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a b s t r a c t

Asian options, basket options and spread options have been extensively studied in the
literature. However, few papers deal with the problem of pricing general Asian basket
spread options. This paper aims to fill this gap. In order to obtain prices andGreeks in a short
computation time, we develop approximation formulae based on comonotonicity theory
and moment matching methods. We compare their relative performances and explain
how to choose the best approximation technique as a function of the Asian basket spread
characteristics. We also give explicitly the Greeks for our proposed methods. In the last
section we extend our results to options denominated in foreign currency.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We consider a security market consisting of m risky assets and a risk-less asset with a constant rate of return r . We
assume that under the risk neutral measure Q the price process dynamics are given by

dSjt = rSjtdt + σjSjtdBjt , (1)

where {Bjt : t ≥ 0} is a standard Brownian motion associated with asset j and the volatility σj is a positive constant. Further
we assume that the asset prices are correlated according to

cov
(
Bjtv , Bits

)
= ρjimin(tv, ts). (2)

Given the above dynamics, the price of the jth asset at time ti equals

Sjti = Sj(0)e

(
r−

σ2j
2

)
ti+σjBjti

. (3)

With this in hand we can define an Asian basket spread as

S =
1
n

n∑
i=1

m∑
j=1

εjajSjti ,
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where aj is the weight given to asset j and εj its sign in the spread. We assume that εj = 1 for j = 1, . . . , p, εj = −1 for
j = p + 1, . . . ,m, where p is an integer such that 1 ≤ p ≤ m − 1 and t0 < t1 < t2 < · · · < tn = T . The price of an Asian
basket spread with exercise price K at t0 = 0 can be defined as

e−rTEQ (S− K)+, (4)

with (x)+ = max(x, 0) and where EQ represents the expectation taken with respect to the risk neutral measure Q . In what
follows we will simply write E for the expectation under the risk neutral measure.
Examples of such contracts can be found in the energy markets. The basket spread part may for example be used to

cover refinement margin (crack spread) or the cost of converting fuel into energy (spark spread). While the Asian part (the
temporal average) avoids the problem common to the European options, namely that speculators can increase gain from
the option by manipulating the price of the assets near maturity.
Since the density function of a sum of non-independent log-normal random variables has no closed-form representation,

there is no closed-form solution for the price of a securitywheneverm > 1 or n > 1within the Black and Scholes framework.
Therefore one has to use an approximation method when valuating such a security. It is always possible to use Monte
Carlo techniques to get an approximation of the price. However such techniques are rather time-consuming. Furthermore
financial institutions also need approximations of the hedge parameters in order to control the risk, which further increases
the computation time. This explains why the research for a closed-form approximation has become an active area.
Some special cases of the above formula have been extensively studied. For example if we setm = 1 and n > 1 we have

an Asian option. Approximation formulae for this kind of derivatives can be found in [1–8]. If m > 1 and n = 1 we have a
basket option. See [9,10,8] for basket options where all the assets have a positive weight. And [11,12] for the case of basket
spread options. Finally setting m = 2, n = 1 and p = 1 we end up with a spread option. Pretty accurate approximation
formulae for spread options can be found in [13–17]. However few papers develop methods that can be used in the case of
an Asian basket spread [11,12,18] are the only we are aware of.
In this paper we start by deriving approximation formulae for expression (4) using comonotonic bounds. We derive four

different approximations: the upper, the improved upper, the lower and the intermediary bound.We also try to approximate
the security price with the help of moment matching techniques. We improve the hybrid moment matching method of [12]
and propose an extension of the method developed in [11]. We explain which method should be used depending on the
basket characteristics.We also provide closed-form formulae for theGreeks of our selected approximation techniques. These
methods have the advantage that they can be applied in other frameworks as well, e.g. in Lévy settings. We explain how our
results can be adapted in order to deal with options written in foreign currency (compo and quanto options).
The paper is composed as follows. In Section 2, we construct a price approximation using comonotonic sums. In Section 3,

we develop some moment matching methods. Section 4 studies the relative performance of the methods we developed. In
Section 5 we derive the Greeks for our best performing approximation. Section 6 deals with options in foreign currency.
Finally Section 7 concludes. Proofs of all propositions can be found in Appendix A. Appendix B contains numerical results
for (Asian) (basket) spread options for several sets of parameters.

2. Comonotonic approximations

We start this section by recalling some results on comonotonicity from the review papers [19,20].

