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Abstract

A dynamical system admitting an invariant manifold can be interpreted as a single element of an infinite
class of dynamical systems that all exhibit the same behaviour on the invariant manifold. This observation
is used in the context of autonomous ordinary differential equations to generalize a global stability result of
Li and Muldowney. The new result is demonstrated on an epidemiological model.

0 2006 Elsevier Inc. All rights reserved.

Keywords:Invariant manifold; Global stability; Compound matrix

1. Introduction

Invariant manifolds appear in many areas of research. For example, in physics one frequently
studies systems in which quantities such as mass and energy are conserved; in population studie:
one may analyze systems for which the total population size is fixed; in ecological studies one
may assume that the total biomass remains constant. In each case, the conservation law corre
sponds to an invariant manifold.

Often when studying a dynamical system that exhibits an invariant manifold, one is only
interested in the behaviour of solutions on the invariant manifold. Suppos€ tisan invariant
manifold with respect to the flow. Theng is just one of an infinite number of flows that leave
I’ invariant. Itis the purpose of this paper to show that a careful choice offlsuch thatp = ¢
on I, may simplify an analysis of the dynamics &n
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In this paper, we work with autonomous ordinary differential equations and consider global
stability within an invariant manifold ifR”. With that in mind, some global stability results of
Li and Muldowney are given in Section 2; a detailed exposition of these techniques may be
found in [2-5,7]. The main result of this paper appears in Section 3 where the theory of Li and
Muldowney for invariant manifolds is extended. In Section 4, this innovation is applied to an
example from mathematical epidemiology.

2. Mathematical preliminaries

Consider the differential equation

x/:f(-x)v (21)

wheref :R" — R" is CL. Let the solution to Eq. (2.1) that passes thromght time 0 be denoted
by ¢(t; xo).
The time-dependent linear differential equation

Y = [%(w(u xo))}y (2.2)

describes the evolution of line segments ng@t xo). It is shown in [7] that the evolution df-
dimensional volumes nea(t; xo) is described by the time-dependent linear differential equation

(k]
7= [%(w(t; xo))] z, (2.3)
where for am x n matrix M, the(}) x (% ) matrix M*! is thekth additive compound [7] of/.
If y1(2),..., y(¢) are solutions to (2.2), thep(r) = y1 A --- A y is a solution to (2.3). Note
thatz is treated as an element&f+), which is diffeomorphic to the space bfforms onRR”. It
has been shown by Li and Muldowney [3] thabifz; xo) is bounded and (2.3) is asymptotically
stable fork = 2, then the omega limit set af(z; xo) either contains an equilibrium or is an
orbitally asymptotically stable periodic orbit. Some global stability results involving compound
matrices are given here; see [2-5,7] for a detailed exposition.

In order to study certain measureskeflimensional volume, leb = Q(x)z whereQ is aC?
non-singular(} ) x (%) matrix-valued function such that the norm@f* is bounded. Then

/ 1 af[k] 1
w =[QfQ— +0- 07 } w, (2.4)
X (t:%0)

whereQ ; is the directional derivative of in the direction of the vector field. In other words,

Q r can be constructed by replacing each entr@afith its time derivative. Note that iy goes

to zero, then so does The following theorem [2, Theorem 3.5] relates bounds on the rate of
growth of solutions to (2.4) to the global behaviour of (2.1).

Theorem 2.1. Supposel is a compact absorbing set f¢2.1) containing a unique equilibriur.
If for k = 2, there exist > 0 and a norm| - | on R such thatD_, ||w|| < —e|w]| for all solu-
tionsw of Eq.(2.4)and all xg € A, thenx is globally asymptotically stable under the fl¢2v1).

