} = 0$ and $\beta_{\xi+1} = \max\{\alpha_{\xi}, \beta_{\xi+1} + \lambda\}$, satisfies two desired properties.

In V, the sets $[\beta_{\xi}, \beta_{\xi+1})$ are of size λ , so, working in V[G] we can pick bijections $f_{\xi}: \lambda \to [\beta_{\xi}, \beta_{\xi+1}), \xi < \rho$, belonging to V. Let $X \in V[G]$ be an independent subset of λ . We will prove that $Y = \bigcup_{\xi < \rho} f_{\xi}[X]$ is an independent subset of λ^+ .

Let $A \in Old_{\lambda^+}$. Suppose $|A \cap [\beta_{\xi}, \beta_{\xi+1})|^V < \lambda$, for every $\xi < \rho$. Then the ordinals $\delta_{\xi} = type^V(A \cap [\beta_{\xi}, \beta_{\xi+1}))$ are less than λ and in V[G] the well-ordered set A is isomorphic to $\sum_{\xi < \rho} \delta_{\xi}$. Clearly, if $type^V(\rho \cdot \lambda) = \eta$, where $\rho \cdot \lambda$ denotes the ordinal product, then $|\eta|^V = \lambda < \lambda^+$. In V[G] the set A is isomorphic to a subset of η , so $type^{V[G]}(A) \le \eta$ and, since type is an absolute notion, we have $type^V(A) \le \eta < \lambda^+$. But $A \in Old_{\lambda^+}$ implies $type^V(A) = \lambda^+$. A contradiction. Thus there exists $\xi_0 < \rho$ such that $|A \cap [\beta_{\xi_0}, \beta_{\xi_0+1})|^V = \lambda$ hence $A \cap [\beta_{\xi_0}, \beta_{\xi_0+1}) \cap f_{\xi_0}[X] \neq \emptyset$ and $A \cap [\beta_{\xi_0}, \beta_{\xi_0+1}) \setminus f_{\xi_0}[X] \neq \emptyset$ which implies $A \cap Y \neq \emptyset$ and $A \setminus Y \neq \emptyset$.

(b) In V[G] λ is an ordinal of size κ , so $\operatorname{cf}^{V[G]}(\lambda) = \rho \leq \kappa$ and there exists an increasing sequence $\langle \alpha_{\delta} : \delta < \rho \rangle$ unbounded in λ . W.l.o.g. we suppose $\alpha_{\delta} \geq \kappa$. In V,

each ordinal α_{δ} is of size $<\lambda$ so, by the assumption, the set $[\alpha_{\delta}]^{\kappa}$ is of size $\leqslant\lambda$ in V and of size κ in V[G]. Consequently in V[G] the set $\bigcup_{\delta < \rho} ([\alpha_{\delta}]^{\kappa})^{V}$ is of size κ , hence there exists an enumeration $\bigcup_{\delta < \rho} ([\alpha_{\delta}]^{\kappa})^{V} = \{A_{\xi}: \xi < \kappa\}$. By recursion in V[G] we define the sequences $\langle \alpha_{\xi}: \xi < \kappa \rangle$ and $\langle \beta_{\xi}: \xi < \kappa \rangle$ by

$$\begin{aligned} \alpha_{\xi} &= \min(A_{\xi} \setminus (\{\alpha_{\zeta}: \zeta < \xi\} \cup \{\beta_{\zeta}: \zeta < \xi\})), \\ \beta_{\xi} &= \min(A_{\xi} \setminus (\{\alpha_{\zeta}: \zeta \leq \xi\} \cup \{\beta_{\zeta}: \zeta < \xi\})). \end{aligned}$$

Since $\xi < \kappa$ implies $|\xi|^V < \kappa$, the sequences are well-defined.

Let $Y = \{\alpha_{\xi}: \xi < \kappa\}$ and let θ be a cardinal in V, where $\kappa \leq \theta \leq \lambda$. We will prove that $Y_{\theta} = Y \cap \theta$ is an independent subset of θ .

