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Abstract

If �¿! is a cardinal, a complete Boolean algebra B is called �-dependent if for each sequence
〈b�: �¡�〉 of elements of B there exists a partition of the unity, P, such that each p∈P extends
b� or b′�, for �-many �∈ �. The connection of this property with cardinal functions, distributivity
laws, forcing and collapsing of cardinals is considered.
c© 2003 Elsevier B.V. All rights reserved.

MSC: 03G05; 06E05; 03E35; 03E40

Keywords: Boolean algebras; Distributive laws; Boolean-valued models; Forcing

1. Introduction

The notation used in this paper is mainly standard. So, if 〈B;∧;∨;′ ; 0; 1〉 is a Boolean
algebra, then B+ denotes the set of all positive elements of B. A subset P⊂B+ is an
antichain if p∧ q= 0 for each di?erent p; q∈P. If, in addition

∨
P = 1, then P is

called a partition of the unity. The cardinal c(B) = sup{|P|: P is an antichain in B} is
the cellularity of B. A subset D⊂B+ is said to be dense if for each p∈B+ there exists
q∈D such that q6p. The algebraic density of B is the cardinal �(B) = min{|D|: D
is dense in B}. A set D⊂B is called open if for each p∈D and q6p there holds
q∈D. If �¿! and �¿2 are cardinals, by ¡�� we denote the set

⋃

¡�


� ordered by
the reversed inclusion and by Col (�; �) the Boolean completion of this partial order,
the (�; �)-collapsing algebra.

In order to simplify notation, for p∈B and B⊂B we write p≺B if p6b for some
b∈B. Also, if p; b∈B+, we say that b splits p (p is splitted by b) if p∧ b¿0 and
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p∧ b′¿0, that is if p �≺ {b; b′}. Specially, a set X splits a set A if the sets A∩X and
A\X are non-empty. Finally, if � is a cardinal, we say that a property P(�) holds for
almost all �∈� if |{�∈�: ¬P(�)}|¡�.

The property of complete Boolean algebras investigated in this paper can be intro-
duced as a modiCcation of the (�; 2)-distributive law (see [4,6,7]). Namely, a com-
plete Boolean algebra B is said to be (�; 2)-distributive if and only if the equality∧

�¡�

∨
n¡2 p�n =

∨
f : �→ 2

∧
�¡� p�f(�) holds for each double sequence 〈p�n: 〈�; n〉

∈�× 2〉 of elements of B, if and only if in each generic extension VB[G] every subset
of � belongs to the ground model V and, Cnally, if and only if

for each sequence 〈b�: � ¡ �〉∈�B there exists a partition of the unity; P;

such that each p∈P satisCes p≺{b�; b′�} for all �∈�:

So, a complete Boolean algebra B will be called �-dependent if and only if

for each sequence 〈b�: � ¡ �〉∈�B there exists a partition of the unity; P;

such that each p∈P satisCes p≺{b�; b′�} for �-many �∈�:

Otherwise, B will be called �-independent. The algebra B will be called strongly �-
independent, if and only if

there exists a sequence 〈b�: � ¡ �〉∈�B such that each positive p∈B is

splitted by b� for almost all �∈�:

In this paper we investigate what can be said about �-independence of complete
Boolean algebras in general. So, in Sections 2 and 3, after establishing some algebraic
and forcing equivalents of the property, we restrict our attention Crstly to atomless
Boolean algebras (since atomic algebras are �-dependent for all inCnite cardinals �)
and secondly, considering an atomless algebra B, to cardinals which are either regu-
lar and between h2(B) = min{�: B is not (�; 2)-distributive} and �(B), or singular of
coCnality 6�(B) (since for all other cardinals B is �-dependent). Regarding regular
cardinals it turns out that “everything is possible” if, for example, the GCH holds.

In Section 4 we show that, under some reasonable conditions (specially, under the
GCH), collapse of cardinals implies independence, and that (in ZFC) the algebras
Col(�; �) are �-independent for all possible values of �.

In Section 5 singular cardinals are considered. It is shown that for a singular �,
cf (�)-independence implies �-independence and investigated when dependence of B
on an unbounded subset of a singular cardinal � implies �-dependence of B.

2. Algebraic and forcing equivalents

If B is a complete Boolean algebra in the universe (ground model) V and G⊂B
a B-generic Clter over V , then VB[G] or brieLy V [G] will denote the corresponding
generic extension. If � is a cardinal in V , then by Old� we denote the set of all �-
sized subsets of � belonging to V , that is Old� = ([�]�)V . A subset X of � belonging
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to V [G] is called independent if it splits all A∈Old�. Otherwise, if A⊂X or A⊂ �\X
for some A∈Old�, the set X is called dependent.

Theorem 1. For each complete Boolean algebra B and each in8nite cardinal � the
following conditions are equivalent:
(a) B is �-dependent, that is for each sequence 〈b�: �¡�〉∈�B there exists a par-

tition of the unity, P, such that for each p∈P; p≺{b�; b′�} for �-many �∈�.
(b)

∨
A∈ [�]� (

∧
�∈A b�)∨ (

∧
�∈A b′�) = 1, for each sequence 〈b�: �¡�〉∈�B.