Note that the condition that there is a norm such atjw|| < —e¢|w||, is equivalent to there
. L 2
being a Lozinskii measure such that.(Q ;01 + Q%[ ]Qfl) < —e on the compact set;
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see [1, p. 41]. Herey¢ is a bound on the exponential behaviour of solutions to Eq. (2.4), with
lw®Il < lw(O)] e~

When studying the dynamics on an invariant manifold, an extension of this method can be
used. In this situation, it is not necessary to obtain bounds on the rate of growth of all two-
dimensional areas, but just the two-dimensional areas that are contained in the invariant manifold.
In order to do this, it is necessary to account for the component of the dynamics which is normal
to the manifold.

Definition. Let g:R" — R™ be C2 and letI" = {x € R": g(x) = 0}. ThenI" is a manifold of
dimensionn — m if rank(dg/dx) = m for g(x) =0, andI" is invariant with respect to (2.1) if
xo € I' implies(t; xo) € I for all z.

The following result is Proposition 3.1 in [4].

Proposition 2.2. Let g :R” — R” be C? and satisfyrank(dg/dx) = m for g(x) = 0. Then the
manifold I' = {x € R": g(x) = 0} is invariant with respect tq2.1) if and only if there is a
continuousn x m matrix valued functionV (x) defined in a neighbourhood éf such that

gr=Ng.

Let I be a simply connected manifold, which is invariant with respect to (2.1), given by
g(x) =0 whereg :R" — R™. We define the scalar functionby

v =traceN. (2.5)

While N is not necessarily uniquely defined in a neighbourhooff pit is shown in [4] thatV,
and hence, is unique onl". The functionv is related to the rate of growth @i-dimensional
volumes that are normal tB.

Consider the equation

af [m+2]

u)/=|:Qle+Qa—x Ql—vJ:| w, (2.6)

@(t;x0)

where/J is the identity matrix and is aC* non-singular(,,"t ») x ( ./t » ) matrix-valued function
such that the norm of ~* is bounded. The following theorem [4, Theorem 6.1] relates bounds
on the rate of growth of solutions to (2.6) to global stability wittin

Theorem 2.3. Suppose that for Eq2.1), A C I' is simply connected, contains a unique equi-
librium X, and is a compact absorbing set relative Ifo If there existe > 0 and a norm|| - ||

on RG:+2) such thatD, |lw|| < —e¢||lw]| for all solutionsw of (2.6) and all xg € A, thenx is
globally asymptotically stable i under the flow(2.1).

3. Main result

Consider Eq. (2.1) and suppoge is an invariant manifold of codimensiom given by
g(x) = 0. Further, suppose that we are only interested in the dynamics of (2/1) Any vector
field f that is equal tof on I", exhibits the same dynamics éh Thus, we can replace Eq. (2.1)
with

X' = f(x),
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where

fx)=f)+ EM@)gx)

and E:R" — M, is defined continuously in a neighbourhood 6f without changing the
dynamics onl". While f|r = f|r, the associated Jacobians may differ. Noting g zero
onI" we see that, ol

9 f d a f ag aE _of

L - E o4 - -2

ax (f+ 8= + ox + 8x 8x +E 8x
Since 2 is non-zero onT", it is clear thatE can be chosen so th%ﬁf and 2 are not equal.
When performing calculations involving the Jacobian matrix in order to study the dynamics
on I, E may be chosen to facilitate the calculations.

We now calculate in terms ofv, E andg. Sincel” is invariant under the flow given by, it

is also invariant under the flow given by Thus, there exists an x m matrix N such that

g 9
Ng=gr=—-f=— -(f+Eg )—Ng+a—E —<N+£E>g.

While N is not necessarlly unique in a neighbourhood9fv is uniquely defined od™. Thus,
we may choos&/ = N + % E, and take the trace of each side, giving

d
V=v+ trace(—gE). (3.1)
0x

Noting thath~ = Qyronlr,itisclear that

afm—‘,-Z i
070t 40z ot -w

[m+2] [m+2]
=070 +Q—f Ql—vJ+Q<Eg—g) Ql—trace<g—gE>J.
X

X

Thus, Theorem 2.3 is generalized to the following.

