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Abstract

If Kk > o is a cardinal, a complete Boolean algebra B is called x-dependent if for each sequence
(bp: p < k) of elements of B there exists a partition of the unity, P, such that each p € P extends
bp or b;,, for k-many f§ € k. The connection of this property with cardinal functions, distributivity
laws, forcing and collapsing of cardinals is considered.
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1. Introduction

The notation used in this paper is mainly standard. So, if (B, A,V,’,0,1) is a Boolean
algebra, then B denotes the set of all positive elements of B. A subset P C BT is an
antichain if pAg=0 for each different p,q€P. If, in addition \/P=1, then P is
called a partition of the unity. The cardinal ¢(B)= sup{|P|: P is an antichain in B} is
the cellularity of B. A subset D C B™ is said to be dense if for each peB™ there exists
g€D such that ¢< p. The algebraic density of B is the cardinal n(B)= min{|D|: D
is dense in B}. A set DCB is called open if for each p€D and ¢< p there holds
ge€D. If k> and A>2 are cardinals, by <"/ we denote the set |J._, <), ordered by
the reversed inclusion and by Col (x, 1) the Boolean completion of this partial order,
the (x, A)-collapsing algebra.

In order to simplify notation, for p€B and B C B we write p < B if p<b for some
beB. Also, if p,b€B™, we say that b splits p (p is splitted by b) if pAb>0 and
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pAb >0, that is if p £ {b,b’'}. Specially, a set X splits a set A if the sets ANX and
A\X are non-empty. Finally, if k is a cardinal, we say that a property P(ff) holds for
almost all fex if [{fex: —P(p)} <k.

The property of complete Boolean algebras investigated in this paper can be intro-
duced as a modification of the (k,2)-distributive law (see [4,6,7]). Namely, a com-
plete Boolean algebra B is said to be (k,2)-distributive if and only if the equality
Np<ic Va<a Pon=Vr.c—2 Np<i Pprep) holds for each double sequence (pp,: (B,n)
€k x 2) of elements of B, if and only if in each generic extension Vg[G] every subset
of x belongs to the ground model V' and, finally, if and only if

for each sequence (bg: f < K)€"B there exists a partition of the unity, P,
such that each peP satisfies p < {bg, by} for all fek.

So, a complete Boolean algebra B will be called x-dependent if and only if

for each sequence (bg: f < K)€"B there exists a partition of the unity, P,

such that each pcP satisfies p < {bg, by} for k-many .

Otherwise, B will be called x-independent. The algebra B will be called strongly -
independent, if and only if

there exists a sequence (bg: f < k)€ "B such that each positive peB is
splitted by by for almost all fcx.

In this paper we investigate what can be said about x-independence of complete
Boolean algebras in general. So, in Sections 2 and 3, after establishing some algebraic
and forcing equivalents of the property, we restrict our attention firstly to atomless
Boolean algebras (since atomic algebras are x-dependent for all infinite cardinals x)
and secondly, considering an atomless algebra B, to cardinals which are either regu-
lar and between h,(B)= min{x: B is not (x,2)-distributive} and n(B), or singular of
cofinality <m(B) (since for all other cardinals B is k-dependent). Regarding regular
cardinals it turns out that “everything is possible” if, for example, the GCH holds.

In Section 4 we show that, under some reasonable conditions (specially, under the
GCH), collapse of cardinals implies independence, and that (in ZFC) the algebras
Col(k, A) are 0-independent for all possible values of 6.

In Section 5 singular cardinals are considered. It is shown that for a singular x,
cf(x)-independence implies k-independence and investigated when dependence of B
on an unbounded subset of a singular cardinal x implies x-dependence of B.

2. Algebraic and forcing equivalents

If B is a complete Boolean algebra in the universe (ground model) ¥ and G CB
a B-generic filter over V, then Vg[G] or briefly V[G] will denote the corresponding
generic extension. If x is a cardinal in V', then by Old, we denote the set of all x-
sized subsets of x belonging to V, that is Old, = ([«]*)". A subset X of x belonging
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to V[G] is called independent if it splits all A€ Old,. Otherwise, if 4 CX or 4 C kK\X
for some 4 €0ld,, the set X is called dependent.