Definition 1. A random vector (X c1 , . . . , X
c
n) is comonotonic if each two possible outcomes (x1, . . . , xn) and (y1, . . . , yn) are

ordered componentwise.

In actuarial sciences it is common to encounter sums of the form S =
∑n
i=1 Xi where the marginal distribution of each Xi is

knownbut the dependency structure between theXi’s is unknownor toodifficult toworkwith. In such a case comonotonicity
theory allows us to find the joint distribution of the Xi’s, given theirmarginal one, with the smaller (larger) sum in the convex
order sense (we note this order as ≤cx). Put it differently, we could replace the original random vector by its comonotonic
counterparts S` and Sc which are such that

E[g(S`)] ≤ E[g(S)] ≤ E[g(Sc)],

for any convex function g(·). From this it follows that

E(S` − K)+ ≤ E(S− K)+ ≤ E(Sc − K)+,

for all K ∈ R. Thus we see that comonotonicity allows us to find bounds for expressions like (4). Below we will see that
comonotonic sums give us closed-form formulae for such approximations. Traditionally comonotonicity is used in the
pricing of Asian, basket or Asian basket options (see e.g. [5,9,21]). We explicitly will discuss the different behaviour of the
comonotonic bounds when dealing with positive and negative weights compared to the case where there are only positive
weights. To our knowledge, this is the first time that this approach has been used in order to approximate basket spread or
Asian basket spread options.
In what follows we focus on the ideas of the different approximation methods and on the numerical results, and we

therefore skip the proofs here. The interested reader is referred to Appendix A.



2816 G. Deelstra et al. / Journal of Computational and Applied Mathematics 233 (2010) 2814–2830

2.1. Comonotonic upper bound

It can be shown that the convex largest sum of the components of a random vector X is given by the following
comonotonic sum (see [20]):

Sc =
n∑
i=1

F−1Xi (U),

where the distribution function of each Xi is non-decreasing and right-continuous, and F−1Xi (p) is defined as

F−1Xi (p) = inf
{
x ∈ R | FXi(x) ≥ p

}
, p ∈ (0, 1).

In [2], it is shown that the inverse distribution function of a sum of comonotonic random variables is equal to the sum of the
marginal inverse distribution functions. Assuming that the marginal distributions are strictly increasing we can recover the
cumulative distribution function (cdf) of the comonotonic sum using:

x = F−1Sc (FSc (x)) =
n∑
i=1

F−1Xi (FSc (x)), F−1Sc (0) < x < F
−1
Sc (1).

The next theorem, of which the proof can be found in [20,2], will be useful in what follows.

Theorem 1. The stop-loss premium of the comonotonic sum Sc of the random vector X is given by

E[(Sc − K)+] =
n∑
i=1

E
[(
Xi − F−1Xi (FSc (K))

)
+

]
,

for F−1Sc (0) < K < F
−1
Sc (1).

In what follows we will denote the cdf of a standard normal byΦ and its inverse function byΦ−1.

Proposition 1. A comonotonic upper bound to the price of a derivative of the type (4)when the underlying dynamics are described
by (1) is given by

e−rTE(Sc − K)+ = e−rT
[
1
n

n∑
i=1

m∑
j=1

εjajSj(0)ertiΦ(Yji − Φ−1 (FSc (K)))− K(1− FSc (K))

]
,

where FSc (K) can be found by solving the following equation:

K =
1
n

n∑
i=1

m∑
j=1

εjajSj(0)e

(
r−

σ2j
2

)
ti+YjiΦ−1(FSc (K))

, (5)

and where Yji = εjσj
√
ti.

Remark. To compute the comonotonic upper bound we need FSc (K). This can be evaluated by solving the non-linear
equation (5). Note that even if (5) is a non-linear equation it can easily be solved since it is monotonic in the unknown.

Remark. We can rewrite the upper bound as

e−rT
1
n

n∑
i=1

m∑
j=1

εjajE

Sj(0)e
(
r−

σ2j
2

)
ti+εjσj

√
tiΦ−1(U)

− Kij


εj

, (6)

with

Kij = Sj(0)e

(
r−

σ2j
2

)
ti+εjσj

√
tiΦ−1(FSc (K))

, (7)

where (X)εj is equal to the function max(X, 0) if εj = 1 and min(X, 0) if εj = −1. Formulae (6)–(7) provide a natural
interpretation to the comonotonic upper bound. Indeed these formulae show that we could write the upper bound as a
linear combination of call and put options on the initial underlying with different maturities and strike prices given by Kij.
This result can be linked to the literature on static hedging, see for example [22,19,23,24].

