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Abstract

A dynamical system admitting an invariant manifold can be interpreted as a single element of an
class of dynamical systems that all exhibit the same behaviour on the invariant manifold. This obse
is used in the context of autonomous ordinary differential equations to generalize a global stability r
Li and Muldowney. The new result is demonstrated on an epidemiological model.
 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Invariant manifolds appear in many areas of research. For example, in physics one fre
studies systems in which quantities such as mass and energy are conserved; in populatio
one may analyze systems for which the total population size is fixed; in ecological studi
may assume that the total biomass remains constant. In each case, the conservation la
sponds to an invariant manifold.

Often when studying a dynamical system that exhibits an invariant manifold, one is
interested in the behaviour of solutions on the invariant manifold. Suppose thatΓ is an invariant
manifold with respect to the flowϕ. Thenϕ is just one of an infinite number of flows that lea
Γ invariant. It is the purpose of this paper to show that a careful choice of flowϕ̃ such thatϕ̃ = ϕ

onΓ , may simplify an analysis of the dynamics onΓ .
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In this paper, we work with autonomous ordinary differential equations and consider
stability within an invariant manifold inRn. With that in mind, some global stability results
Li and Muldowney are given in Section 2; a detailed exposition of these techniques m
found in [2–5,7]. The main result of this paper appears in Section 3 where the theory of
Muldowney for invariant manifolds is extended. In Section 4, this innovation is applied
example from mathematical epidemiology.

2. Mathematical preliminaries

Consider the differential equation

x′ = f (x), (2.1)

wheref :Rn → R
n is C1. Let the solution to Eq. (2.1) that passes throughx0 at time 0 be denote

by ϕ(t;x0).
The time-dependent linear differential equation

y′ =
[
∂f

∂x

(
ϕ(t;x0)

)]
y (2.2)

describes the evolution of line segments nearϕ(t;x0). It is shown in [7] that the evolution ofk-
dimensional volumes nearϕ(t;x0) is described by the time-dependent linear differential equa

z′ =
[
∂f

∂x

(
ϕ(t;x0)

)][k]
z, (2.3)

where for ann× n matrixM , the
(

n
k

)× (
n
k

)
matrixM [k] is thekth additive compound [7] ofM .

If y1(t), . . . , yk(t) are solutions to (2.2), thenz(t) = y1 ∧ · · · ∧ yk is a solution to (2.3). Note
thatz is treated as an element ofR(n

k), which is diffeomorphic to the space ofk-forms onR
n. It

has been shown by Li and Muldowney [3] that ifϕ(t;x0) is bounded and (2.3) is asymptotica
stable fork = 2, then the omega limit set ofϕ(t;x0) either contains an equilibrium or is a
orbitally asymptotically stable periodic orbit. Some global stability results involving comp
matrices are given here; see [2–5,7] for a detailed exposition.

In order to study certain measures ofk-dimensional volume, letw = Q(x)z whereQ is aC1

non-singular
(

n
k

) × (
n
k

)
matrix-valued function such that the norm ofQ−1 is bounded. Then

w′ =
[
Qf Q−1 + Q

∂f

∂x

[k]
Q−1

]
ϕ(t;x0)

w, (2.4)

whereQf is the directional derivative ofQ in the direction of the vector fieldf . In other words,
Qf can be constructed by replacing each entry ofQ with its time derivative. Note that ifw goes
to zero, then so doesz. The following theorem [2, Theorem 3.5] relates bounds on the ra
growth of solutions to (2.4) to the global behaviour of (2.1).

Theorem 2.1. Suppose∆ is a compact absorbing set for(2.1)containing a unique equilibrium̄x.
If for k = 2, there existε > 0 and a norm‖ · ‖ on R(n

2) such thatD+‖w‖ � −ε‖w‖ for all solu-
tionsw of Eq.(2.4)and allx0 ∈ ∆, thenx̄ is globally asymptotically stable under the flow(2.1).

Note that the condition that there is a norm such thatD+‖w‖ � −ε‖w‖, is equivalent to there

being a Lozinskii measureµ such thatµ(Qf Q−1 + Q
∂f [2]

Q−1) � −ε on the compact set∆;

∂x
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see [1, p. 41]. Here,−ε is a bound on the exponential behaviour of solutions to Eq. (2.4),
‖w(t)‖ � ‖w(0)‖e−εt .