(c) In each generic extension VB[G] each subset of � is dependent.
(d) In each generic extension VB[G] each unbounded subset of � is dependent.
If � is a regular cardinal, then each of these conditions is equivalent to the condition
(e) For each C∈[B]� the set DC = {p∈B+: p≺{c; c′} for �-many c∈C} is dense

in B.

Proof. (a⇒ b). Let (a) hold and 〈b�: �¡�〉∈�B. If P is the corresponding partition
of the unity provided by (a) then each p∈P extends b� for �-many �∈� or extends
b′� for �-many �∈�, so, there is A ∈ [�]� such that p6

∧
�∈A b� or p6

∧
�∈A b′�.

Hence 1 =
∨

P6
∨

A∈ [�]� (
∧

�∈A b�)∨ (
∧

�∈A b′�).
(b⇒ c). Let condition (b) hold and let V [G] be a generic extension containing X ⊂ �.

Then X = �G for some B-name �. Applying (b) to the sequence b� = ‖ &�∈�‖, �¡�,
we obtain ‖∃A∈Old�& (A⊂ �∨A⊂ &�\�)‖= 1, so there is A∈Old� such that A⊂X or
A⊂ �\X and (c) is true.

(c⇒ a). Let (c) hold and 〈b�: �¡�〉∈�B. Then �= {〈 &�; b�〉: �∈�} is a B-name
and 1� �⊂ &� so by (c) 1�∃A∈Old�& (A⊂ �∨A⊂ &�\�) or equivalently 1�¬∀A∈Old�&

(¬A⊂ �∧¬A⊂ &�\�). The last condition is equivalent to the condition

∀b∈B+∃p6b∃A∈Old� (∀�∈A(p6b�)∨∀� ∈ A (p6b′�)):

So the set D = {p∈B+: p≺{b�; b′�} for �-many �∈�} is dense in B and open. Let
P⊂D be a maximal antichain of elements of D. Clearly P is a partition of the unity
satisfying the condition from (a).

(c⇔ d). The direction “⇒ ” is trivial. Let (d) hold and X ∈V [G], where X ⊂ �.
If the set X is unbounded in � then by (d) there exists A∈Old� such that A⊂X
or A⊂ �\X . Otherwise, X ⊂ 
 for some 
¡� and for A= �\
 we have A∈Old� and
A⊂ �\X .

(a⇒ e). Let condition (a) hold. If �¿|B| then (e) is vacuously true. Let �6|B|; C
∈[B]� and let C = {c�: �¡�} be an 1-1 enumeration of C. By (a) there exists a
partition of the unity, P, such that each p∈P satisCes p≺{c�; c′�}, for �-many �∈�.
Now, if b∈B+ then there is p∈P such that p∧ b=p1¿0, thus p1∈DC and p6b,
so the set DC is dense in B.

(e⇒ a, for a regular �). Let condition (e) hold and �∈Reg. For a sequence 〈b�:
�¡�〉∈�B we will prove that the set D = {p ∈ B+: p≺{b�; b′�} for �-many �∈�}
is dense in B.

If |{b�: �¡�}|= � and C = {b�: �¡�} then, clearly, �6|B| and by (e) the set
DC is dense in B. For p∈DC if p6c for �-many c∈C then p6b� for �-many �∈�,
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so p∈D. Otherwise p6c′ for �-many c∈C and p∈D again. So DC ⊂C and D is
dense in B.

If |{b�: �¡�}|¡�, then, by the regularity of �, there exists b∈B such that b� = b
for �-many �∈�. Let q∈B+. Firstly, if p1 = q∧ b¿0 then p16b� for �-many �∈�
so p∈D. Otherwise, if q∧ b= 0, then q6b′� for �-many �∈� and q∈D. Thus D is
dense in B.

Now, let P⊂D be a maximal antichain in D. Then P is a partition of the unity
satisfying (a).

Theorem 1 can be restated in the following way:

Theorem 2. For each complete Boolean algebra B and each in8nite cardinal � the
following conditions are equivalent:
(a) B is �-independent, that is there exist a sequence 〈b�: �¡�〉∈�B and q∈B+

such that each non-zero p6q is splitted by b� for almost all �∈�.
(b)

∨
A∈ [�]� (

∧
�∈A b�)∨ (

∧
�∈A b′�)¡1, for some sequence 〈b�: �¡�〉 ∈ �B.

(c) In some extension VB[G] there exists an independent subset X ⊂ �.

Theorem 3. For each complete Boolean algebra B and each in8nite cardinal � the
following conditions are equivalent:
(a) B is strongly �-independent, that is there exists a sequence 〈b�: �¡�〉∈�B such

that each positive p∈B is splitted by b� for almost all �∈�.
(b)

∨
A∈ [�]� (

∧
�∈A b�)∨ (

∧
�∈A b′�) = 0, for some sequence 〈b�: �¡�〉∈�B.