Note that we only need to know the marginal distributions to compute the comonotonic upper bound. This means that
a comonotonic upper bound could also be derived if the Brownian motion in (1) is replaced by a more general Lévy process.
See [25] for a definition of comonotonic Lévy copulas and [26] for an application to Asian options.
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2.2. Improved comonotonic upper bound

It is possible to sharpen the above upper bound by conditioning the distribution of the vector X on some random variable
Λ. Assume that Λ is a random variable whose distribution is known, and such that the distribution of the Xi conditionally
onΛ is known. If we further assume that the cumulative density functions FXi|Λ are continuous and strictly increasing, then
we have the following theorem from [20]:

Theorem 2. Let U be a uniform (0, 1) distributed random variable independent of Λ. Then we have

S =
n∑
i=1

Xi≤cx Sic =
n∑
i=1

F−1Xi|Λ(U)≤cx Sc =
n∑
i=1

F−1Xi (U).

In what follows we will consider the conditioning variable:

Λ =

m∑
j=1

σjajSj(0)BjT . (8)

Numerical results showed that in the case of positively correlated assets this conditioning variable produces the sharpest
bounds. Using all this, we can derive the following proposition:

Proposition 2. The improved comonotonic upper bound (ICUB) of the price of a derivative of the type (4) when the underlying
dynamics are given by (1) is

e−rTE
[
E(Sic − K)+|Λ

]
= e−rT

∫ 1

0

1
n

n∑
i=1

m∑
j=1

εjajSj(0)e

(
r−

(γjiσj)
2

2

)
ti+Aji(u)

Φ
(
Yji − Φ−1

(
FSic |U=u(K)

))
du

− e−rTK(1− FSic (K)),

where we used that Λ d
= E[Λ] + σΛΦ−1(U) and where we can recover FSic |U=u(K) by solving

K =
1
n

n∑
i=1

m∑
j=1

εjajSj(0)e

(
r−

σ2j
2

)
ti+Aji(u)+YjiΦ−1

(
FSic |U=u(K)

)
,

with

FSic (K) =
∫ 1

0
FSic |U=u(K)du,

and where for γji being the correlation between Bjti and the conditioning variableΛ,

Aji(u) = γjiσj
√
tiΦ−1(u), Yji = εjσj

√
1− γ 2ji

√
ti.

2.3. Comonotonic lower bound

Assume that there exists a conditioning variableΛ such that the distribution of Xi conditionally onΛ is known for each
i. Then from [2] we know that the following random variable provides a lower bound in the convex order sense:

S` = E [S|Λ] .

Furthermore assume the conditioning variableΛ is such that for all i, E[Xi|Λ] is a non-decreasing (or non-increasing, which
can be dealt with in a similar way) and a continuous function ofΛ for each i. And if we further assume that the cdf of E[Xi|Λ]
is continuous and strictly increasing, then we can recover the distribution function of S` from:

n∑
i=1

E
[
Xi|Λ = F−1Λ (FS`(x))

]
= x, x ∈

(
F−1S` (0), F

−1
S` (1)

)
. (9)

In such a case we can also use Theorem 1 and write the stop-loss premium as

E(S` − K)+ =
n∑
i=1

E
[
(E[Xi|Λ] − E[Xi|Λ = F−1Λ (FS`(K))])+

]
for all K ∈ (F−1S` (0), F

−1
S` (1)).
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The most difficult part consists in finding a conditioning variable Λ such that all the conditional expectations are
non-decreasing2 (or non-increasing). In the case of a general Asian basket spread with positively correlated Brownian
motion there is no obvious choice. Indeed finding such a conditioning variable would require a numerical optimization
procedure. We would need to find the conditioning variable Λ which is a linear combination of the Brownian motion
such that it maximizes the lower bound under a comonotonicity constraint. Considering the high dimensionality of the
problem this would quickly become impossible. This is why we choose another approach. Instead of taking the correlation
between the Brownian motions as given and start looking for a conditioning variable such that S` is comonotone, we
take a specific conditioning variable and then determine which set of correlation coefficients satisfy in order to have
comonotonicity.
In what follows we will take the following conditioning variable

Λ =

m∑
j=1

εjBjT , (10)

which produces comonotonic conditional expectation vectors as long as the correlation coefficients (2) satisfy

sign

(
m∑
j=1

εjρjl

)
= εl ∀l. (11)

One should note that such a condition always holds for simple spreads. The above discussion leads to the following
proposition:

Proposition 3. Under the assumption that the correlation coefficients satisfy (11), a comonotonic lower bound to the price of a
derivative of type (4) when the underlying dynamics are described by (1) is given by:

e−rTE(S` − K)+ = e−rT
[
1
n

n∑
i=1

m∑
j=1

εjajS0ertiΦ
(
σj
√
tiγji − Φ−1(FS`(K))

)
− K

(
1− FS`(K)

)]
where γji is the correlation between Bjti and the conditioning variable given in (10), and FS`(K) can be found by solving (9).