Theorem 1. For each complete Boolean algebra B and each infinite cardinal x the
following conditions are equivalent:
(a) B is x-dependent, that is for each sequence (bg: P<iK)€E"B there exists a par-
tition of the unity, P, such that for each peP, p =< {bﬁ,b%} for k-many f€Ek.
() Vicpg (Ngea b8)V (Npea by) =1, for each sequence (bg: f<ix)€E*B.
(¢) In each generic extension Vg[G] each subset of x is dependent.
(d) In each generic extension Vg[G] each unbounded subset of K is dependent.
If x is a regular cardinal, then each of these conditions is equivalent to the condition
(e) For each C€[B]* the set Dc={peB": p<{c,c'} for k-many c€C} is dense
in B.

Proof. (a=b). Let (a) hold and (bg: f<x)€“B. If P is the corresponding partition
of the unity provided by (a) then each pcP extends by for x-many f€x or extends
by for k-many B€x, so, there is 4 € [k]* such that p< Ay, bp or p< Ngey b
Hence 1=V P<V,cpq (Nges b9V (Apes ).

(b=>c). Let condition (b) hold and let '[G] be a generic extension containing X C x.
Then X =15 for some B-name 7. Applying (b) to the sequence by = |fer|, p<x,
we obtain ||34€O0ld,- (4 CtVACK\7)||=1, so there is 4€0ld, such that A CX or
ACKk\X and (c) is true.

(c=-a). Let (c) hold and (bs: f<x)€”“B. Then rz{(ﬁ,bﬁ): fEx} is a B-name
and 1 lFtCx so by (¢) 1 1F34€0ld,- (4 CtVACK\7) or equivalently 1 IF-¥4<€Old,-
(=4 C 1 A=A CK\1). The last condition is equivalent to the condition

VheB3p<bIA€Old, (VBEA(p<by)VVP €4 (p<b))).

So the set D={peB™: p=< {bp, b} for k-many f€x} is dense in B and open. Let
P C D be a maximal antichain of elements of D. Clearly P is a partition of the unity
satisfying the condition from (a).

(c<d). The direction “=-" is trivial. Let (d) hold and X € V[G], where X C k.
If the set X is unbounded in x then by (d) there exists 4€0ld, such that 4 CX
or AC k\X. Otherwise, X C ¢ for some ¢ <k and for 4 =x\¢ we have 4€0ld, and
ACK\X.

(a=e). Let condition (a) hold. If x> |B| then (e) is vacuously true. Let k <|B|, C
€[B]* and let C={cp: f<k} be an 1-1 enumeration of C. By (a) there exists a
partition of the unity, P, such that each p€P satisfies p < {cg,c}}, for k-many fex.
Now, if h€B™ then there is p€P such that pAb= p; >0, thus p;€D¢ and p<b,
so the set D¢ is dense in B.

(e=a, for a regular x). Let condition (e) hold and x€Reg. For a sequence (bs:
p<k)e*B we will prove that the set D={p € B*: p<{by, by} for k-many e}
is dense in B.

If {bp: Bp<x}|=x and C={bg: f<x} then, clearly, x<|B| and by (e) the set
D¢ is dense in B. For peD¢ if p<c for k-many c€ C then p<bg for k-many fcx,
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so p€D. Otherwise p<c’ for k-many ¢c€C and p€D again. So Dc C C and D is
dense in B.

If |{bg: p<rk}| <k, then, by the regularity of k, there exists b€ B such that bgy=>b
for k-many fex. Let geB™. Firstly, if pj=¢gAb>0 then p; <bg for k-many fex
so peD. Otherwise, if g Ab=0, then ng;f for k-many €k and g€D. Thus D is
dense in B.

Now, let PC D be a maximal antichain in D. Then P is a partition of the unity
satisfying (a). [

Theorem 1 can be restated in the following way:

Theorem 2. For each complete Boolean algebra B and each infinite cardinal x the

following conditions are equivalent:

(a) B is x-independent, that is there exist a sequence (bg: f<k)€E*B and g€B”
such that each non-zero p<gq is splitted by by for almost all pci.

() Viepy Npea bp)V (Npea bp) <1, for some sequence (bg: f<i) € *B.

(c) In some extension Vg[G] there exists an independent subset X C k.

Theorem 3. For each complete Boolean algebra B and each infinite cardinal x the

following conditions are equivalent:

(a) B is strongly k-independent, that is there exists a sequence (bp: f<K)€"*B such
that each positive p€B is splitted by by for almost all pek.

() Vieny Nsea bp)V(Npea bp) =0, for some sequence (bg: f<i)e"B.

(¢) In each extension Vg[G] there exists an independent subset X C k.