(c) In each extension VB[G] there exists an independent subset X ⊂ �.

Proof. (a⇒ b). Let 〈b�: �¡�〉 be a sequence provided by (a). Suppose
∧

�∈A b� =
p¿0, for some A∈[�]�. But then for some �∈A; b� splits p, which is impossible. So,
for each A∈[�]� we have

∧
�∈A b� = 0 and similarly

∧
�∈A b′� = 0 and (b) is proved.

(b⇒ c). Let 〈b�: �¡�〉 be a sequence provided by (b). Then for �={〈 &�; b�〉: � ∈ �}
we have 1� �⊂ &� and (b) implies ‖� splits all A∈Old�&‖= 1.

(c⇒ a). Let (c) hold. Then, by the Maximum principle (see [4]) there exists a name
� such that: (i) 1� �⊂ &�; (ii) 1�∀A∈Old�& (A∩ � �= ∅); (iii) 1�∀A ∈ Old�& (A\� �= ∅).
Putting b� = ‖�∈�‖, for �¡� and using (ii) we easily conclude that |{�∈�: p∧ b�

= 0}|¡�, for each p∈B+. Similarly, by (iii) we have |{�∈�: p∧ b′� = 0}| ¡ � for
each p∈B+ so, if p∈B+ then p≺{b�; b′�} for ¡�-many �∈� and (a) is proved.

Remark 1. It is known (see [4, p. 65]) that if B is a weakly homogeneous c.B.a.,
’(v1; v2; : : : ; vn) a formula of ZFC and a1; a2; : : : ; an∈V , then ’(a1; a2; : : : ; an) holds in
some i? it holds in all generic extensions of V by B. So considering parts (c) of the
previous two theorems we conclude that a weakly homogeneous c.B.a. is �-independent
i? it is strongly �-independent.

Theorem 4. If a complete Boolean algebra B is atomic, then it is �-dependent for
every in8nite cardinal �.
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Proof. Although a proof by forcing arguments is evident, we will demonstrate a com-
binatorial one. Let 〈b�: �¡�〉∈�B. Since the algebra B is atomic, the set At(B) of all
its atoms is a partition of the unity and (because atoms cannot be splitted) if p∈At(B),
then p≺{b�; b′�} for all �∈�. So, B is �-dependent by deCnition.

3. Dependence, supportedness and distributivity

In this section we compare �-dependence with some other forcing related properties
of complete Boolean algebras and determine the position of the cardinals � for which
a given algebra can be �-independent.

Theorem 5. A complete Boolean algebra B is �-dependent for each cardinal � satis-
fying cf (�)¿�(B).

Proof. On the contrary, suppose cf (�)¿�(B) and B is �-independent. Then by Theo-
rem 2 there is a sequence 〈b�: �¡�〉∈�B satisfying

∨
A∈ [�]� (

∧
�∈A b�)∨ (

∧
�∈A b′�) =

c¡1, thus we have: (i)
∧

�∈A b�6c, for each A∈[�]�; and (ii) 0¡c′6
∨

�∈A b�, for
each A∈[�]�.

By (ii), c′ is compatible with b� for almost all �∈�, thus the set Ac′ = {�∈�: b� ∧ c′

¿0} is of size �. Let D⊂B+ be a dense subset of B of size �(B). Now, for each
�∈Ac′ we pick d�∈D such that d�6b� ∧ c′, obtaining a function from Ac′ to D.
Since |D|¡cf (�) there exists d∈D such that d� =d for �-many �∈Ac′ . Thus the
set Ad = {�∈Ac′ : d6b� ∧ c′} is of cardinality � and

∧
�∈Ad

b� ∧ c′¿d¿0, which is
impossible by (i).

In [10] a complete Boolean algebra B is called �-supported (for a cardinal �¿!) i?
the equality

∧
�¡�

∨
�¿� b� =

∨
A∈ [�]�

∧
�∈A b� is satisCed for each sequence 〈b�: �

¡�〉 of elements of B. Otherwise, the algebra B is called �-unsupported. In the sequel
we will use the following facts proved in [10]:

Fact 1. Let B be an arbitrary complete Boolean algebra. Then
(a) B is �-unsupported for each singular cardinal �.
(b) B is �-supported if and only if in every generic extension � is a regular cardinal

and each new set X ∈[�]� has an old subset of size �.
(c) Unsupp (B) = {�∈Reg: B is �-unsupported}⊂ [h2(B); �(B)].
(d) If 2¡h2(B) = h2(B), specially, if h2(B) =ℵ0, then B is h2(B)-unsupported. If 0] �∈V

and forcing by B preserves h2(B)+, then B is h2(B)-unsupported.

Theorem 6. Let B be a c.B.a. and Indep(B) = {�∈Reg: B is �-independent}. Then
(a) If B is �-supported, it is �-dependent.
(b) Indep(B)⊂Unsupp(B)⊂ [h2(B); �(B)].