Theorem 3.1. Suppose that for E§2.1), A C I' is simply connected, contains a unique equilib-
rium x, and is a compact absorbing set relativeffo Let || - || be a norm oR(+2) and letE

be aM,,.,,-valued function that is continuously defined in a neighbourhoad.df there exists

€ > 0such thatD, ||w| < —e¢]|jw|| for all solutionsw of

[m+2]
w —|:Q o +Q% Qil—vJ

9 [m+2] 9
4 Q(Ea—g> o l- trace(a—gE> J:| w (3.2)
X X (t;x0)

and all xg € A, thenx is globally asymptotically stable ifr under the flow(2.1).

Proof. All that remains to be shown for this theorem to be proven, is that it is sufficier tor
be continuous. Implicit in the above discussion is the fact & differentiable. Suppose that
E is continuous, but not differentiable, and that |w|| < —e||w]|. Note that the expressions in
Eq. (3.2) depend o and not on the derivatives df, so the condition orD, ||w|| is robust
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under smallC® perturbations ta. Thus, if there exists a continuous vector figlguch that the
derivative condition holds, then there also exists a differentiable vector field cldssatisfying
the derivative condition, concluding the argumenta

4. An example from mathematical epidemiology

We now consider a model of an infectious disease of long duration in a population of fixed
size, perhaps HIV/AIDS in ajail that is filled to capacity. We assume that the duration of infection
is long enough that the dynamics are better modelled by having individuals pass through three
successive infective stages, rather than just one. This allows for different parameters to be used
to describe the characteristics of individuals who are at different stages of infection. A similar
model with varying total population size is studied in [6].

A population of total sizel' is divided into a susceptible group of si§eand three infective
groups with sizedy, I, I3. Thus,T = S + I1 + I> + I3. The transfer diagram is as follows:

ralp r3l3
>3 _1ciBil;S s
B s j=1€jPjlj L L Iy
k111 koI k3l
\Lds id]l \Ldlz ld]g,

For j = 1,2, the parameterk; andr;1 are the rate constants for movement frépto 7;1
and from/;,1 to I}, respectively. The flow rate; /; represents individuals progressing to a more
advanced stage of infection, including removal from the population for disease related reasons for
Jj =3. The flow rater; I; represents individuals undergoing a limited recovery or amelioration,
from a more advanced stage of infection to a less advanced stage of infection. For many diseases.
these amelioration rates are zero.

The rate constant for removal from the population, not directly related to the disease, is
Thus, in the absence of disease, the average time spent in the populafignlisthe context of
a jail setting, this would be the mean duration of incarceration.

The mean number of contacts that a susceptible individual has with individuals in infective
classI; per unittimeisc; I;. The probability that a contact between a susceptible and an infective
in classl; results in transmission of the diseasgjsThus, the rate at which new infections occur
iS5 1¢iBil;S.

The recruitment rate8 of new individuals into the population is chosen so that the total
population size remains constant. Thlss= d(S + I1 + I2 + I3) + k3l3. We assume thdt;,
ko, k3, d, and at least one of the produetgg; is positive and that all other parameters are
non-negative.

The differential equation for the sizes of the population subgroups is

3
S'=d(h+ I+ 13) — Y _ciBjl;S+kals,
j=1

3
1= "¢;BiI;S — (k1 +d) 11+ raly,
j=1

Ié =k1l1 — (ko +ro+d)I> + r3ls,
Ié=k2]2— (ka+r3+d)ls. (4.1)
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We denote the right-hand side of (4.1) Jpyx) wherex = (S, I1, I2, I3)T . The biologically rele-
vant region is the non-negative orthdgs, 11, I, I3): S, I1, I, I3 > 0}. We restrict our analysis
to this region.