Proof. (a=-b). Let (bg: f<k) be a sequence provided by (a). Suppose Ay, bp=
p>0, for some 4 €[x]*. But then for some €4, by splits p, which is impossible. So,
for each A€[x]* we have Ay, bg=0 and similarly Ay, bj=0 and (vb) is proved.

(b=-c). Let (bp: f<x) be a sequence provided by (b). Then for t={(f,bg): f € x}
we have 1IF7C& and (b) implies ||t splits all 4€Old,-||=1.

(c=-a). Let (c) hold. Then, by the Maximum principle (see [4]) there exists a name
t such that: (i) 11kt C & (ii) 1 FVA€Old,e (ANt #£D); (iii) 1 IFVA € Old,- (A\1#0).
Putting bg=||f €|, for f<x and using (ii) we easily conclude that |[{fcx: pAbg
=0}[<x, for each peB”. Similarly, by (iii) we have |[{fex: pAby=0}| < x for
each p€B™ so, if peB™ then p <{by, by} for <wx-many f€x and (a) is proved. I

Remark 1. It is known (see [4, p. 65]) that if B is a weakly homogeneous c.B.a.,
o(v1,02,...,0,) a formula of ZFC and ay,as,...,a,€V, then ¢(a;,as,...,a,) holds in
some iff it holds in all generic extensions of ¥/ by B. So considering parts (c) of the
previous two theorems we conclude that a weakly homogeneous c.B.a. is k-independent
iff it is strongly x-independent.

Theorem 4. If a complete Boolean algebra B is atomic, then it is k-dependent for
every infinite cardinal .
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Proof. Although a proof by forcing arguments is evident, we will demonstrate a com-
binatorial one. Let (bg: f<x)€"B. Since the algebra B is atomic, the set At(B) of all
its atoms is a partition of the unity and (because atoms cannot be splitted) if p € At(B),
then p < {bp,bj} for all fe k. So, B is r-dependent by definition. [J

3. Dependence, supportedness and distributivity

In this section we compare k-dependence with some other forcing related properties
of complete Boolean algebras and determine the position of the cardinals x for which
a given algebra can be x-independent.

Theorem 5. A complete Boolean algebra B is k-dependent for each cardinal k satis-
fyving cf(x)>mn(B).

Proof. On the contrary, suppose cf(x)>mn(B) and B is x-independent. Then by Theo-
rem 2 there is a sequence (bg: f<r)€"B satisfying \, ¢ (Apes 6p)V(N\pey bp)=
c<1, thus we have: (i) Agc, bp<c, for each A€[x]"; and (i1) 0<c'< V4 b, for
each 4 €[k]".

By (ii), ¢’ is compatible with bg for almost all € «, thus the set A = {fcK: bgAc’
>0} is of size k. Let D CB" be a dense subset of B of size n(B). Now, for each
peA, we pick dgeD such that dg<bgAc’, obtaining a function from 4. to D.
Since |D|<cf(x) there exists d€D such that dg=d for x-many feAd.. Thus the
set Ag={f€Ac: d<bgpAc'} is of cardinality x and Az, bpAc'>d>0, which is
impossible by (i). [

In [10] a complete Boolean algebra B is called x-supported (for a cardinal x> w) iff
the equality A,_. V-, b= Ve Ngea bp is satisfied for each sequence (bg: B
<) of elements of B. Otherwise, the algebra B is called x-unsupported. In the sequel
we will use the following facts proved in [10]:

Fact 1. Let B be an arbitrary complete Boolean algebra. Then

(a) B is w-unsupported for each singular cardinal k.

(b) B is x-supported if and only if in every generic extension i is a regular cardinal
and each new set X €[k]* has an old subset of size k.

(¢) Unsupp(B)={k€Reg: B is k-unsupported} C [h2(B), n(B)].

(d) If 2<92B) = ,(B), specially, if ho(B) =Ny, then B is hy(B)-unsupported. If 0F ¢ V
and forcing by B preserves by(B)*t, then B is ha(B)-unsupported.

Theorem 6. Let B be a c.B.a. and Indep(B)={x EReg: B is x-independent}. Then
(a) If B is i-supported, it is k-dependent.
(b) Indep(B) C Unsupp(B) C [h2(B), n(B)].