For the choice in (10) we arbitrarily chose to use BjT . But one could also choose any other time tk in [0, T ] and thenmaximize
the lower bound over all those tk.

2.4. Comonotonic intermediary bound

As explained above it is indeed fairly difficult to find a conditioning variable that produces a comonotone conditional
expectation vector. In such a case one can always build an approximation using the following procedure. Start by choosing
a first conditioning variable,3 denoted byΛ1. Then construct the conditional expectation vector

E[X |Λ1].

Once this is done, we choose a second conditioning variable Λ2 and construct an ICUB cfr. Section 2.2 of this conditional
expectation vector. The advantage of this procedure is that we surely end up with a comonotone vector. The drawback is
that we do not know whether our approximation is an upper or a lower bound. In our computations we chooseΛ1 andΛ2
to be

Λ1 =

m∑
j=1

σjajS0BjT and Λ2 =

m∑
j=1

BjT .

This choice ofΛ1 is justified by the fact that this conditioning variable seemed to provide a good first order approximation
of Var(S|Λ). And this choice ofΛ2 was yielding one of the best ICUB. Since it can be shown that (see [10])

S`≤cx Sint≤cx Sic,

where S` is the (non-comonotonic) lower bound based on conditioning variable Λ1 and Sic is the improved comonotonic
upper bound based onΛ2, we are reducing the possible range of fluctuation of our approximation.

Proposition 4. The intermediary bound to the price of a derivative of the type (4) when the underlying dynamics are described
by (1), is given by:

2 Note that a non-decreasing conditional expectation vector is equivalent to the requirement εj = sign(γji), where γji is the correlation between the jth
Brownian motion at time i and the conditioning variable.
3 The only restriction set on this variable is that it is normally distributed and that (Λ1,Λ2) is bivariate normally distributed.
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e−rT
[
E
(
Sint − K

)
+

]
= e−rT

∫ 1

0

1
n

n∑
i=1

m∑
j=1

εjajSj(0)e

(
r−

(γjiγΛ1Λ2 σj)
2

2

)
ti+Aji(u)

Φ
(
Yji − Φ−1(FSint|U=u(K))

)
du

− e−rTK(1− FSint(K)),

where we used that Λ2
d
= E[Λ2] + σΛ2Φ

−1(U) and where γΛ1Λ2 is the correlation between the conditioning variablesΛ1 and
Λ2, and γji is the correlation between the first conditioning variableΛ1 and Bjti . FSint|U=u(K) can be recovered by solving

K =
1
n

m∑
j=1

n∑
i=1

εjajSj(0)e

(
r−

(γjiσj)
2

2

)
ti+Aji(u)+YjiΦ−1

(
FSint |U=u(K)

)
,

where

Aji(u) = γΛ1Λ2γjiσj
√
tiΦ−1(u), Yji = εj

√
1− γ 2Λ1Λ2 |γji|σj

√
ti,

and satisfies

FSint(K) =
∫ 1

0
FSint|U=u(K)du.

3. Moment matching methods

Another approximation technique is the so-called moment matching method. The idea is to replace the original
distribution of the underlying by a law with the same p first moments as the original law (with p the number of parameters
of the approximating law) and whose stop-loss premium can easily be approximated by a closed-form expression. In this
sectionwe describe two differentmomentmatching techniques that can be used to price Asian basket spread options. These
techniques could also be applied when the Brownian motion in (1) is replaced by a more general Lévy process (as long as
the p first moments exist).