Proof. The assertion (a) follows from forcing characterizations given in Fact 1(b) and
Theorem 1(d). The Crst inclusion in (b) is a consequence of (a), while the second
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is Fact 1(c). The inclusion Indep(B)⊂ [h2(B); �(B)] also follows from Theorem 5 and
the fact that (�; 2)-distributivity implies �-dependence.

Remark 2. There exist �-dependent algebras which are not �-supported. Firstly, if �
is a singular cardinal and cf (�)¿�(B), then B is �-dependent by Theorem 5 and �-
unsupported by Fact 1(a). Also there are such examples for regular cardinals �. Namely,
Sacks’ perfect set forcing (see [13,3]) and Miller’s rational perfect set forcing (see
[12]) produce new subsets of !, but all of them are dependent. So, the corresponding
Boolean algebras are !-dependent by Theorem 1 and !-unsupported by Fact 1(d). For
uncountable regular cardinals we mention the forcing of Kanamori (see [8]) which has
the observed property for � strongly inaccessible.

Remark 3. �-dependence and weak (�; �)-distributivity are unrelated properties. A
complete Boolean algebra B is called weakly (�; �)-distributive if and only if the
equality

∧
�¡�

∨
�¡� b�� =

∨
f:�→�

∧
�¡�

∨
�¡f(�) b�� holds for each double sequence

〈b��: 〈�; �〉∈�× �〉 of elements of B, if and only if in each generic extension VB[G]
every function f: �→ � is majorized by some function g: �→ � belonging to V . Since
both �-dependence and weak (�; �)-distributivity are weakenings of (�; 2)-distributivity
(and, moreover, of �-supportedness) it is natural to ask whether these two proper-
ties are related. The answer is “No”. It is easy to check that a c.B.a. B is weakly
(!;!)-distributive i? forcing by B does not produce weak dominating functions from
! to ! (f∈!!∩V [G] is a w.d.f. i? for each g∈!!∩V the set {n∈!: g(n)¡f(n)}
is inCnite). Now, Crstly, it is well-known that adding a random real to V produces
independent subsets of !, but does not produce w.d.f.’s. Secondly, Miller’s rational
perfect set forcing produces w.d.f.’s, but does not produce independent subsets of !
(see [12]).

According to Theorems 5 and 6, the question on �-independence of a given Boolean
algebra remains open for �∈Reg∩ [h2(B); �(B)] and for singular � satisfying cf (�)
6�(B). In the sequel we show that for regular cardinals everything is possible if, for
example, the GCH is assumed. Singular cardinals will be considered later.

Theorem 7. Let Bi ; i∈I , be a family of complete Boolean algebras. Then
Indep(

∏
i∈ I Bi) =

⋃
i∈ I Indep(Bi).

Proof. Let B=
∏

i∈ I Bi. It is known that if VB[G] is a B-generic extension, then
VB[G] =VBi [H ] for some i∈I and some Bi-generic Clter H , and conversely, if VBi [H ]
is a Bi-generic extension, then VBi [H ] =VB[G] for some B-generic Clter G. Now, using
characterization given in Theorem 2(c), we easily Cnish the proof.

Theorem 8. For each set S of regular cardinals � satisfying 2¡� = � there exists a
complete Boolean algebra B such that Indep(B) = S. If |S|¿1, then B is not strongly
�-independent for any regular �. Specially, under the GCH, for each set S ⊂Reg
there is a complete Boolean algebra B satisfying Indep(B) = S.

Proof. It is easy to show that if � is a regular cardinal, then h2(Col(�; 2)) = � and
�(Col(�; 2)) = 2¡�, so, under the assumptions, for each �∈S we have Indep(Col(�; 2))
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⊂{�}. On the other hand, if G is a ¡�2-generic Clter over V , then a simple den-
sity argument shows that fG =

⋃
G: �→ 2 is the characteristic function of an in-

dependent subset of �. Thus Indep(Col(�; 2)) = {�} and by the previous theorem
B=

∏
�∈S Col(�; 2) satisCes Indep(B) = S. If |S|¿1 and �∈Reg, then we choose

�∈S\{�}. In extensions by Col(�; 2) each subset of � is dependent, so, by Theo-
rem 3, B is not strongly �-independent. Finally, the GCH implies 2¡� = � for each �.

4. Independence and collapsing

Theorem 9. Let � be a cardinal in V and let V [G] be a generic extension of V. Then
(a) If |(�+)V |V [G] = |�|V [G] and if � obtains an independent subset in V [G], then (�+)V

obtains an independent subset too.
(b) If |�|V [G] = � and if (&�)V6� for each V-cardinal &¡�, then each � ∈ CardV

satisfying �6�6� obtains an independent subset in V [G].
(c) If |(2�)V |V [G] = |�|V [G], then each �∈CardV satisfying |�|V [G]6�6(2�)V obtains

an independent subset in V [G].

Proof. (a) Let |�+|V [G] = |�|V [G] = �. Then cf V [G](�+) = '6� and in V [G] there is an
increasing sequence 〈�
: 
¡'〉 of elements of �+, unbounded in �+.