Proof. The assertion (a) follows from forcing characterizations given in Fact 1(b) and
Theorem 1(d). The first inclusion in (b) is a consequence of (a), while the second
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is Fact 1(c). The inclusion Indep(B) C [h2(B), n(B)] also follows from Theorem 5 and
the fact that (x,2)-distributivity implies x-dependence. [l

Remark 2. There exist x-dependent algebras which are not x-supported. Firstly, if
is a singular cardinal and cf(x)>n(B), then B is x-dependent by Theorem 5 and x-
unsupported by Fact 1(a). Also there are such examples for regular cardinals x. Namely,
Sacks’ perfect set forcing (see [13,3]) and Miller’s rational perfect set forcing (see
[12]) produce new subsets of w, but all of them are dependent. So, the corresponding
Boolean algebras are w-dependent by Theorem 1 and w-unsupported by Fact 1(d). For
uncountable regular cardinals we mention the forcing of Kanamori (see [8]) which has
the observed property for x strongly inaccessible.

Remark 3. k-dependence and weak (k,k)-distributivity are unrelated properties. A
complete Boolean algebra B is called weakly (x,A)-distributive if and only if the
equality A\, Vi<; bap= Vs Noci Vi< (o) bop holds for each double sequence
(bup: (o, f) € x A) of elements of B, if and only if in each generic extension Vg[G]
every function f: x — A is majorized by some function ¢g: x — 4 belonging to V. Since
both k-dependence and weak (i, x)-distributivity are weakenings of (k,2)-distributivity
(and, moreover, of x-supportedness) it is natural to ask whether these two proper-
ties are related. The answer is “No”. It is easy to check that a c.B.a. B is weakly
(w, w)-distributive iff forcing by B does not produce weak dominating functions from
wto o (fe?onV[G]is a w.df. iff for each ge®w NV the set {ncw: g(n)<f(n)}
is infinite). Now, firstly, it is well-known that adding a random real to 7 produces
independent subsets of @, but does not produce w.d.f.’s. Secondly, Miller’s rational
perfect set forcing produces w.d.f.’s, but does not produce independent subsets of w
(see [12]).

According to Theorems 5 and 6, the question on x-independence of a given Boolean
algebra remains open for kK €RegM[h2(B),n(B)] and for singular x satisfying cf(x)
<7n(B). In the sequel we show that for regular cardinals everything is possible if, for
example, the GCH is assumed. Singular cardinals will be considered later.

Theorem 7. Let B;, i€l, be a family of complete Boolean algebras. Then
Indep(]];c; Bi) = U, Indep(B;).

Proof. Let B= Hie ; Bi. It is known that if V[G] is a B-generic extension, then
VB[G] = Vp,[H] for some i€/ and some B;-generic filter H, and conversely, if Vg, [H]
is a B;-generic extension, then Vg [H]= Vg[G] for some B-generic filter G. Now, using
characterization given in Theorem 2(c), we easily finish the proof. [J

Theorem 8. For each set S of regular cardinals x satisfying 2<" =k there exists a
complete Boolean algebra B such that Indep(B)=S. If |S|>1, then B is not strongly
A-independent for any regular A. Specially, under the GCH, for each set S C Reg
there is a complete Boolean algebra B satisfying Indep(B)=S.

Proof. It is easy to show that if x is a regular cardinal, then h,(Col(x,2))=x and
n(Col(x,2))=2<", so, under the assumptions, for each k€S we have Indep(Col(x,2))
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C {x}. On the other hand, if G is a <*2-generic filter over V, then a simple den-
sity argument shows that fz=|JG: x—2 is the characteristic function of an in-
dependent subset of x. Thus Indep(Col(x,2))={x} and by the previous theorem
B=[].cs Col(x,2) satisfies Indep(B)=S. If |S|>1 and icReg, then we choose
keS\{A}. In extensions by Col(x,2) each subset of / is dependent, so, by Theo-
rem 3, B is not strongly A-independent. Finally, the GCH implies 2<* =« for each .

O

4. Independence and collapsing

Theorem 9. Let /A be a cardinal in V and let V[G] be a generic extension of V. Then

(@) If |2V |V = | 2)V16) and if ) obtains an independent subset in V[G], then (A7)"
obtains an independent subset too.

(b) If |2V =k and if (u*) <2 for each V-cardinal p<7, then each 0 € Card”
satisfying k <0< obtains an independent subset in V[G].

(c) If |2HY )16 = |19 then each 0eCard” satisfying |2|V19<0<(2*)" obtains
an independent subset in V[G].

Proof. (a) Let |2+|"161 =| 2|19 = k. Then cf"1“l(i*)=p <« and in V[G] there is an
increasing sequence (az: &<p) of elements of AT, unbounded in AT.