3.1. Hybrid moment matching method

An obvious way of attacking the problem is to use the hybridmomentmatchingmethod, see for example [12]. The idea is
to reduce the Asian basket spread option pricing problem to a spread option pricing problem. To do so, we start by splitting
the underlying S in two parts (one containing all the assets with a positive sign, denoted as S1, another containing those
with a negative sign, denoted as S2) and moment match each term, separately, with a log-normal random variable. Once
this is done we are left with the problem of approximating a spread option. This is a well studied problem for which pretty
accurate approximations are available. In this section we improve the classical hybrid moment matching method by using
new spread approximation techniques. We will see later that one of these approximations turns out to be extremely useful
when we need to recover the Greeks of such an Asian basket option.
More formally, hybrid moment matching allows us to rewrite (4) as:

E
(
S̃1 − S̃2 − K

)
+
, (12)

where S̃j is a log-normal random variable with mean µj and variance σ 2j given by:

µj = 2 ln(m1j)−
1
2
ln(m2j), σ 2j = ln(m2j)− 2 ln(m1j), j = 1, 2. (13)

Herem1j andm2j are the first and secondmoments of the sumSj described above.Wewill also need the correlation coefficient
ρ between ln(S̃1) and ln(S̃2) to compute the spread approximation. We use the following equation to recover ρ from the
equality of the crossmoments (crm):

E[S1S2] = E[S̃1S̃2],

namely:

crm :=
m∑

j=p+1

p∑
l=1

n∑
i,s=1

1
n2
ajalE[SjtiSlts ] = e

µ1+µ2+
1
2 σ
2
1+

1
2 σ
2
2+σ1σ2ρ . (14)

Finally, we have to approximate the resulting spread (12). We will use two different approximations. First, we use the
method proposed in [17] (from now on called the Li et al. approximation). We choose this method since it does not require
any optimization and performs remarkably well compared to other techniques like the ones of [14] or [15]. As a second
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approximation of the spread we choose the ICUB of expression (12). The reason for this choice will become clear in the next
section where we will see that the improved comonotonic upper bound outperforms the Li et al. approximation. We derive
the ICUB in the next proposition.

Proposition 5. Consider the following stop-loss premium

E(eµ1+σ1X1 − eµ2+σ2X2 − K)+,

with X1, X2 two correlated standard normal random variables. The comonotonic improved upper bound of this spread is given by

2∑
i=1

εi

∫ 1

0
eµi+Ai(u)+

1
2 Y
2
i Φ

(
Yi − Φ−1

(
FSic |U=u(K)

))
du− K

(
1− FSic (K)

)
, (15)

where ε1 = 1 and ε2 = −1, and where FSic |U=u can be found by solving

2∑
i=1

εie
µi+Ai(u)+YiΦ−1(FSic |U=u(K)) = K ,

with, for γi denoting the correlation between Xi and the conditioning variableΛ
d
= E[Λ] + σΛΦ−1(U)

Ai(u) = γiσiΦ−1(u), Yi = εiσi
√
1− γ 2i , FSic (K) =

∫ 1

0
FSic |U=u(K)du.

When performing the approximations, we used the following conditioning variable

Λ = eµ1σ1X1 + eµ2σ2X2, (16)

where X1, X2 are N(0, 1)with correlation coefficient ρ determined through (14) and µi and σi are given by (13).
In order to interpret the approximation error we introduce the following decomposition:

E(S− K)+ = E(S̃1 − S̃2 − K)+ +

∆1︷ ︸︸ ︷
(E(S− K)+ − E(S̃1 − S̃2 − K)+)

= Π̃ +

∆2︷ ︸︸ ︷
E(S̃1 − S̃2 − K)+ − Π̃ +∆1

= Π̃ +∆1 +∆2,

where Π̃ is the chosen spread approximation. Thus ∆1 represents the error made by replacing our original basket with
moment matched log-normal random variables, while∆2 is the error originating from the analytical approximation of the
resulting spread. Later wewill see that when approximating the price of an Asian basket spread, the first part has the highest
contribution to the error.

3.2. Shifted log-extended skew normal moment matching

In this section, we develop an extension of the methodology introduced in [11,8]. We consider the possibility of using
a shifted log-extended skew normal random variable instead of a shifted log-normal random variable in order to perform
moment matching. In doing so, we are combining both the approach of [11] and of [8]. Compared to the traditional shifted
log-normal moment matching of [11], this new method introduces two additional parameters giving us more moments to
match. Compared to the [8] approach, this newmethod allows us to consider baskets in which some assets have a negative
weight. We start this section by giving a general overview about extended skew normal random variables and introducing
the shifted log-extended skew normal law, before explaining its implementation in option pricing problems.