We will show that in V [G] there exists a sequence 〈�
: 
¡'〉∈'(�+) such that
�+ =

⋃

¡' [�
; �
+1) and |[�
; �
+1)|V = �, for each 
¡'. Firstly, let '¿!. Using

recursion in V [G] we deCne �
; 
¡', by: �0 = 0; �
+1 = max{�
; �
+�} (where �
+�
is the ordinal addition) and �( = sup{�
: 
¡(}, if ( is a limit ordinal. Since the ordinal
addition is an absolute operation and since each subset of �+ of size ¡' is bounded
in �+, an easy induction shows that �
∈�+, for each 
¡'. So

⋃

¡' [�
; �
+1)⊂ �+

and we will prove the equality. Let )¡�+. The sequence 〈�
: 
¡'〉 is (clearly)
unbounded in �+ so there exists 
0 = min{
¡': )¡�
}. Now, 
0 is a successor
ordinal (otherwise we would have 
06)) say 
0 = 
′ + 1. Thus )∈[�
′ ; �
′+1) and
the equality is proved. If '=!, then the sequence 〈�
: 
¡!〉 deCned by: �0 = 0 and
�
+1 = max{�
; �
+1 + �}, satisCes two desired properties.

In V , the sets [�
; �
+1) are of size �, so, working in V [G] we can pick bijections
f
: �→ [�
; �
+1); 
¡', belonging to V . Let X ∈V [G] be an independent subset of �.
We will prove that Y =

⋃

¡' f
[X ] is an independent subset of �+.

Let A∈Old�+ . Suppose |A∩ [�
; �
+1)|V¡�, for every 
¡'. Then the ordinals )


= typeV (A∩ [�
; �
+1)) are less than � and in V [G] the well-ordered set A is isomor-
phic to

∑

¡' )
. Clearly, if typeV (' · �) = +, where ' · � denotes the ordinal product,

then |+|V = �¡�+. In V [G] the set A is isomorphic to a subset of +, so typeV [G](A)6+
and, since type is an absolute notion, we have typeV (A)6+¡�+. But A∈Old�+ implies
typeV (A) = �+. A contradiction. Thus there exists 
0¡' such that |A∩ [�
0 ; �
0+1)|V = �
hence A∩ [�
0 ; �
0+1)∩f
0 [X ] �= ∅ and A∩ [�
0 ; �
0+1)\f
0 [X ] �= ∅ which implies
A∩Y �= ∅ and A\Y �= ∅.

(b) In V [G] � is an ordinal of size �, so cf V [G](�) = '6� and there exists an
increasing sequence 〈�): )¡'〉 unbounded in �. W.l.o.g. we suppose �)¿�. In V ,
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each ordinal �) is of size ¡� so, by the assumption, the set [�)]� is of size 6� in
V and of size � in V [G]. Consequently in V [G] the set

⋃
)¡' ([�)]�)V is of size �,

hence there exists an enumeration
⋃

)¡' ([�)]�)V = {A
: 
¡�}. By recursion in V [G]
we deCne the sequences 〈�
: 
¡�〉 and 〈�
: 
¡�〉 by

�
 = min(A
\({�,: , ¡ 
} ∪ {�,: , ¡ 
}));

�
 = min(A
\({�,: ,6 
} ∪ {�,: , ¡ 
})):

Since 
¡� implies |
|V¡�, the sequences are well-deCned.
Let Y = {�
: 
¡�} and let � be a cardinal in V , where �6�6�. We will prove

that Y� =Y ∩ � is an independent subset of �.
If A∈Old�, then typeV (A) = � and in V there exists an isomorphism f : � → A.

If �¡�, then f[�]⊂ �¡� and if �= � then �¡� implies f[�]⊂f(�)¡�. So, f[�]
is a bounded subset of � and there exists )¡' such that f[�]⊂ �). Clearly, the set
f[�] is of size � in V so f[�] ∈ ([�)]�)V and consequently there exists 
0¡� such
that f[�] =A
0 . Now, �
0 ∈f[�]∩Y� and �
0 ∈f[�]\Y�, which implies A∩Y� �= ∅ and
A\Y� �= ∅.

(c) Let |(2�)V |V [G] = |�|V [G] = �. In V , for &¡2� we have &�62�� = 2� (since �6�)
and we apply (b).

Corollary 1. (GCH) If in some extension VB[G] a cardinal � is collapsed to �,
then each cardinal � satisfying �6�6� obtains an independent subset in VB[G] and
consequently the algebra B is �-independent for all such �.

Proof. Under the assumptions, for each &¡� there holds &�6max{��; &&}=
max{�+; &+}6� and we apply (b) of the previous theorem.

Problem 1. Is Corollary 1 a theorem of ZFC?