If $A \in \text{Old}_{\theta}$, then $\text{type}^{V}(A) = \theta$ and in V there exists an isomorphism $f: \theta \to A$. If $\theta < \lambda$, then $f[\kappa] \subset \theta < \lambda$ and if $\theta = \lambda$ then $\kappa < \lambda$ implies $f[\kappa] \subset f(\kappa) < \lambda$. So, $f[\kappa]$ is a bounded subset of λ and there exists $\delta < \rho$ such that $f[\kappa] \subset \alpha_{\delta}$. Clearly, the set $f[\kappa]$ is of size κ in V so $f[\kappa] \in ([\alpha_{\delta}]^{\kappa})^{V}$ and consequently there exists $\xi_{0} < \kappa$ such that $f[\kappa] = A_{\xi_{0}}$. Now, $\alpha_{\xi_{0}} \in f[\kappa] \cap Y_{\theta}$ and $\beta_{\xi_{0}} \in f[\kappa] \setminus Y_{\theta}$, which implies $A \cap Y_{\theta} \neq \emptyset$ and $A \setminus Y_{\theta} \neq \emptyset$.

(c) Let $|(2^{\lambda})^{V}|^{V[G]} = |\lambda|^{V[G]} = \kappa$. In V, for $\mu < 2^{\lambda}$ we have $\mu^{\kappa} \leq 2^{\lambda \kappa} = 2^{\lambda}$ (since $\kappa \leq \lambda$) and we apply (b). \Box

Corollary 1. (*GCH*) If in some extension $V_B[G]$ a cardinal λ is collapsed to κ , then each cardinal θ satisfying $\kappa \leq \theta \leq \lambda$ obtains an independent subset in $V_B[G]$ and consequently the algebra B is θ -independent for all such θ .

Proof. Under the assumptions, for each $\mu < \lambda$ there holds $\mu^{\kappa} \le \max\{\kappa^{\kappa}, \mu^{\mu}\} = \max\{\kappa^{+}, \mu^{+}\} \le \lambda$ and we apply (b) of the previous theorem. \Box

Problem 1. Is Corollary 1 a theorem of ZFC?

Example 1 (Independence of the algebras of Bukovský and Namba). Let $\kappa \ge \aleph_2$ be a regular cardinal such that $2^{<\kappa} < 2^{\kappa}, \aleph_{\kappa}$ and that $\mu^{\omega} < \kappa$, for all $\mu < \kappa$. Let $B = r.o.(Nm(\kappa))$ or $B = r.o.(Pf(\kappa))$, where Nm(κ) is the generalized Namba forcing and Pf(κ) the generalized perfect forcing (see [5]). Since by Theorem 3.5 of [2] the condition $2^{<\kappa} < 2^{\kappa}, \aleph_{\kappa}$ implies the existence of a 2^{κ} -sized mad family on κ , using Theorem 14 of [11] we conclude that if in a generic extension $V_B[G]$ the cardinal κ is collapsed to κ_0 , then each cardinal θ satisfying $\kappa_0 \le \theta \le 2^{\kappa}$ is collapsed to κ_0 too and $V_B[G]$ is a $|\theta| = \kappa_0$ -minimal extension. Now, since $\mu < 2^{\kappa}$ implies $\mu^{\kappa_0} \le 2^{\kappa}$, using Theorem 9(b) we conclude that B is θ -independent for all such θ . We note that if $\kappa = \aleph_2$ or if 0^{\sharp} does not exist, then $\kappa_0 = \aleph_1^V$ (see [11]).

Theorem 10. If $\kappa \ge \omega$ and $\lambda \ge 2$ are cardinals, then the algebra $B = Col(\kappa, \lambda)$ is strongly θ -independent for each cardinal $\theta \in [cf(\kappa), \lambda^{<\kappa}] = [\mathfrak{h}_2(B), \pi(B)].$

Proof. We distinguish the cases κ is regular and κ is singular and firstly prove two auxiliary claims

Claim 1. If κ is a regular cardinal and $\lambda \ge \kappa$, then for each cardinal μ satisfying $\kappa \le \mu \le \lambda$ the algebra $\text{Col}(\kappa, \lambda)$ is strongly μ -independent.