When studying the dynamics on an invariant manifold, an extension of this method c
used. In this situation, it is not necessary to obtain bounds on the rate of growth of al
dimensional areas, but just the two-dimensional areas that are contained in the invariant m
In order to do this, it is necessary to account for the component of the dynamics which is n
to the manifold.

Definition. Let g :Rn → R
m beC2 and letΓ = {x ∈ R

n: g(x) = 0}. ThenΓ is a manifold of
dimensionn − m if rank(∂g/∂x) = m for g(x) = 0, andΓ is invariant with respect to (2.1)
x0 ∈ Γ impliesϕ(t;x0) ∈ Γ for all t .

The following result is Proposition 3.1 in [4].

Proposition 2.2. Let g :Rn → R
m beC2 and satisfyrank(∂g/∂x) = m for g(x) = 0. Then the

manifold Γ = {x ∈ R
n: g(x) = 0} is invariant with respect to(2.1) if and only if there is a

continuousm × m matrix valued functionN(x) defined in a neighbourhood ofΓ such that

gf = Ng.

Let Γ be a simply connected manifold, which is invariant with respect to (2.1), give
g(x) = 0 whereg :Rn → R

m. We define the scalar functionν by

ν = traceN. (2.5)

While N is not necessarily uniquely defined in a neighbourhood ofΓ , it is shown in [4] thatN ,
and henceν, is unique onΓ . The functionν is related to the rate of growth ofm-dimensional
volumes that are normal toΓ .

Consider the equation

w′ =
[
Qf Q−1 + Q

∂f

∂x

[m+2]
Q−1 − νJ

]
ϕ(t;x0)

w, (2.6)

whereJ is the identity matrix andQ is aC1 non-singular
(

n
m+2

)×(
n

m+2
)

matrix-valued function
such that the norm ofQ−1 is bounded. The following theorem [4, Theorem 6.1] relates bou
on the rate of growth of solutions to (2.6) to global stability withinΓ .

Theorem 2.3. Suppose that for Eq.(2.1), ∆ ⊆ Γ is simply connected, contains a unique eq
librium x̄, and is a compact absorbing set relative toΓ . If there existε > 0 and a norm‖ · ‖
on R

( n
m+2) such thatD+‖w‖ � −ε‖w‖ for all solutionsw of (2.6) and all x0 ∈ ∆, then x̄ is

globally asymptotically stable inΓ under the flow(2.1).

3. Main result

Consider Eq. (2.1) and supposeΓ is an invariant manifold of codimensionm given by
g(x) = 0. Further, suppose that we are only interested in the dynamics of (2.1) onΓ . Any vector
field f̃ that is equal tof onΓ , exhibits the same dynamics onΓ . Thus, we can replace Eq. (2.
with

x′ = f̃ (x),
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where

f̃ (x) = f (x) + E(x)g(x)

andE :Rn → Mn×m is defined continuously in a neighbourhood ofΓ , without changing the
dynamics onΓ . While f̃ |Γ = f |Γ , the associated Jacobians may differ. Noting thatg is zero
onΓ we see that, onΓ

∂f̃

∂x
= ∂

∂x
(f + Eg) = ∂f

∂x
+ E

∂g

∂x
+ ∂E

∂x
g = ∂f

∂x
+ E

∂g

∂x
.

Since ∂g
∂x

is non-zero onΓ , it is clear thatE can be chosen so that∂f̃
∂x

and ∂f
∂x

are not equal
When performing calculations involving the Jacobian matrix in order to study the dyna
onΓ , E may be chosen to facilitate the calculations.

We now calculatẽν in terms ofν, E andg. SinceΓ is invariant under the flow given byf , it
is also invariant under the flow given bỹf . Thus, there exists anm × m matrix Ñ such that

Ñg = g
f̃

= ∂g

∂x
· f̃ = ∂g

∂x
· (f + Eg) = Ng + ∂g

∂x
Eg =

(
N + ∂g

∂x
E

)
g.

While Ñ is not necessarily unique in a neighbourhood ofΓ , ν̃ is uniquely defined onΓ . Thus,
we may choosẽN = N + ∂g

∂x
E, and take the trace of each side, giving

ν̃ = ν + trace

(
∂g

∂x
E

)
. (3.1)

Noting thatQ
f̃

= Qf onΓ , it is clear that

Q
f̃
Q−1 + Q

∂f̃

∂x

[m+2]
Q−1 − ν̃J

= Qf Q−1 + Q
∂f

∂x

[m+2]
Q−1 − νJ + Q

(
E

∂g

∂x

)[m+2]
Q−1 − trace

(
∂g

∂x
E

)
J.