Example 1 (Independence of the algebras of Bukovsk)y and Namba). Let �¿ℵ2 be a
regular cardinal such that 2¡�¡2�;ℵ� and that &!¡�, for all &¡�. Let B=
r:o:(Nm(�)) or B= r:o:(Pf (�)), where Nm(�) is the generalized Namba forcing and
Pf (�) the generalized perfect forcing (see [5]). Since by Theorem 3.5 of [2] the condi-
tion 2¡�¡2�;ℵ� implies the existence of a 2�-sized mad family on �, using Theorem
14 of [11] we conclude that if in a generic extension VB[G] the cardinal � is collapsed
to �0, then each cardinal � satisfying �06�62� is collapsed to �0 too and VB[G] is
a |�|= �0-minimal extension. Now, since &¡2� implies &�062�, using Theorem 9(b)
we conclude that B is �-independent for all such �. We note that if �=ℵ2 or if 0]

does not exist, then �0 =ℵV
1 (see [11]).

Theorem 10. If �¿! and �¿2 are cardinals, then the algebra B= Col(�; �) is
strongly �-independent for each cardinal � ∈ [cf (�); �¡�] = [h2(B); �(B)].
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Proof. We distinguish the cases � is regular and � is singular and Crstly prove two
auxiliary claims

Claim 1. If � is a regular cardinal and �¿�, then for each cardinal & satisfying
�6&6� the algebra Col(�; �) is strongly &-independent.

Proof of Claim 1. Let G be an arbitrary ¡��-generic Clter. Then fG =
⋃

G : � → �
and we will show that the set

Y = {, ∈ & ∩ fG[�]: min f−1
G [{,}] ∈ Even}

(where Even is the class of even ordinals) is an independent subset of &. Let A∈
([&]&)V . Working in V we prove that the set

DA = {’ ∈ ¡��: ∃, ∈ A ∃
 ∈ � ∩ Even ’(
) = , �∈ ’[
]}
is dense in ¡��. Let  ∈¡�� be arbitrary and let dom  = �. Clearly  [ −1[&]]⊂ &
and since �¡�, we have

| [ −1[&]]|6 | −1[&]|6 |�| ¡ �6 &:

Now, since |A|= &, we can choose ,∈A\ [ −1[&]]. Also, we choose 
∈ Even ∩�\�
and ,′ ∈ &\{,} and deCne ’ : 
 + 1 → � by

’(�) =




 (�) if � ∈ dom  ;
,′ if � ∈ 
\dom  ;
, if � = 
:

Clearly ’6 and for the proof that ’∈DA it remains to be shown , �∈’[
]. For
(∈ 
, if ( �∈ dom  then ’(() = ,′ �= ,. Otherwise, if (∈ dom  , then ’(() =  (() and
we have two possibilities. Firstly, if  (() �∈ &, then ’(() �= , since ,∈ &. Secondly, if
 (()∈ &, then (∈  −1[&] thus ’(()∈  [ −1[&]] so, by choice of ,, we have ’(() �= ,.
The set DA is dense.

Let ’∈G ∩DA; ,∈A; 
∈ �∩Even; ’(
) = , �∈’[
]. Since ’∈G we have ’⊂fG
so fG(
) = , �∈fG[
], and consequently min f−1

G [{,}] = 
∈Even. Thus ,∈A∩Y and
A∩Y �= ∅. The proof of A\Y �= ∅ is analogous and Y is an independent subset of &.

Thus, in each generic extension by ¡��, or equivalently by Col(�; �), the cardi-
nal & obtains an independent set, so, by Theorem 3 the algebra Col(�; �) is strongly
&-independent and Claim 1 is proved.

Claim 2. If � is a singular cardinal and �¿2, then in each generic extension by
Col(�; �) the cardinal �¡� is collapsed to cf (�).

Proof of Claim 2. In V , let cf (�) = ' and let 〈�
: 
¡'〉 be an increasing sequence of
cardinals less than �, unbounded in �. We prove that |(��
)V |V [G] = ', for each 
¡'.
In V let the bijections f
;, : �
→[�,; �, + �
); ,∈ [
; '), be deCned by f
;,(�) = �, + �
(here + denotes the ordinal addition). If G is a Col(�; �)-generic Clter over V and
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fG =
⋃

G : � → �, we prove that

(�
�)V ⊂ {fG ◦ f
;,: , ∈ [
; ')}:
If F ∈ (�
�)V then it is easy to show that the set DF = {’∈ (¡��)V : ∃,¿
(�, +
�
 ⊂ dom’∧’ ◦f
;, =F)} is dense in (¡��)V . So, if ’∈G ∩DF then ’ ◦f
;, =F for
a ,¿
, and fG ◦ f
;, =F ∈{fG ◦ f
;,: ,∈ [
; ')}.

Thus, in V [G] the sets (�
�)V are of size ' and (�¡�)V is a supremum of ' many
ordinals of cardinality ', which implies |(�¡�)V |V [G] = '. Claim 2 is proved.

Now, if � is a regular cardinal, then the algebras Col(�; �) and Col(�; �¡�) are
isomorphic (see [1, p. 342]). In V; clearly, �6�¡� and we apply Claim 1.