Proof of Claim 1. Let G be an arbitrary ${}^{<\kappa}\lambda$ -generic filter. Then $f_G = \bigcup G : \kappa \to \lambda$ and we will show that the set

$$Y = \{\zeta \in \mu \cap f_G[\kappa]: \min f_G^{-1}[\{\zeta\}] \in \text{Even}\}$$

(where Even is the class of even ordinals) is an independent subset of μ . Let $A \in ([\mu]^{\mu})^{V}$. Working in V we prove that the set

$$D_A = \{ \varphi \in {}^{<\kappa} \lambda \colon \exists \zeta \in A \ \exists \xi \in \kappa \cap \text{Even } \varphi(\xi) = \zeta \notin \varphi[\xi] \}$$

is dense in ${}^{<\kappa\lambda}$. Let $\psi \in {}^{<\kappa\lambda}$ be arbitrary and let dom $\psi = \alpha$. Clearly $\psi[\psi^{-1}[\mu]] \subset \mu$ and since $\alpha < \kappa$, we have

$$|\psi[\psi^{-1}[\mu]]| \leq |\psi^{-1}[\mu]| \leq |\alpha| < \kappa \leq \mu.$$

Now, since $|A| = \mu$, we can choose $\zeta \in A \setminus \psi[\psi^{-1}[\mu]]$. Also, we choose $\xi \in \text{Even } \cap \kappa \setminus \alpha$ and $\zeta' \in \mu \setminus \{\zeta\}$ and define $\varphi : \xi + 1 \to \lambda$ by

$$\varphi(\beta) = \begin{cases} \psi(\beta) & \text{if } \beta \in \operatorname{dom} \psi, \\ \zeta' & \text{if } \beta \in \xi \backslash \operatorname{dom} \psi, \\ \zeta & \text{if } \beta = \xi. \end{cases}$$

Clearly $\varphi \leq \psi$ and for the proof that $\varphi \in D_A$ it remains to be shown $\zeta \notin \varphi[\xi]$. For $\gamma \in \xi$, if $\gamma \notin \operatorname{dom} \psi$ then $\varphi(\gamma) = \zeta' \neq \zeta$. Otherwise, if $\gamma \in \operatorname{dom} \psi$, then $\varphi(\gamma) = \psi(\gamma)$ and we have two possibilities. Firstly, if $\psi(\gamma) \notin \mu$, then $\varphi(\gamma) \neq \zeta$ since $\zeta \in \mu$. Secondly, if $\psi(\gamma) \in \mu$, then $\gamma \in \psi^{-1}[\mu]$ thus $\varphi(\gamma) \in \psi[\psi^{-1}[\mu]]$ so, by choice of ζ , we have $\varphi(\gamma) \neq \zeta$. The set D_A is dense.

Let $\varphi \in G \cap D_A$, $\zeta \in A$, $\xi \in \kappa \cap \text{Even}$, $\varphi(\xi) = \zeta \notin \varphi[\xi]$. Since $\varphi \in G$ we have $\varphi \subset f_G$ so $f_G(\xi) = \zeta \notin f_G[\xi]$, and consequently min $f_G^{-1}[\{\zeta\}] = \xi \in \text{Even}$. Thus $\zeta \in A \cap Y$ and $A \cap Y \neq \emptyset$. The proof of $A \setminus Y \neq \emptyset$ is analogous and Y is an independent subset of μ .

Thus, in each generic extension by ${}^{<\kappa\lambda}$, or equivalently by $\operatorname{Col}(\kappa, \lambda)$, the cardinal μ obtains an independent set, so, by Theorem 3 the algebra $\operatorname{Col}(\kappa, \lambda)$ is strongly μ -independent and Claim 1 is proved.