Thus, Theorem 2.3 is generalized to the following.

Theorem 3.1. Suppose that for Eq.(2.1), ∆ ⊆ Γ is simply connected, contains a unique equi
rium x̄, and is a compact absorbing set relative toΓ . Let ‖ · ‖ be a norm onR( n

m+2) and letE
be aMn×m-valued function that is continuously defined in a neighbourhood ofΓ . If there exists
ε > 0 such thatD+‖w‖ � −ε‖w‖ for all solutionsw of

w′ =
[
Qf Q−1 + Q

∂f

∂x

[m+2]
Q−1 − νJ

+ Q

(
E

∂g

∂x

)[m+2]
Q−1 − trace

(
∂g

∂x
E

)
J

]
ϕ(t;x0)

w (3.2)

and allx0 ∈ ∆, thenx̄ is globally asymptotically stable inΓ under the flow(2.1).

Proof. All that remains to be shown for this theorem to be proven, is that it is sufficient forE to
be continuous. Implicit in the above discussion is the fact thatE is differentiable. Suppose th
E is continuous, but not differentiable, and thatD+‖w‖ � −ε‖w‖. Note that the expressions
Eq. (3.2) depend onE and not on the derivatives ofE, so the condition onD+‖w‖ is robust
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under smallC0 perturbations toE. Thus, if there exists a continuous vector fieldE such that the
derivative condition holds, then there also exists a differentiable vector field close toE satisfying
the derivative condition, concluding the argument.�
4. An example from mathematical epidemiology

We now consider a model of an infectious disease of long duration in a population of
size, perhaps HIV/AIDS in a jail that is filled to capacity. We assume that the duration of infe
is long enough that the dynamics are better modelled by having individuals pass throug
successive infective stages, rather than just one. This allows for different parameters to
to describe the characteristics of individuals who are at different stages of infection. A s
model with varying total population size is studied in [6].

A population of total sizeT is divided into a susceptible group of sizeS and three infective
groups with sizesI1, I2, I3. Thus,T = S + I1 + I2 + I3. The transfer diagram is as follows:

B
S

∑3
j=1 cj βj Ij S

dS

I1 k1I1

dI1

I2 k2I2

dI2

r2I2

I3 k3I3

dI3

r3I3

For j = 1,2, the parameterskj andrj+1 are the rate constants for movement fromIj to Ij+1
and fromIj+1 to Ij , respectively. The flow ratekj Ij represents individuals progressing to a m
advanced stage of infection, including removal from the population for disease related reas
j = 3. The flow raterj Ij represents individuals undergoing a limited recovery or ameliora
from a more advanced stage of infection to a less advanced stage of infection. For many d
these amelioration rates are zero.

The rate constant for removal from the population, not directly related to the diseased .
Thus, in the absence of disease, the average time spent in the population is 1/d . In the context of
a jail setting, this would be the mean duration of incarceration.

The mean number of contacts that a susceptible individual has with individuals in inf
classIj per unit time iscj Ij . The probability that a contact between a susceptible and an infe
in classIj results in transmission of the disease isβj . Thus, the rate at which new infections occ
is

∑3
j=1 cjβj IjS.

The recruitment rateB of new individuals into the population is chosen so that the t
population size remains constant. Thus,B = d(S + I1 + I2 + I3) + k3I3. We assume thatk1,
k2, k3, d , and at least one of the productscjβj is positive and that all other parameters
non-negative.

The differential equation for the sizes of the population subgroups is

S′ = d(I1 + I2 + I3) −
3∑

j=1

cjβj IjS + k3I3,

I ′
1 =

3∑
j=1

cjβj IjS − (k1 + d)I1 + r2I2,

I ′
2 = k1I1 − (k2 + r2 + d)I2 + r3I3,

I ′
3 = k2I2 − (k3 + r3 + d)I3. (4.1)
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We denote the right-hand side of (4.1) byf (x) wherex = (S, I1, I2, I3)
T . The biologically rele-

vant region is the non-negative orthant{(S, I1, I2, I3): S, I1, I2, I3 � 0}. We restrict our analysi
to this region.