If � is a singular cardinal, then by Claim 2 we have |(�¡�)V |V [G] = cf V (�) = '¡�
and in order to apply Theorem 9(b) we prove that in V , for each &¡�¡� there holds
&'6�¡�. So, if &¡�¡�, then &6�/, for some cardinal /¡�, hence &' = �/'6�¡�,
and (b) of Theorem 9 can be applied.

5. Independence at singular cardinals

Theorem 11. Let B be a complete Boolean algebra and � a singular cardinal. If B
is (strongly) cf (�)-independent, it is (strongly) �-independent too.

Proof. Let cf V (�) = '. Working in V we choose an increasing unbounded sequence
〈
�: �∈ '〉 ∈ '� and using recursion deCne a sequence of cardinals 〈��: �¡'〉 by:
�0 = 0; ��+1 = min{�∈Card: �¿max{��; 
�}} and �( = sup{��: �¡(}, for a limit
(¡'. It is easy to show that �� ¡ � for all �¡' and that this sequence is increasing,
unbounded in � and continuous. Consequently, �=

⋃
�¡'[��; ��+1) is a partition of �.

Let V [G] be a generic extension containing an independent set X ⊂ '. We will prove
that Y =

⋃
�∈ X [��; ��+1) is an independent subset of �.

Suppose B⊂Y for some B∈Old�. Since B is an unbounded subset of �, the set
A= {�∈ ': B∩ [��; ��+1) �= ∅} is an unbounded subset of ' and, clearly, belongs to V .
So, A∈Old' and A⊂X , which is impossible by the independence of X . Thus B\Y �= ∅
and analogously B∩Y �= ∅, for each B∈Old�, so Y is an independent subset of � and
the algebra B is �-independent by Theorem 2.

Example 2 (The converse of the previous theorem does not hold). The algebra Col
(ℵ1;ℵ!+1) is strongly ℵ!-independent (Theorem 10) but ℵ0-dependent, since it is
(ℵ0; 2)-distributive.

Theorem 12. In V , let � be a singular cardinal and B a complete Boolean algebra
and let in each generic extension V [G] the following conditions hold:

(i) The set D of all �∈ �∩CardV such that each subset of � is dependent, is
unbounded in �.

(ii) Each Y ⊂ (2¡�)V of size cf V [G](�) has a subset A∈V such that |A|V [G] =
cf V [G](�).

Then the algebra B is �-dependent.
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Proof. Let V [G] be a generic extension and V [G]�X ⊂ �. Let cf V [G](�) = ' and let
f : ' → � be an increasing coCnal mapping belonging to V [G]. In V [G] we deCne the
sequence 〈��: �¡'〉 of elements of D by �� = min (D\(

⋃
�¡��� ∪ f(�)) + 1); �¡'.

Clearly, the sequence is increasing and unbounded in �. Now, using (i), for each �¡'
we choose an A� ∈ ([��]��)V such that A� ⊂ �� ∩X or A� ⊂ ��\X . Since each A� is
unbounded in �� and since �¡� implies ��¡��, the set {A�: �¡'}, belonging to
V [G], is of size '. Obviously {A�: �¡'}⊂ S = (

⋃
�∈�∩Card[�]�)V and |S|V = (2¡�)V .

If the set Y= {A�: �¡' ∧ A� ⊂ �� ∩X } is of size ', then Y⊂ S and using (ii) we
easily show that there exists a subset A= {A�: �∈ I}⊂Y belonging to V such that
|A|V [G] = '. So, the set A=

⋃
�∈IA� ⊂X belongs to V too. Clearly I is an unbounded

subset of ', hence for each �∈D we have |A|V¿�, and consequently |A|V = �.
Otherwise, if |Y|V [G]¡', then the set Z= {A�: �¡' ∧ A� ⊂ ��\X } is of cardi-

nality ' and, proceeding as above, we obtain a set A⊂ �\X such that A∈V and
|A|V = �.

We note that the assumptions of the previous theorem imply 1� cf ( &�)=cf V (�)&
and B is cf V (�)-supported.

Example 3. (Condition (ii) in the previous theorem cannot be replaced by the weaker
condition (ii′): In each generic extension V [G] each Y ⊂ cf V [G](�) of size cf V [G](�)
has a subset A∈V of the same size). Let the GCH holds in V , let B be the Boolean
completion of the Namba forcing, Nm(!2), and �=ℵ!2 . Since �(B) =ℵ3, the algebra
B is �-dependent for all regular �¡ℵ!2 bigger than ℵ3 (Theorem 5) so condition (i)
is satisCed. Condition (ii′) is also satisCed, since 1 � cf ( &�) = &! and the algebra B
is (!; 2)-distributive, so forcing by B does not produce new subsets of !. But, since
ℵ2 = 2ℵ1 is collapsed to ℵV

1 , by Theorem 9(c) the algebra B is ℵ2-independent and, by
Theorem 11, B is ℵ!2 = �-independent.

Example 4 (B is ℵn-independent for each n¿0 but ℵ!-dependent). Let in V the
GCH holds and let B=

∏
n¿0 Col(ℵn; 2). Then like in the proof of Theorem 8 we

conclude B is ℵn-independent for all n¿0. But B is ℵ!-dependent, since each generic
extension VB[G] is equal to a generic extension VCol(ℵn;2)[H ] which, clearly, satisCes
conditions (i) and (ii) of the previous theorem.