Claim 2. If κ is a singular cardinal and $\lambda \ge 2$, then in each generic extension by $\operatorname{Col}(\kappa, \lambda)$ the cardinal $\lambda^{<\kappa}$ is collapsed to $\operatorname{cf}(\kappa)$.

Proof of Claim 2. In V, let $cf(\kappa) = \rho$ and let $\langle \kappa_{\xi} : \xi < \rho \rangle$ be an increasing sequence of cardinals less than κ , unbounded in κ . We prove that $|(\lambda^{\kappa_{\xi}})^{V}|^{V[G]} = \rho$, for each $\xi < \rho$. In V let the bijections $f_{\xi,\zeta} : \kappa_{\xi} \rightarrow [\kappa_{\zeta}, \kappa_{\zeta} + \kappa_{\xi}), \zeta \in [\xi, \rho)$, be defined by $f_{\xi,\zeta}(\alpha) = \kappa_{\zeta} + \alpha$ (here + denotes the ordinal addition). If G is a $Col(\kappa, \lambda)$ -generic filter over V and $f_G = \bigcup G : \kappa \to \lambda$, we prove that

$$({}^{\kappa_{\xi}}\lambda)^{V} \subset \{f_{G} \circ f_{\xi,\zeta}: \zeta \in [\xi,\rho)\}.$$

If $F \in ({}^{\kappa_{\xi}}\lambda)^{V}$ then it is easy to show that the set $D_{F} = \{\varphi \in ({}^{<\kappa_{\lambda}})^{V}: \exists \zeta \ge \xi(\kappa_{\zeta} + \kappa_{\xi} \subset \operatorname{dom} \varphi \land \varphi \circ f_{\xi,\zeta} = F)\}$ is dense in $({}^{<\kappa_{\lambda}}\lambda)^{V}$. So, if $\varphi \in G \cap D_{F}$ then $\varphi \circ f_{\xi,\zeta} = F$ for a $\zeta \ge \xi$, and $f_{G} \circ f_{\xi,\zeta} = F \in \{f_{G} \circ f_{\xi,\zeta}: \zeta \in [\xi, \rho)\}$. Thus, in V[G] the sets $({}^{\kappa_{\xi}}\lambda)^{V}$ are of size ρ and $(\lambda^{<\kappa})^{V}$ is a supremum of ρ many

Thus, in V[G] the sets $(\kappa_{\xi}\lambda)^{\nu}$ are of size ρ and $(\lambda^{<\kappa})^{\nu}$ is a supremum of ρ many ordinals of cardinality ρ , which implies $|(\lambda^{<\kappa})^{\nu}|^{V[G]} = \rho$. Claim 2 is proved.

Now, if κ is a regular cardinal, then the algebras $\operatorname{Col}(\kappa, \lambda)$ and $\operatorname{Col}(\kappa, \lambda^{<\kappa})$ are isomorphic (see [1, p. 342]). In *V*, clearly, $\kappa \leq \lambda^{<\kappa}$ and we apply Claim 1.

If κ is a singular cardinal, then by Claim 2 we have $|(\lambda^{<\kappa})^{V}|^{V[G]} = cf^{V}(\kappa) = \rho < \kappa$ and in order to apply Theorem 9(b) we prove that in V, for each $\mu < \lambda^{<\kappa}$ there holds $\mu^{\rho} \leq \lambda^{<\kappa}$. So, if $\mu < \lambda^{<\kappa}$, then $\mu \leq \lambda^{\nu}$, for some cardinal $\nu < \kappa$, hence $\mu^{\rho} = \lambda^{\nu\rho} \leq \lambda^{<\kappa}$, and (b) of Theorem 9 can be applied. \Box

5. Independence at singular cardinals

Theorem 11. Let B be a complete Boolean algebra and κ a singular cardinal. If B is (strongly) $cf(\kappa)$ -independent, it is (strongly) κ -independent too.