Every point on the disease-free axis is an equilibrium. We label the®g @) = (T, 0, 0, 0).
For everyT, the pointP,(T) = (S, I14, 24, I34) IS @an equilibrium, where

_ (k1 + d)[(k2 +r2 +d) (k3 +r3+d) — kors] — kira(kz +r3 +d)
" c1Ballka +r2 + d) (ka + r3 +d) — kors] + c2foka(ks + r3 + d) + c3fakiky’
(ko +r2+d)(ks+r3+d) —kors

Il* = (T - S*)s
(ko+ro+d)ks+rz+d) —korg+ ki1(ksa+r3+d) + kiko
ki(kz+r3+d)
12* = (T - S*)s
(ko+ro+d)ks+rz+d) —korg+ ki1(ksa+r3+d) + k1ko
k1ko
I3, (T = S5).

" (ko+r2+d)(ka+r3+d) — kors + ka(ka + 3 + d) + kikz

Note thatS, is independent of", and soP,(T) is in the interior of the non-negative orthant
if and only if T > S,. In this case P, is called an endemic equilibrium. If = S,, then P,
coincides withPy. If T < S, then P, lies outside the non-negative orthant and is not bio-
logically relevant. Thus, there is only an endemic equilibrium if the population size is large
enough.

SinceT’ = 0, the total population siz€ is constant, meaning is a first integral. Of interest
here, is the fact that for any particuldr, the three-dimensional manifolfl = {x: g(x) =0,
S, I1, I, I3 > 0} is positively invariant under the flow described by (4.1), where

g=S+h+DL+13—-T.

We will study the stability of the equilibria relative to the invariant manifold in which they lie.
Leth = —[c1pB1, c2B2, c3p3]’ and

—(k1+d) k1 0
L=|: r2 —(k2+r2+d) k2 }

0 3 —(kz+r3+d)

If a = [a1, a2, a3]” is defined by the equatioha = £, then it can be shown that eaah is
positive and thaW = a11; + a2l> 4+ azl3 is a Lyapunov function satisfying

/ S >
W' = S_*_l ZC/,B/I./'.
j=1

Thus, if T < S, thenW is decreasing i \ Py and soP is globally stable in". On the other
hand, if T > S, then W is increasing neaPy and soP is repelling. Note that fol > S,
the boundary ofl" is repelling towards the interior. Thus, there is a compact absorbing set
contained in the interior of .

We make the simplifying assumption that=r3 =r andk; =k, ¢;8; =cp for j =1,2,3.
We will use the ideas developed in Section 3 to show thatffor S,, the equilibriumP, is
globally asymptotically stable if" \ Po.
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Consider the new system

X =f@)=fx)+E®g, (4.2)
where
E=[cBS—d,—cBT,0,0]". (4.3)

In order to illustrate the constructive manner in which this method is expected to be used, the
calculations will be performed with a general vectowhich will, at the appropriate step, be
replaced with the particular vector given by (4.3).

On I, Egs. (4.1) and (4.2) describe the same dynamics. The associated Jacobians, however,
are different. O™, the Jacobian associated with (4.2) is given by

d d d d
Of _oF | pd8 _OF 1 E2 |11 q,
ox  Ox ax  Ox E3

Eq

Calculating%, and then using the relationstilp= S + I1 + I> + I3 yields

3 cB(S—=T) d—cBS d—cBS k+d—cBS
Af | BT =8 cBS—(k+d) r+cpS cBS
ax 0 k —k+r+d) r

0 0 k —(k4+r+d)

Ei E1 Ep Ep

Er, Er» Er E»

Es E3 E3 E3

Eqs Eq Ef Ey

Note that the codimension df is m =1, and som + 2 = 3. The third additive compound
[4, Appendix] of% is

T cB2S—T)
(GBS0 e
~[3] cB2S—-T . Ao
% _ k (—(2k+r+2d)) r+cBS cBS —d
P - cf(S—T) _
! 0 k <—2(k+r+d)) d=cpS
cBS
L 0 0 P =S5) (—(3k+2r+3d)>_
E1+ E>+ E3 E3 —E3 E;
i E4 Ei1+Ezx+ Eq E> —E1
—E4 E3 E1+ E3+ Ey E
Eq —E3 E> Er+ E3+ Eg