Every point on the disease-free axis is an equilibrium. We label these byP0(T ) = (T ,0,0,0).
For everyT , the pointP∗(T ) = (S∗, I1∗, I2∗, I3∗) is an equilibrium, where

S∗ = (k1 + d)[(k2 + r2 + d)(k3 + r3 + d) − k2r3] − k1r2(k3 + r3 + d)

c1β1[(k2 + r2 + d)(k3 + r3 + d) − k2r3] + c2β2k1(k3 + r3 + d) + c3β3k1k2
,

I1∗ = (k2 + r2 + d)(k3 + r3 + d) − k2r3

(k2 + r2 + d)(k3 + r3 + d) − k2r3 + k1(k3 + r3 + d) + k1k2
(T − S∗),

I2∗ = k1(k3 + r3 + d)

(k2 + r2 + d)(k3 + r3 + d) − k2r3 + k1(k3 + r3 + d) + k1k2
(T − S∗),

I3∗ = k1k2

(k2 + r2 + d)(k3 + r3 + d) − k2r3 + k1(k3 + r3 + d) + k1k2
(T − S∗).

Note thatS∗ is independent ofT , and soP∗(T ) is in the interior of the non-negative ortha
if and only if T > S∗. In this case,P∗ is called an endemic equilibrium. IfT = S∗, thenP∗
coincides withP0. If T < S∗, then P∗ lies outside the non-negative orthant and is not b
logically relevant. Thus, there is only an endemic equilibrium if the population size is
enough.

SinceT ′ = 0, the total population sizeT is constant, meaningT is a first integral. Of interes
here, is the fact that for any particularT , the three-dimensional manifoldΓ = {x: g(x) = 0,

S, I1, I2, I3 � 0} is positively invariant under the flow described by (4.1), where

g = S + I1 + I2 + I3 − T .

We will study the stability of the equilibria relative to the invariant manifold in which they li
Let h = −[c1β1, c2β2, c3β3]T and

L =
[−(k1 + d) k1 0

r2 −(k2 + r2 + d) k2
0 r3 −(k3 + r3 + d)

]
.

If a = [a1, a2, a3]T is defined by the equationLa = h, then it can be shown that eachaj is
positive and thatW = a1I1 + a2I2 + a3I3 is a Lyapunov function satisfying

W ′ =
(

S

S∗
− 1

) 3∑
j=1

cjβj Ij .

Thus, ifT � S∗ thenW is decreasing inΓ \ P0 and soP0 is globally stable inΓ . On the other
hand, if T > S∗ then W is increasing nearP0 and soP0 is repelling. Note that forT > S∗,
the boundary ofΓ is repelling towards the interior. Thus, there is a compact absorbing s∆

contained in the interior ofΓ .
We make the simplifying assumption thatr2 = r3 = r andkj = k, cjβj = cβ for j = 1,2,3.

We will use the ideas developed in Section 3 to show that forT > S∗, the equilibriumP∗ is
globally asymptotically stable inΓ \ P0.
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Consider the new system

x′ = f̃ (x) := f (x) + E(x)g, (4.2)

where

E = [cβS − d,−cβT ,0,0]T . (4.3)

In order to illustrate the constructive manner in which this method is expected to be use
calculations will be performed with a general vectorE which will, at the appropriate step, b
replaced with the particular vector given by (4.3).

On Γ , Eqs. (4.1) and (4.2) describe the same dynamics. The associated Jacobians, h
are different. OnΓ , the Jacobian associated with (4.2) is given by

∂f̃

∂x
= ∂f

∂x
+ E

∂g

∂x
= ∂f

∂x
+


E1
E2
E3
E4

 [1,1,1,1].

Calculating∂f
∂x

, and then using the relationshipT = S + I1 + I2 + I3 yields

∂f̃

∂x
=


cβ(S − T ) d − cβS d − cβS k + d − cβS

cβ(T − S) cβS − (k + d) r + cβS cβS

0 k −(k + r + d) r

0 0 k −(k + r + d)



+


E1 E1 E1 E1
E2 E2 E2 E2
E3 E3 E3 E3
E4 E4 E4 E4

 .

Note that the codimension ofΓ is m = 1, and som + 2 = 3. The third additive compoun

[4, Appendix] of ∂f̃
∂x

is

∂f̃

∂x

[3]
=



(
cβ(2S − T )

−(2k + r + 2d)

)
r −cβS k + d − cβS

k
(

cβ(2S − T )
−(2k + r + 2d)

)
r + cβS cβS − d

0 k
(

cβ(S − T )
−2(k + r + d)

)
d − cβS

0 0 cβ(T − S)
(

cβS
−(3k + 2r + 3d)

)



+


E1 + E2 + E3 E3 −E2 E1
E4 E1 + E2 + E4 E2 −E1

−E4 E3 E1 + E3 + E4 E1
E4 −E3 E2 E2 + E3 + E4

 .