Proof. Let $cf^{V}(\kappa) = \rho$. Working in V we choose an increasing unbounded sequence $\langle \xi_{\alpha} : \alpha \in \rho \rangle \in {}^{\rho}\kappa$ and using recursion define a sequence of cardinals $\langle \kappa_{\alpha} : \alpha < \rho \rangle$ by: $\kappa_{0} = 0$; $\kappa_{\alpha+1} = \min\{\lambda \in \text{Card: } \lambda > \max\{\kappa_{\alpha}, \xi_{\alpha}\}\}$ and $\kappa_{\gamma} = \sup\{\kappa_{\alpha} : \alpha < \gamma\}$, for a limit $\gamma < \rho$. It is easy to show that $\kappa_{\alpha} < \kappa$ for all $\alpha < \rho$ and that this sequence is increasing, unbounded in κ and continuous. Consequently, $\kappa = \bigcup_{\alpha < \rho} [\kappa_{\alpha}, \kappa_{\alpha+1})$ is a partition of κ .

Let V[G] be a generic extension containing an independent set $X \subset \rho$. We will prove that $Y = \bigcup_{\alpha \in X} [\kappa_{\alpha}, \kappa_{\alpha+1})$ is an independent subset of κ .

Suppose $B \subset Y$ for some $B \in Old_{\kappa}$. Since B is an unbounded subset of κ , the set $A = \{\alpha \in \rho : B \cap [\kappa_{\alpha}, \kappa_{\alpha+1}) \neq \emptyset\}$ is an unbounded subset of ρ and, clearly, belongs to V. So, $A \in Old_{\rho}$ and $A \subset X$, which is impossible by the independence of X. Thus $B \setminus Y \neq \emptyset$ and analogously $B \cap Y \neq \emptyset$, for each $B \in Old_{\kappa}$, so Y is an independent subset of κ and the algebra B is κ -independent by Theorem 2. \Box

Example 2 (The converse of the previous theorem does not hold). The algebra Col $(\aleph_1, \aleph_{\omega+1})$ is strongly \aleph_{ω} -independent (Theorem 10) but \aleph_0 -dependent, since it is $(\aleph_0, 2)$ -distributive.

Theorem 12. In V, let κ be a singular cardinal and B a complete Boolean algebra and let in each generic extension V[G] the following conditions hold:

- (i) The set D of all $\lambda \in \kappa \cap \operatorname{Card}^{V}$ such that each subset of λ is dependent, is unbounded in κ .
- (ii) Each $Y \subset (2^{<\kappa})^V$ of size $\operatorname{cf}^{V[G]}(\kappa)$ has a subset $A \in V$ such that $|A|^{V[G]} = \operatorname{cf}^{V[G]}(\kappa)$.

Then the algebra B is κ -dependent.

188

Proof. Let V[G] be a generic extension and $V[G] \ni X \subset \kappa$. Let $\operatorname{cf}^{V[G]}(\kappa) = \rho$ and let $f: \rho \to \kappa$ be an increasing cofinal mapping belonging to V[G]. In V[G] we define the sequence $\langle \lambda_{\alpha}: \alpha < \rho \rangle$ of elements of D by $\lambda_{\alpha} = \min(D \setminus (\bigcup_{\beta < \alpha} \lambda_{\beta} \cup f(\alpha)) + 1), \alpha < \rho$. Clearly, the sequence is increasing and unbounded in κ . Now, using (i), for each $\alpha < \rho$ we choose an $A_{\alpha} \in ([\lambda_{\alpha}]^{\lambda_{\alpha}})^{V}$ such that $A_{\alpha} \subset \lambda_{\alpha} \cap X$ or $A_{\alpha} \subset \lambda_{\alpha} \setminus X$. Since each A_{α} is unbounded in λ_{α} and since $\alpha < \beta$ implies $\lambda_{\alpha} < \lambda_{\beta}$, the set $\{A_{\alpha}: \alpha < \rho\}$, belonging to V[G], is of size ρ . Obviously $\{A_{\alpha}: \alpha < \rho\} \subset S = (\bigcup_{\lambda \in \kappa \cap \operatorname{Card}} [\lambda]^{\lambda})^{V}$ and $|S|^{V} = (2^{<\kappa})^{V}$.