Sincem = 1, the matrixN is a scalar and so= N. Furthermore, by differentiating it is clear

thatg r = 0 and so Eq. (2.5) implies= 0. Thus, Eq. (3.1) give = E1 + E> + E3+ E4. Letting

- ~[3]
f

— ox

—vJ yields
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F( cBRS—T) .
(—(2k+r+2d)> r —cBS k+d—cBS
(25 —T) ~
_ k (—(2k+r+2d)> r+cBS cfS—d
M= B(S—T)
0 k (—2(k+r—|—d)> d=cpS
cfS
! ° 0 BI=5) (—(3k+2r+3d)>_
—-E4 E3 —E» E;
4 Es, —-E3 E» —E;
—E4, E3 —E» E;
Es, —-E3 E» —E;

LetQ:,—llJ.TheanQ*:

/

4 L]
—1—1] and Q commutes withz-

so Eq. (3.2) takes the form

’_ Il
w' = (—1—1 (4.4)

Note that sinceA is a compact absorbing set in the interior/ofit is bounded and so the norm

J—I—M)w

of 0~ 1is bounded o oting atll = ¢S — (k +d) + ¢ Wheregp = BSUztl)trls , the
f 01 is bounded om. Noting that;! = ¢8S — (k +d) + ¢ wherep = L3U2tlirlz - g th
matrix M = ——J + M is given by
(c’i((i;rTl_d)d)) r —cBS k+d—cBS
BS-T)—¢ . _
M= k (—(k—i—r—i—d)) r+cBS cfS—d
cBT + ¢
0 k _<+k+2r+d) d—cpS
L 0 0 cB(T —S) —(p+2k+2r +2d) |
—-E4, E3 —E» E;
i Eqs,2 —E3 E» —E;
—E4 E3 —E» E;
Es, —E3 E» —E;

The stability of (4.4) is shown by using tlig, norm as a Lyapunov function. In doing so, we
find [1] that Dy || w|lco < ptl|w o, Where

{ml, ~I—Z|mu|}

J#

max (4.5)

H= i=1,2
is thel, Lozinskii measure oM = [m;;] (i.e., a sum is calculated for each rowMdf, andu is
the maximum of these sums). Thusuif< —e for some constant > 0, then the conditions of
Theorem 3.1 are satisfied.

Hence, we want to choosg in such a way that the off-diagonal entries Mf are close to
zero, while the diagonal entries are negative. By choogingnd E4 to be zero, we ensure that
the first two columns oM contain some zeroes. By choosifg = ¢85S — d, we make two of
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the off-diagonal entries in the fourth column &f equal to zero. The choice d&; = —¢BT is
less obvious, butis made in order to makeegative. Thus, the choice éfgiven in (4.3) yields

(o) :
o Cf$1312?> r+cB(S—T) 0
k —(p+k+2r+d) 0
cfS+ ¢+
i 0 —pS _<%+2r+d>_
Evaluatingu according to (4.5) gives
p=max{—(¢p+d),cB(S—T)—(@p+r+d) +|r+cBS—T)|,—(@+2r+d),

—(p+2k+2r+ad)}.

SinceT > S, it follows that |r + ¢B(S — T)| < r + ¢B(T — S), and so it is clear that =
—(¢ +d) < —d. Thus, we may choose= d, obtainingD_ ||w|co < —€||w||co-

Therefore, by Theorem 3.5, is globally stable i~ \ Py for T > S,.

Thus, we have shown thatIf < S, then the disease-free equilibrium is globally attracting
and the disease dies out7if> S, then the disease persists in the population and there is a unique
endemic equilibrium. Furthermore, fér> S, if rp = r3, k1 = ko = k3, andc181 = c282 = ¢33,
and the disease is present, then the disease will eventually go to the endemic equilibrium levels.

By performing the same calculations while allowing the parameters for the different infec-
tive groups to differ, a global stability result for system (4.1) with limited heterogeneity can be
obtained.
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