Sincem = 1, the matrixN is a scalar and soν = N . Furthermore, by differentiatingg it is clear
thatgf = 0 and so Eq. (2.5) impliesν = 0. Thus, Eq. (3.1) gives̃ν = E1 +E2 +E3 +E4. Letting

M̄ = ∂f̃
[3] − ν̃J yields
∂x
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M̄ =



(
cβ(2S − T )

−(2k + r + 2d)

)
r −cβS k + d − cβS

k

(
cβ(2S − T )

−(2k + r + 2d)

)
r + cβS cβS − d

0 k

(
cβ(S − T )

−2(k + r + d)

)
d − cβS

0 0 cβ(T − S)

(
cβS

−(3k + 2r + 3d)

)



+


−E4 E3 −E2 E1
E4 −E3 E2 −E1

−E4 E3 −E2 E1
E4 −E3 E2 −E1

 .

Let Q = 1
I1

J . ThenQ
f̃
Q−1 = − I ′

1
I1

J andQ commutes with∂f̃
∂x

[3]
, so Eq. (3.2) takes the form

w′ =
(

−I ′
1

I1
J + M̄

)
w. (4.4)

Note that since∆ is a compact absorbing set in the interior ofΓ , it is bounded and so the nor

of Q−1 is bounded on∆. Noting that
I ′
1

I1
= cβS − (k + d) + φ whereφ = cβS(I2+I3)+rI2

I1
> 0, the

matrixM = − I ′
1

I1
J + M̄ is given by

M =



(
cβ(S − T ) − φ

−(k + r + d)

)
r −cβS k + d − cβS

k

(
cβ(S − T ) − φ

−(k + r + d)

)
r + cβS cβS − d

0 k −
(

cβT + φ

+k + 2r + d

)
d − cβS

0 0 cβ(T − S) −(φ + 2k + 2r + 2d)



+


−E4 E3 −E2 E1
E4 −E3 E2 −E1

−E4 E3 −E2 E1
E4 −E3 E2 −E1

 .

The stability of (4.4) is shown by using thel∞ norm as a Lyapunov function. In doing so, w
find [1] thatD+‖w‖∞ � µ‖w‖∞, where

µ = max
i=1,2,3,4

{
mii +

∑
j 	=i

|mij |
}

(4.5)

is thel∞ Lozinskii measure ofM = [mij ] (i.e., a sum is calculated for each row ofM , andµ is
the maximum of these sums). Thus, ifµ � −ε for some constantε > 0, then the conditions o
Theorem 3.1 are satisfied.

Hence, we want to chooseE in such a way that the off-diagonal entries ofM are close to
zero, while the diagonal entries are negative. By choosingE3 andE4 to be zero, we ensure th
the first two columns ofM contain some zeroes. By choosingE1 = cβS − d , we make two of
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the off-diagonal entries in the fourth column ofM equal to zero. The choice ofE2 = −cβT is
less obvious, but is made in order to makeµ negative. Thus, the choice ofE given in (4.3) yields

M =



(
cβ(S − T ) − φ

−(k + r + d)

)
r cβ(T − S) k

k

(
cβ(S − T ) − φ

−(k + r + d)

)
r + cβ(S − T ) 0

0 k −(φ + k + 2r + d) 0

0 0 −cβS −
(

cβS + φ +
2k + 2r + d

)


.

Evaluatingµ according to (4.5) gives

µ = max
{−(φ + d), cβ(S − T ) − (φ + r + d) + ∣∣r + cβ(S − T )

∣∣,−(φ + 2r + d),

− (φ + 2k + 2r + d)
}
.

SinceT � S, it follows that |r + cβ(S − T )| � r + cβ(T − S), and so it is clear thatµ =
−(φ + d) < −d . Thus, we may chooseε = d , obtainingD+‖w‖∞ � −ε‖w‖∞.

Therefore, by Theorem 3.1,P∗ is globally stable inΓ \ P0 for T > S∗.
Thus, we have shown that ifT � S∗, then the disease-free equilibrium is globally attract

and the disease dies out; ifT > S∗ then the disease persists in the population and there is a u
endemic equilibrium. Furthermore, forT > S∗, if r2 = r3, k1 = k2 = k3, andc1β1 = c2β2 = c3β3,
and the disease is present, then the disease will eventually go to the endemic equilibrium

By performing the same calculations while allowing the parameters for the different i
tive groups to differ, a global stability result for system (4.1) with limited heterogeneity ca
obtained.
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