If the set $\mathscr{Y} = \{A_{\alpha}: \alpha < \rho \land A_{\alpha} \subset \lambda_{\alpha} \cap X\}$ is of size ρ , then $\mathscr{Y} \subset S$ and using (ii) we easily show that there exists a subset $\mathscr{A} = \{A_{\alpha}: \alpha \in I\} \subset \mathscr{Y}$ belonging to V such that $|\mathscr{A}|^{V[G]} = \rho$. So, the set $A = \bigcup_{\alpha \in I} A_{\alpha} \subset X$ belongs to V too. Clearly I is an unbounded subset of ρ , hence for each $\lambda \in D$ we have $|A|^{V} \ge \lambda$, and consequently $|A|^{V} = \kappa$.

Otherwise, if $|\mathscr{Y}|^{V[G]} < \rho$, then the set $\mathscr{Z} = \{A_{\alpha}: \alpha < \rho \land A_{\alpha} \subset \lambda_{\alpha} \setminus X\}$ is of cardinality ρ and, proceeding as above, we obtain a set $A \subset \kappa \setminus X$ such that $A \in V$ and $|A|^{V} = \kappa$. \Box

We note that the assumptions of the previous theorem imply $1 \Vdash cf(\check{\kappa}) = cf^{V}(\kappa)^{\check{\nu}}$ and B is $cf^{V}(\kappa)$ -supported.

Example 3. (Condition (ii) in the previous theorem cannot be replaced by the weaker condition (ii'): In each generic extension V[G] each $Y \subset cf^{V[G]}(\kappa)$ of size $cf^{V[G]}(\kappa)$ has a subset $A \in V$ of the same size). Let the GCH holds in V, let B be the Boolean completion of the Namba forcing, Nm(ω_2), and $\kappa = \aleph_{\omega_2}$. Since $\pi(B) = \aleph_3$, the algebra B is λ -dependent for all regular $\lambda < \aleph_{\omega_2}$ bigger than \aleph_3 (Theorem 5) so condition (i) is satisfied. Condition (ii') is also satisfied, since $1 \Vdash cf(\check{\kappa}) = \check{\omega}$ and the algebra B is $(\omega, 2)$ -distributive, so forcing by B does not produce new subsets of ω . But, since $\aleph_2 = 2^{\aleph_1}$ is collapsed to \aleph_1^V , by Theorem 9(c) the algebra B is \aleph_2 -independent and, by Theorem 11, B is $\aleph_{\omega_2} = \kappa$ -independent.

Example 4 (B is \aleph_n -independent for each n > 0 but \aleph_{ω} -dependent). Let in V the GCH holds and let $B = \prod_{n>0} \operatorname{Col}(\aleph_n, 2)$. Then like in the proof of Theorem 8 we conclude B is \aleph_n -independent for all n > 0. But B is \aleph_{ω} -dependent, since each generic extension $V_B[G]$ is equal to a generic extension $V_{\operatorname{Col}(\aleph_n,2)}[H]$ which, clearly, satisfies conditions (i) and (ii) of the previous theorem.

Theorem 13. Suppose κ is a singular cardinal of cofinality ρ , the algebra B is ρ -supported and the set $D = \{\lambda \in \text{Card} \cap \kappa: B \text{ is } \lambda\text{-dependent}\}$ is unbounded in κ . Then each of the conditions given below implies B is κ -dependent. (a) $\rho < \mathfrak{h}(B)$;

(b) $\rho \ge c(B);$

(c) 0^{\sharp} does not exist in V and forcing by B preserves $(\rho + \aleph_1)^+$.