3.2.1. Shifted log-extended skew normal law
We say that X is extended skewnormally distributedwith skewness parametersα and τ if it has the following probability

density function:

ψ(x, α, τ ) = φ(x)
Φ

(
τ
√
1+ α2 + αx

)
Φ(τ )

, α, τ ∈ R, (17)

where φ is the probability density function of a standard normal. When the parameters α and τ are both equal to zero, we
recover the standard normal distribution. Whenever one of them is different from zero, we have an extended skew normal
distribution. This distribution family was first introduced in [27] and studied in details in [28]. The presence of these two
additional parameters allows us to model the asymmetry in the distribution.
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A random variable Z is said to be shifted log-extended skew normal with location parameter µ, scale parameter σ , shift
parameter η and skewness parameters α and τ if it is of the type

Z = eµ+σX + η,

where X is an extended skew normal random variable with skewness parameters α and τ . In order to allow for negative
values, we thus modified the specification of [8] by adding the shift parameter η. We denote a shifted log-extended skew
normal random variable by SLESN(µ, σ , α, τ , η). After some straightforward computation one can write the density of Z
as:

ψ(z, µ, σ , α, τ , η) =
1

(z − η)σ
φ

(
ln(z − η)− µ

σ

) Φ (τ√1+ α2 + α ((ln(z − η)− µ)/σ))
Φ(τ )

, z > η.

Wewill need the first five moments (m̂1, . . . , m̂5) of SLESN(µ, σ , α, τ , η). After some straightforward computations we
can compute and rewrite the moments as

m̂1 = M1 + η

m̂2 = M2 + 2ηm̂1 − η2

m̂3 = M3 + 3ηm̂2 − 3η2m̂1 + η3

m̂4 = M4 + 4ηm̂3 − 6η2m̂2 + 4η3m̂1 − η4

m̂5 = M5 + 5ηm̂4 − 10η2m̂3 + 10η3m̂2 − 5η4m̂1 + η5,

(18)

whereMj is the jth moment of the corresponding log-extended skew normal and is given by:

Mj = ejµ+
1
2 (jσ)

2 Φ(τ + jδσ )
Φ(τ )

, δ =
α

√
1+ α2

. (19)

Below we will need the negative SLESN(µ, σ , α, τ , η)which is defined as

Z = −eµ+σX − η.

Its density can be derived in exactly the same way as for the SLESN, and its moments can be found from those of the SLESN
by replacingM1,M3 andM5 by−M1,−M3 and−M5.

3.2.2. Pricing Asian basket spread options
We follow themethodology introduced in [11] but instead of using a shifted log-normal lawweuse a shifted log-extended

skew normal law as our matching distribution. Thus we proceed as follows:

1. Start by computing the first five moments of the Asian basket.
2. Compute the Asian basket skewness which is defined as

E[(S− E[S])3].

3. If the skewness is negative, moment match the Asian basket spread with a negative shifted log-extended skew normal.
If the skewness is positive use a positive shifted log-extended skew normal law.

4. Adjust the shift parameter of the matching distribution if needed.
5. Compute the stop-loss premium of the matched random variable.

The following theorem gives the stop-loss premium for a SLESN random variable.

Proposition 6. Let X be a positive SLESN(µ, σ , α, τ , η) then

E(X − K)+ = eµ+
1
2 σ
2 Φ(τ + δσ )

Φ(τ )
Ψ (I1;−α; τ + δσ )− (K − η)Ψ (I2;−α; τ),

where for K − η > 0

I1 =
µ+ σ 2 − ln(K − η)

σ
I2 = I1 − σ ,

and Ψ is the cdf of an extended skew normal law with density function (17).

The following proposition states the corresponding result for a negative SLESN random variable.
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Proposition 7. Let X be a negative SLESN(µ, σ , α, τ , η) random variable then,

E(X − K)+ = −eµ+
1
2 σ
2 Φ(τ + δσ )

Φ(τ )
Ψ (I1;α; τ + δσ )− (K + η)Ψ (I2;α; τ),

where for −K − η > 0

I1 =
ln(−K − η)− µ− σ 2

σ
I2 = I1 + σ ,

and Ψ is the cdf of an extended skew normal law with density function (17).

Notice that if we set τ = 0 and α = 0 we recover the formula from [11]. If we set η = 0 then we recover the formula
from [8].

Remark 1. It may seem strange to look at the skewness of the Asian basket (with possible negative weights) when
performing moment matching. After all, we introduced the SLESN in order to model this skewness. Thus normally all the
skewness from the original distribution should be embedded in thematched parameters α and τ . Indeed the reason is more
computational than theoretical. If we try to match a positive SLESN to an Asian basket whose skewness is negative our
algorithm fails. The failure is due to the shift parameter which is converging to−∞ in order to associate a positive density
to the negative (positive) value of the axis. Taking a negative SLESN law as matching distribution resolves the problem in
this case.