We will show that in V[G] there exists a sequence (f:: &<p)€eP(AT) such that
At =, [Be Berr) and \[Be, Ber1)|” =4, for each E<p. Firstly, let p>wm. Using
recursion in V[G] we define ¢, & <p, by: fo=0; fei1 = max{os, fe+ A} (where f:+ 4
is the ordinal addition) and f, = sup{f:: ¢<y}, if y is a limit ordinal. Since the ordinal
addition is an absolute operation and since each subset of AT of size <p is bounded
in 2%, an easy induction shows that fi; € At, for each ¢<p. So U5<p [Be, Besr) C AT
and we will prove the equality. Let 6 <A™. The sequence (f:: &<p) is (clearly)
unbounded in AT so there exists &= min{<p: d<f:}. Now, & is a successor
ordinal (otherwise we would have & <0) say & =¢& + 1. Thus 6€[fe, feri1) and
the equality is proved. If p = w, then the sequence (f:: ¢<w) defined by: iy =0 and
Ber1 = max{oe, ferg + A}, satisfies two desired properties.

In V, the sets [f¢, fz11) are of size A, so, working in V'[G] we can pick bijections
fer A—[Pe, Per1), E<p, belonging to V. Let X € V[G] be an independent subset of 4.
We will prove that ¥ = Ug <, JelX] is an independent subset of AT

Let A€0Ild;+. Suppose [AN[Be Ber1)|” <4, for every E<p. Then the ordinals J;
=type” (AN [Be, Bzy1)) are less than 2 and in V[G] the well-ordered set 4 is isomor-
phic to > t<p d¢. Clearly, if type” (p-4)=n, where p- . denotes the ordinal product,
then |7]”=/4</*. In V[G] the set 4 is isomorphic to a subset of 1, so type”“I(4) <y
and, since type is an absolute notion, we have type” (4) <n<A*. But 4€0Id;+ implies
type” (4)=A". A contradiction. Thus there exists &y < p such that [4 N [Be,, Beyr1)] =2
hence AN[Pey, Peyr1)N fe[X1#0 and  AN[Pey, Peyr1)\ S5 [X]#0 which  implies
ANY #( and 4\Y #0.

(b) In V[G] 4 is an ordinal of size x, so ch[G](i):pgx and there exists an
increasing sequence (o5: d<p) unbounded in A. W.lo.g. we suppose a5=>x. In V,
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each ordinal oy is of size <4 so, by the assumption, the set [os]* is of size <1 in
V' and of size x in V[G]. Consequently in V[G] the set U5<p ([as]9) is of size «,
hence there exists an enumeration | J;_ p([oc(;]")V ={4;: £<x}. By recursion in V[G]
we define the sequences (o:: E<k) and (fi:: E<k) by

e = min(A\({or: { < EFU{Pe: £ < &),
Be = min(A:\({or: { < EFU{Be: (< ED)).

Since ¢ <x implies |¢|” <k, the sequences are well-defined.

Let Y ={o:: &<x} and let 0 be a cardinal in ¥, where k <O<Ai. We will prove
that Yo=Y N6 is an independent subset of 0.

If A€0Ildy, then type”(4)=0 and in V there exists an isomorphism f:0 — A.
If 0</, then f[k]CO</ and if 0=/ then k<A implies f[x]C f(x)<A. So, f[x]
is a bounded subset of 4 and there exists 6 <p such that f[x]Cay. Clearly, the set
fIk] is of size x in V so f[k] € ([e5]*)" and consequently there exists ¢y <k such
that f[x]=A¢,. Now, oz € f[k]NYy and f¢, € f[x]\Yp, which implies 4N Yy # 0 and
A\Yy #0.

(c) Let |[(24)Y )61 = )16 = k. In ¥V, for u<2* we have u* <2 =2* (since Kk <1)
and we apply (b). [

Corollary 1. (GCH) If in some extension Vg[G] a cardinal 7 is collapsed to k,
then each cardinal 0 satisfying k<0< obtains an independent subset in Vg[G] and
consequently the algebra B is 0-independent for all such 0.

Proof. Under the assumptions, for each u<A there holds u*< max{r",u"}=
max{x ", "} <A and we apply (b) of the previous theorem. [

Problem 1. Is Corollary 1 a theorem of ZFC?