Proof. Firstly we note that, since the algebra B is ρ -supported, ρ is a regular cardinal in each generic extension V[G], so $cf^{V[G]}(\kappa) = cf^{V[G]}(\rho) = \rho$. In order to apply Theorem 12 we show that each extension V[G] satisfies conditions (i) and (ii). Clearly, since

the set D is unbounded in κ , condition (i) holds. For the proof of (ii) we assume $Y \in V[G]$ is a subset of $B = (2^{<\kappa})^V$ of size ρ .

If $\rho < \mathfrak{h}(\mathsf{B})$ then $Y \in V$, by the ρ -distributivity of B .

Let $\rho \ge c(B)$ and let $f: \rho \to Y$ be a bijection belonging to V[G]. Since B is ρ^+ cc applying Lemma 6.8 of [9] we obtain $F \in V$, where $F: \rho \to P^V(B)$, such that $f(\alpha) \in F(\alpha)$ and $|F(\alpha)|^V \le \rho$ for every $\alpha < \rho$. Then $Y \subset \bigcup \operatorname{ran}(F) = C \in V$ and $|C|^V \le \sum_{\alpha < \rho} |F(\alpha)|^V = \rho$. Clearly, $Y \subset C$ implies $|C|^V = \rho$ hence in V there is a bijection $g: \rho \to C$. Since $g^{-1}[Y]$ is an unbounded subset of ρ and the algebra B is ρ -supported, there exists $A \in ([\rho]^{\rho})^V$ such that $A \subset g^{-1}[Y]$. Now $g[A] \in V$ is a subset of Y of size ρ required in (ii).

Let condition (c) hold. Firstly, we suppose $\rho > \omega$. Then, in V[G], Y is an uncountable set of ordinals so, by Jensen's Covering Lemma, there exists $C \in L^{V[G]} = L^V$ such that $Y \subset C$ and $|C|^{V[G]} = \rho$. Since $\rho^+ \in \operatorname{Card}^{V[G]}$ we have $|C|^V = \rho$ and consequently there is a bijection $g: \rho \to C$ belonging to V. Now, as above we obtain $A \in ([\rho]^{\rho})^V$ such that $A \subset g^{-1}[Y]$ and g[A] is an old subset of Y of size ρ . Secondly, let $\rho = \omega$. Then $\aleph_1^{V[G]} = \aleph_1^V$, since the collapse of \aleph_1 would produce new subsets of ω and then, by Fact I(d), the algebra B would be ω -unsupported. Now, by Jensen's Covering Lemma, there is $C \in L^{V[G]} = L^V$ such that $Y \subset C$ and $|C|^{V[G]} = \aleph_1$. Since \aleph_2 is preserved in V[G], we have $|C|^V = \aleph_1$ and, consequently, in V there exists a bijection $f: \omega_1 \to C$. Since \aleph_1 is preserved in V[G] there is $\xi < \omega_1$ such that $f^{-1}[Y] \subset \xi$. Using the assumption B is ω -supported we easily find a countable set $A \in V$ such that $A \subset Y$. \Box

Under the assumptions of the previous theorem we have $\operatorname{cf}^{V[G]}(\kappa) = \rho$ so the conditions $\rho < \mathfrak{h}^{V}(B)$ and $1 \Vdash \operatorname{cf}(\check{\kappa}) < \mathfrak{h}^{V}(B)$ are equivalent and the conditions $\rho \ge c^{V}(B)$ and $1 \Vdash \operatorname{cf}(\check{\kappa}) \ge c^{V}(B)$ are equivalent.

Remark 4. In Theorem 5 we proved that $cf(\kappa) > \pi(B)$ implies B is κ -dependent. Now we give a short proof for a singular κ : by Theorem 6, B is λ -dependent for each regular cardinal λ satisfying $\pi(B) < \lambda < \kappa$ and, since $cf(\kappa) > \pi(B)$ implies $cf(\kappa) \ge c(B)$, we apply Theorem 13.