Remark 2. Solving the system in (18) poses some serious problems since it contains five non-linear equations. Fortunately
some simple manipulations in the spirit of those introduced in [8] allow us to avoid this problem. We proceed as follows:
start by taking the logarithm of the first equation in (19) for j = 1 and j = 2, which leads to

µ+
1
2
σ 2 = − ln

Φ(τ + σδ)

M1
+ lnΦ(τ ),

µ+ σ 2 = −
1
2
ln
Φ(τ + 2σδ)

M2
+
1
2
lnΦ(τ ).

We can rewrite those two equations as

µ = −2 ln
Φ(τ + σδ)

M1
+
1
2
ln
Φ(τ + 2σδ)

M2
+
3
2
lnΦ(τ ),

σ 2 = 2 ln
Φ(τ + σδ)

M1
− ln

Φ(τ + 2σδ)
M2

− lnΦ(τ ).
(20)

These equations will provide us the parameters µ and σ 2. Note that the right-hand side of those equations depends on the
parameters τ , the product σδ and η through the moments Mj see (18). Let us denote θ = σδ. Combining the remaining
equations in (19) for j = 3, 4, 5 and using the above expression for µ and σ 2 yields

ln
Φ(τ + 3θ)
M3

− 3 ln
Φ(τ + 2θ)
M2

+ 3 ln
Φ(τ + θ)

M1
= lnΦ(τ ),

ln
Φ(τ + 4θ)
M4

− 6 ln
Φ(τ + 2θ)
M2

+ 8 ln
Φ(τ + θ)

M1
= 3 lnΦ(τ ),

ln
Φ(τ + 5θ)
M5

+ 15 ln
Φ(τ + θ)

M1
− 10 ln

Φ(τ + 2θ)
M2

= 6 lnΦ(τ ).

(21)

When computing the matching distribution, we start by replacing the m̂j in (18) by the corresponding moments of S. Next,
we solve those Eq. (18) forMj in terms of η and substitute in (21). We solve, simultaneously, the three non-linear equations
(21) in order to find θ , η and τ . Then we insert those parameters in the expressions in (20) forµ and σ 2. Finally, we recover
α using

α =
θ

√
σ 2 − θ2

.

Remark 3. If we set τ = 0 then we are left with a skew normal distribution. This distribution will depend on only 4
parameters instead of 5. This means that when matching our Asian basket spread we only need to consider a system of
4 equations. These 4 equations can be resolved by solving simultaneously the first two equations in (21) in θ and η and
then using the relations (20) in order to recover µ and σ . The advantage of setting τ = 0 is that we need to solve only 2
non-linear equations when determining the skewness and the shift. This reduces the complexity and can have an impact on
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the accuracy of our numerical procedure. The drawback is that we lose a parameter, meaning that we could lose precision
when performing an approximation. One always has to make a tradeoff between the sophistication of the model and the
numerical complexity.

4. Numerical illustrations

In this section we give a number of numerical examples of spread, basket spread and Asian basket spread options.
We study the relative performances of the approximation formulae developed above and give a general procedure for
approximating spread options. When performing calculations we set the risk-less rate of return to 5%. The asset volatilities
where chosen randomly between [0.1, 0.6] and their correlations between [0.1, 0.9]. The option’s maturity is set equal to
one year. Finally, when working with Asian options we took the average over the last 30 days, which is a common practice
in energy markets. The tables containing numerical results can be found in Appendix B. Due to its high computational cost
we choose not to consider the method proposed in [18] in the computations that follow.

4.1. Spread options

We start by considering spread options. We can draw the following conclusions:

• The comonotone upper bound offers a poor approximation to spread option prices. This failure is due to the combination
of sign switching and a positive correlation between the assets which is generating a non-comonotonic spread.
• The lower bound yields poor approximations. Furthermore its accuracy is strongly influenced by the correlation between
the assets. This failure should not come as a surprise since, as our conditioning variable choice was constrained by the
comonotonicity requirement, we could not choose a conditioning variable maximizing Var(S|Λ).
• The intermediary bound has some stability problems, its performance being competitive only for some parametrization
of the spread.
• The ICUBperforms remarkablywell. Its performance is comparablewith that of the Li et al. approximation. In addition,we
know that the obtained approximation represents an upper bound. Thus, our preference goes to the formermethodwhen
pricing spread options. Note that this justifies the introduction of ICUB in hybrid moment matching (see Section 3.1).4
• The shifted log-normal moment matching performs poorly compared to the ICUB and Li et al. approximation.
• The performances of SLESN moment matching varies considerably. This is due to the complexity of the system we
need to solve when matching the parameters. We encountered several numerical problems when we computed the
matching distribution. Fixing one of the parameters equal to zero (see Remark 3) did not solve the problem posed by
optimization.