Theorem 13. Suppose � is a singular cardinal of co8nality ', the algebra B is '-
supported and the set D = {�∈Card ∩ �: B is �-dependent} is unbounded in �. Then
each of the conditions given below implies B is �-dependent.
(a) '¡h(B);
(b) '¿c(B);
(c) 0] does not exist in V and forcing by B preserves (' + ℵ1)+.

Proof. Firstly we note that, since the algebra B is '-supported, ' is a regular cardinal in
each generic extension V [G], so cf V [G](�) = cf V [G](') = '. In order to apply Theorem
12 we show that each extension V [G] satisCes conditions (i) and (ii). Clearly, since
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the set D is unbounded in �, condition (i) holds. For the proof of (ii) we assume
Y ∈V [G] is a subset of B= (2¡�)V of size '.

If '¡h(B) then Y ∈V , by the '-distributivity of B.
Let '¿c(B) and let f: ' → Y be a bijection belonging to V [G]. Since B is '+-

cc applying Lemma 6.8 of [9] we obtain F ∈V , where F : ' → PV (B), such that
f(�)∈F(�) and |F(�)|V6' for every �¡'. Then Y ⊂ ⋃

ran(F) =C ∈V and |C|V6∑
�¡'|F(�)|V = '. Clearly, Y ⊂C implies |C|V = ' hence in V there is a bijection

g : ' → C. Since g−1[Y ] is an unbounded subset of ' and the algebra B is '-supported,
there exists A∈ ([']')V such that A⊂ g−1[Y ]. Now g[A]∈V is a subset of Y of size
' required in (ii).

Let condition (c) hold. Firstly, we suppose '¿!. Then, in V [G]; Y is an uncountable
set of ordinals so, by Jensen’s Covering Lemma, there exists C ∈LV [G] =LV such that
Y ⊂C and |C|V [G] = '. Since '+ ∈CardV [G] we have |C|V = ' and consequently there
is a bijection g : ' → C belonging to V . Now, as above we obtain A∈ ([']')V such
that A⊂ g−1[Y ] and g[A] is an old subset of Y of size '. Secondly, let '=!. Then
ℵV [G]

1 =ℵV
1 , since the collapse of ℵ1 would produce new subsets of ! and then, by Fact

l(d), the algebra B would be !-unsupported. Now, by Jensen’s Covering Lemma, there
is C ∈LV [G] =LV such that Y ⊂C and |C|V [G] =ℵ1. Since ℵ2 is preserved in V [G], we
have |C|V =ℵ1 and, consequently, in V there exists a bijection f :!1 → C. Since ℵ1

is preserved in V [G] there is 
¡!1 such that f−1[Y ]⊂ 
. Using the assumption B is
!-supported we easily Cnd a countable set A∈V such that A⊂Y .

Under the assumptions of the previous theorem we have cf V [G](�) = ' so the con-
ditions '¡hV (B) and 1 � cf ( &�)¡hV (B)& are equivalent and the conditions '¿cV (B)
and 1 � cf ( &�)¿cV (B)& are equivalent.

Remark 4. In Theorem 5 we proved that cf (�)¿�(B) implies B is �-dependent. Now
we give a short proof for a singular �: by Theorem 6, B is �-dependent for each
regular cardinal � satisfying �(B)¡�¡� and, since cf (�)¿�(B) implies cf (�)¿c(B),
we apply Theorem 13.

Example 5 (Independence of ℵ!-independence of Col(ℵ1;ℵ2)). Using Theorems 10,
11 and 13 it is easy to check that the algebra Col(ℵ1;ℵ2) is ℵ!1 -independent,
ℵ!2 -independent and that it is ℵ!-dependent if and only if c¡ℵ!.

Using (c) of Theorem 13 we easily prove

Corollary 2. (0] �∈V ) Let B be a cardinal preserving c.B.a. and � ¿ �(B) a singular
cardinal. Then, if B is cf (�)-supported, it is �-dependent.

Assuming 0] �∈V; �¿�(B) and cf (�) = '¡�, we list the situations which are not
covered by the previous theorems and ask some related questions.

1. B is '-unsupported, but '-dependent. Question: Is the Boolean completion of
Sacks’ forcing ℵ!-dependent, if c¡ℵ!?
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2. B is '=!-supported, h(B) =! and ℵ2 is collapsed (then, clearly, h2(B) =ℵ1

is preserved). Question: Is the Boolean completion of the Namba forcing, Nm(!2),
ℵ!-dependent, if 2ℵ2¡ℵ!? (We note that, according to Example 1, 2ℵ1¡ℵ!¡2ℵ2

implies ℵ!-independence of r:o:(Nm(!2)).)
3. B is '-supported, '¿! and '+ is collapsed in some extension. We do not know

whether such a situation is consistent at all (see Problem 1).
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