Example 5 (Independence of \aleph_{ω} -independence of $\operatorname{Col}(\aleph_1, \aleph_2)$). Using Theorems 10, 11 and 13 it is easy to check that the algebra $\operatorname{Col}(\aleph_1, \aleph_2)$ is \aleph_{ω_1} -independent, \aleph_{ω_2} -independent and that it is \aleph_{ω} -dependent if and only if $\mathfrak{c} < \aleph_{\omega}$.

Using (c) of Theorem 13 we easily prove

Corollary 2. $(0^{\sharp} \notin V)$ Let B be a cardinal preserving c.B.a. and $\kappa > \pi(B)$ a singular cardinal. Then, if B is cf(κ)-supported, it is κ -dependent.

Assuming $0^{\sharp} \notin V, \kappa > \pi(B)$ and $cf(\kappa) = \rho < \kappa$, we list the situations which are not covered by the previous theorems and ask some related questions.

1. B is ρ -unsupported, but ρ -dependent. Question: Is the Boolean completion of Sacks' forcing \aleph_{ω} -dependent, if $\mathfrak{c} < \aleph_{\omega}$?

2. B is $\rho = \omega$ -supported, $\mathfrak{h}(\mathsf{B}) = \omega$ and \aleph_2 is collapsed (then, clearly, $\mathfrak{h}_2(\mathsf{B}) = \aleph_1$ is preserved). Question: Is the Boolean completion of the Namba forcing, Nm(ω_2), \aleph_{ω} -dependent, if $2^{\aleph_2} < \aleph_{\omega}$? (We note that, according to Example 1, $2^{\aleph_1} < \aleph_{\omega} < 2^{\aleph_2}$ implies \aleph_{ω} -independence of r.o.(Nm(ω_2)).)

3. B is ρ -supported, $\rho > \omega$ and ρ^+ is collapsed in some extension. We do not know whether such a situation is consistent at all (see Problem 1).

Acknowledgements

Research supported by the MNTRS. (Project 1768: Forcing, Model Theory and Settheoretic topology.)

References

- B. Balcar, P. Simon, Disjoint refinement, in: J.D. Monk, R. Bonnet (Eds.), Handbook of Boolean Algebra, Elsevier Science Publishers B.V., Amsterdam, 1989, pp. 333–386.
- [2] J. Baumgartner, Almost-disjoint sets, the dense set problem and the partition calculus, Ann. Math. Logic 10 (1976) 401–439.
- [3] J. Baumgartner, R. Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979) 271-288.
- [4] J.L. Bell, Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon Press, Oxford, 1977.
- [5] L. Bukovský, E. Copláková-Hartová, Minimal collapsing extensions of ZFC, Ann. Pure Appl. Logic 46 (3) (1990) 265–298.
- [6] T. Jech, Distributive laws, in: J.D. Monk, R. Bonnet (Eds.), Handbook of Boolean Algebra, Elsevier Science Publishers B.V., Amsterdam, 1989, pp. 317–331.
- [7] T. Jech, Set Theory, 2nd corr. edition, Springer, Berlin, 1997.
- [8] A. Kanamori, Perfect set forcing for uncountable cardinals, Ann. Math. Logic 19 (1-2) (1980) 97-114.
- [9] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
- [10] M.S. Kurilić, Unsupported Boolean algebras and forcing, Bull. Symbolic Logic 8 (1) (2002) 146.
- [11] M.S. Kurilić, Changing cofinalities and collapsing cardinals in models of set theory, Ann. Pure Appl. Logic 120 (1-3) (2003) 225–236.
- [12] A.W. Miller, Rational perfect set forcing, in: J.E. Baumgartner, et al. (Eds.), Axiomatic Set Theory, Contemporary Mathematics, Vol. 31, AMS, Providence, RI, 1984, pp. 143–159.
- [13] G.E. Sacks, Forcing with perfect closed sets, in: D.S. Scott (Ed.), Axiomatic Set Theory, Proceedings of the Symposium on Pure Mathematics, Vol. 13,1, AMS, Providence, RI, 1971, pp. 331–355.