Example 1 (Independence of the algebras of Bukovsky and Namba). Let k>N, be a
regular cardinal such that 2<% <2¥ N, and that pu® <k, for all u<kx. Let B=
r.o.(Nm(x)) or B=r.0.(Pf(x)), where Nm(x) is the generalized Namba forcing and
Pf(x) the generalized perfect forcing (see [5]). Since by Theorem 3.5 of [2] the condi-
tion 2<% <2* N, implies the existence of a 2"-sized mad family on x, using Theorem
14 of [11] we conclude that if in a generic extension Vg[G] the cardinal x is collapsed
to kg, then each cardinal 0 satisfying xo<0<2* is collapsed to ko too and Vg[G] is
a |0 = ko-minimal extension. Now, since p<2* implies u* <2*, using Theorem 9(b)
we conclude that B is O-independent for all such 0. We note that if x =2, or if 0
does not exist, then ko =R} (see [11]).

Theorem 10. If k>w and 1>=2 are cardinals, then the algebra B=Col(k,1) is
strongly O-independent for each cardinal 0 € [cf(i), 2=*]1=[h2(B), n(B)].
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Proof. We distinguish the cases r is regular and x is singular and firstly prove two
auxiliary claims

Claim 1. If x is a regular cardinal and 1>k, then for each cardinal u satisfying
k< u<A the algebra Col(k, 1) is strongly u-independent.

Proof of Claim 1. Let G be an arbitrary <*A-generic filter. Then fo=JG:x — 1
and we will show that the set

Y = {{ € un folx): min f5'[{{}] € Even}

(where Even is the class of even ordinals) is an independent subset of u. Let 4 €
([u]*)”. Working in V' we prove that the set

Dy={p€ ~*A I €4 3¢ erxnEBEven p(&)="{¢ p[{]}

is dense in <*/. Let € <*/ be arbitrary and let dom =a. Clearly Y[y~ '[u]]C u
and since o<k, we have

Wy ]l < [Tl < Jof < k< g

Now, since |4| = u, we can choose { € A\Y[yy~'[u]]. Also, we choose &€ Even Nk'\a
and (' € p\{(} and define ¢: &+ 1 — A by

Y(p) if pedomy,
p(py=q L if pel\domy,
¢ if f=¢

Clearly ¢ <y and for the proof that ¢ € D, it remains to be shown (¢ ¢[£]. For
ye &, if y¢domy then ¢(y)={ #{. Otherwise, if y € dom, then ¢(y)=y/(y) and
we have two possibilities. Firstly, if y/(y) & u, then ¢(y)#{ since { € pu. Secondly, if
Y() € p, then y €y~ " [1] thus () € [y~ [u]] so, by choice of {, we have ¢(y) # L.
The set Dy is dense.

Let e GNDy, (€4, EexnNEven, o(&)={¢& p[&]. Since ¢ € G we have ¢ C f;
so f6(&)={(¢ f5[¢], and consequently min fG_l[{C}] =¢¢cEven. Thus {(€4NY and
ANY #(. The proof of 4\Y #() is analogous and Y is an independent subset of u.

Thus, in each generic extension by <*/, or equivalently by Col(k, 1), the cardi-
nal u obtains an independent set, so, by Theorem 3 the algebra Col(x, ) is strongly
u-independent and Claim 1 is proved.

Claim 2. If xk is a singular cardinal and A>=2, then in each generic extension by
Col(k, A) the cardinal A<* is collapsed to cf(k).

Proof of Claim 2. In V, let cf(x)=p and let (x;: £<p) be an increasing sequence of
cardinals less than x, unbounded in k. We prove that |(2%)"|"1¢ = p, for each &< p.
In V7 let the bijections fe: ke—[K, k¢ + k&), L€ [E, p), be defined by feo(a) =x; + o
(here + denotes the ordinal addition). If G is a Col(k, 4)-generic filter over V' and
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fo=UG:k — A, we prove that

() c{fgo fer L&)}

If Fe(®A)" then it is easy to show that the set Dp ={p € (="A)": I >&(x: +
k: Cdomo Ao f:e=F)} is dense in (<*1)". So, if ¢ € GNDF then @o f::=F for
al{>¢ and foo feu=Fe{fgofer CEE )]}

Thus, in V[G] the sets (“A)” are of size p and (2 <*)" is a supremum of p many
ordinals of cardinality p, which implies |(2<%)"|"1%) = p. Claim 2 is proved.

Now, if x is a regular cardinal, then the algebras Col(x,4) and Col(x,A<") are
isomorphic (see [1, p. 342]). In V, clearly, x <A<" and we apply Claim 1.

If x is a singular cardinal, then by Claim 2 we have |[(A<*)"|'1¢] :CfV(K):p<K
and in order to apply Theorem 9(b) we prove that in V', for each u<A<" there holds
W <A<¥. So, if u<A=<*, then u<A’, for some cardinal v<x, hence p’ ="’ <1<F,
and (b) of Theorem 9 can be applied. [

5. Independence at singular cardinals

Theorem 11. Let B be a complete Boolean algebra and x a singular cardinal. If B
is (strongly) cf(ic)-independent, it is (strongly) k-independent too.

Proof. Let cf’ ()= p. Working in V' we choose an increasing unbounded sequence
(¢y: o€ p)€Pic and using recursion define a sequence of cardinals (k,: a<p) by:
ko =0; Kyy1 = min{l€ Card: A> max{k,,&,}} and r, = sup{r,: a<y}, for a limit
p<p. It is easy to show that x, < x for all «<p and that this sequence is increasing,
unbounded in x and continuous. Consequently, x=J,_ plKas Kag1) is a partition of «.

Let V[G] be a generic extension containing an independent set X C p. We will prove
that Y :U“ c ylKa,%541) is an independent subset of .

Suppose BC Y for some B € Old,. Since B is an unbounded subset of &, the set
A={0€p: BN[Kykyr1)# D} is an unbounded subset of p and, clearly, belongs to V.
So, A €0ld, and 4 C X, which is impossible by the independence of X. Thus B\Y # ()
and analogously BNY #(, for each B € Old,, so Y is an independent subset of k and
the algebra B is k-independent by Theorem 2. [

Example 2 (The converse of the previous theorem does not hold). The algebra Col
(N, N11) is strongly N, -independent (Theorem 10) but Wy-dependent, since it is
(N, 2)-distributive.

Theorem 12. In V, let k be a singular cardinal and B a complete Boolean algebra
and let in each generic extension V[G] the following conditions hold.

(i) The set D of all A€xnCard” such that each subset of ). is dependent, is
unbounded in k.

(ii) Each Y C(2<%) of size cf"1%k) has a subset AcV such that |AV¢)=
cf "),

Then the algebra B is x-dependent.
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Proof. Let V[G] be a generic extension and V[G]>X C k. Let CfV[G](K):p and let
f:p — K be an increasing cofinal mapping belonging to V[G]. In V[G] we define the
sequence (/,: a<p) of elements of D by A, = min(D\(U;_,4p U f(2)) + 1),a<p.
Clearly, the sequence is increasing and unbounded in k. Now, using (i), for each a<p
we choose an A4, € ([A,]*)" such that 4, C A, NX or A, C 2,\X. Since each 4, is
unbounded in 4, and since a<f implies A, <Ag, the set {4,: a<p}, belonging to
V[G], is of size p. Obviously {4,: a<p} CSZ(U),emcard[’l])")V and [S|" =@2<%)".

If the set # ={A4,: a<pANA, CA,NX} is of size p, then # C S and using (ii) we
casily show that there exists a subset .o/ ={4,: a €1} C% belonging to ¥ such that
|.o/|"1 = p. So, the set 4=|]J,.;4, CX belongs to ¥ too. Clearly / is an unbounded
subset of p, hence for each 1€ D we have |4|” >/, and consequently |4|" = k.

Otherwise, if |#|"161<p, then the set 2 ={4,: a<p A 4, Cl,\X} is of cardi-
nality p and, proceeding as above, we obtain a set 4 C k\X such that 4 €V and
|4 =x. O

We note that the assumptions of the previous theorem imply 1 IFcf(r)=cf" ()’
and B is cf” (x)-supported.

Example 3. (Condition (ii) in the previous theorem cannot be replaced by the weaker
condition (ii'): In each generic extension V[G] each Y Ccf’1% (k) of size cf"1%(k)
has a subset 4 € I of the same size). Let the GCH holds in V/, let B be the Boolean
completion of the Namba forcing, Nm(,), and x =R,,,. Since n(B)=23, the algebra
B is A-dependent for all regular 2 <X, bigger than X3 (Theorem 5) so condition (i)
is satisfied. Condition (ii’) is also satisfied, since 1 I cf(#)= and the algebra B
is (w,2)-distributive, so forcing by B does not produce new subsets of w. But, since
N, =28 is collapsed to !, by Theorem 9(c) the algebra B is ¥,-independent and, by
Theorem 11, B is R, = x-independent.

Example 4 (B is N,-independent for each n>0 but N,-dependent). Let in V7 the
GCH holds and let B= [],.,Col(X,,2). Then like in the proof of Theorem 8 we
conclude B is N,-independent for all »>0. But B is N,-dependent, since each generic
extension Vp[G] is equal to a generic extension Vo, 2)[H] which, clearly, satisfies
conditions (i) and (ii) of the previous theorem.

Theorem 13. Suppose « is a singular cardinal of cofinality p, the algebra B is p-
supported and the set D={A€ CardNk: B is A-dependent} is unbounded in x. Then
each of the conditions given below implies B is x-dependent.

(a) p<h(B);

(b) p=c(B);

(c) 0% does not exist in V and forcing by B preserves (p + X;)".

Proof. Firstly we note that, since the algebra B is p-supported, p is a regular cardinal in
each generic extension V[G], so cf "G(k) = of V[G](p) = p. In order to apply Theorem
12 we show that each extension V[G] satisfies conditions (i) and (ii). Clearly, since
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the set D is unbounded in x, condition (i) holds. For the proof of (ii) we assume
Y € V[G] is a subset of B=(2<")" of size p.

If p<h(B) then Y €V, by the p-distributivity of B.

Let p=c(B) and let f: p — Y be a bijection belonging to V[G]. Since B is p*-
cc applying Lemma 6.8 of [9] we obtain F €V, where F:p — P"(B), such that
f(x)€F(a) and |F(a)|” <p for every a<p. Then Y C Jran(F)=C eV and |C|" <
Z“<p|F(oc)|V:p. Clearly, Y C C implies |C|" =p hence in V' there is a bijection
g:p — C. Since g~'[Y] is an unbounded subset of p and the algebra B is p-supported,
there exists 4 € ([p]?)” such that 4 C g~'[Y]. Now g[4] €V is a subset of ¥ of size
p required in (ii).

Let condition (c) hold. Firstly, we suppose p > w. Then, in V[G], Y is an uncountable
set of ordinals so, by Jensen’s Covering Lemma, there exists C € L"[91=L7 such that
Y € C and |C|"161 = p. Since p* € Card”“! we have |C|"=p and consequently there
is a bijection g:p — C belonging to V. Now, as above we obtain 4 € ([p]?)" such
that 4 C g~ '[Y] and g[4] is an old subset of ¥ of size p. Secondly, let p=w. Then
N{/[G] =N/, since the collapse of X; would produce new subsets of w and then, by Fact
1(d), the algebra B would be w-unsupported. Now, by Jensen’s Covering Lemma, there
is Ce L"%1=L" such that Y C C and |C|"161 =R,. Since X, is preserved in V[G], we
have |C|"=R; and, consequently, in ¥ there exists a bijection f:w; — C. Since ¥,
is preserved in V[G] there is é <w; such that f~![Y]C ¢. Using the assumption B is
w-supported we easily find a countable set 4 €V such that ACY. [J

Under the assumptions of the previous theorem we have cf"')(x)=p so the con-
ditions p<h”(B) and 1 I cf(#)<h”(B) are equivalent and the conditions p=c”(B)
and 1 I cf(K)>c"(B) are equivalent.

Remark 4. In Theorem 5 we proved that cf (k) > n(B) implies B is xk-dependent. Now
we give a short proof for a singular x: by Theorem 6, B is J-dependent for each
regular cardinal A satisfying 7(B) </ <k and, since cf(x)>n(B) implies cf(x)>=c(B),
we apply Theorem 13.

Example 5 (Independence of X, -independence of Col(N},N;)). Using Theorems 10,
11 and 13 it is easy to check that the algebra Col(¥;,N;) is RN, -independent,
N, -independent and that it is N,-dependent if and only if ¢<R,,.

Using (c) of Theorem 13 we easily prove

Corollary 2. (0° ¢ V') Let B be a cardinal preserving c.B.a. and x > mn(B) a singular
cardinal. Then, if B is cf(i)-supported, it is k-dependent.

Assuming 0% ¢V, k>n(B) and cf(x)=p<k, we list the situations which are not
covered by the previous theorems and ask some related questions.

1. B is p-unsupported, but p-dependent. Question: Is the Boolean completion of
Sacks’ forcing N,,-dependent, if ¢<N,?
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2. B is p=w-supported, h(B)=cw and N, is collapsed (then, clearly, h,(B)="¥,
is preserved). Question: Is the Boolean completion of the Namba forcing, Nm(w;),
R,,-dependent, if 28 <X,? (We note that, according to Example 1, 2% <R, <2®
implies N,-independence of r.0.(Nm(w,)).)

3. B is p-supported, p>w and p* is collapsed in some extension. We do not know
whether such a situation is consistent at all (see Problem 1).
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