Because the problems we have pointed out concerning the comonotonic upper, lower, intermediary bounds and SLESN
moment matching only worsen when working with more general Asian basket spreads, we will not mention these
approximations in what follows. From now on we will only focus on four approximation techniques: the ICUB, hybrid
moment matching with Li et al.’s and ICUB approximation, and shifted log-normal moment matching.

4.2. Basket spread options

A quick look at the simulation output allows us to discard two approximation techniques. First, we see that the ICUB
performance is clearly declining as the number of assets increases, and since this problem only worsens when dealing with
Asian options we will no longer discuss this approximation. Second, we see that the hybrid moment matching associated
with the ICUB slightly outperforms hybrid moment matching associated with Li et al.’s approximation. Thus from now on
when discussing, we will only consider the hybrid moment matching method associated to the ICUB.
We are left with two candidates: the shifted log-normal and hybrid moment matching associated with the ICUB. It is

indeed impossible to completely exclude one of these approximation techniques. The choice of the method will depend on
the underlying characteristics. We can distinguish four possible cases:

1. The underlying has a positive skewness and
∑m
j=1 ajεjSj(0) > 0. Then the shifted log-normal approximation tends to

outperform hybrid moment matching when the correlation between the assets in the positive (negative) part is low (by
low we mean below 0.8) and the volatilities are low (see Table 4).

2. The underlying has a positive skewness and
∑m
j=1 ajεjSj(0) < 0. In this case, numerical results tend to favor hybrid

moment matching since its results clearly dominate the shifted log-normal approximation (see Table 5).
3. The underlying has a negative skewness and

∑m
j=1 ajεjSj(0) < 0. Then the shifted log-normal approximation tend to

outperform hybrid moment matching when the correlation between the assets in the positive (negative) part is low (by
low we mean below 0.8) and the volatilities are low (see Table 6).

4 We computed the Li et al. approximation and the ICUB for several spread options.We compared theirmean squared error andmean absolute deviation.
Numerical results showed that the ICUB slightly outperforms the Li et al. approximation according to both criteria.
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4. The underlying has a negative skewness and
∑m
j=1 ajεjSj(0) > 0. In this case, numerical results tend to favor hybrid

moment matching, the results of which clearly dominate the shifted log-normal approximation (see Table 7).

As we see, the choice of the approximation will depend on the skewness, correlation, and initial values of the underlying.
Numerical results for each of the basket configurations can be found in Appendix B.

4.3. Asian basket spread options

Finally we consider Asian basket spread options. First of all, remark that in the case of Asian spread options, hybrid
moment matching associated with the ICUB works remarkably well. This may be explained by the strong correlation
between the components of the positive (negative) part of such options (due to the temporal dependency). Second, when
dealing with more general Asian basket spreads, hybrid moment matching seems to be slightly more efficient than shifted
log-normal moment matching especially when the volatilities are low. Our preference clearly goes to hybrid moment
matching when dealing with Asian basket spread options.

5. Option Greeks

In the previous section we saw that depending on the underlying characteristics, it may be preferable to use hybrid
moment matching or shifted log-normal moment matching. Belowwe provide the Greeks for the hybrid moment matching
approximation. In case of shifted log-normal moment matching, the Greeks can be computed as in [11].

5.1. Simple spread approximation

Computing the Greeks of the ICUB is a heavy task. The difficulties originate from the conditioning variable we choose.
Since the conditioning variable (8) is a function of Sj(0) and σj we need to differentiate all the covariance and variance
present in the approximation when computing the Greeks. In order to simplify the computations we choose to replace this
conditioning variable by

Λ =

2∑
j=1

BjT . (22)

The accuracy of the ICUB based on this conditioning variable seems to be the same as the one obtained with Li et al.’s
approximation. For simple spreads we have the following proposition.

Proposition 8. The Greeks of the ICUB (denoted by Γ ) of a simple spread when the conditioning variable is (22), are given by

∂Γ

∂Sj(0)
=

∫ 1

0
εjaje−

A2j
2 +AjΦ

−1(u)Φ(Yj − F(u, K))du

∂2Γ

∂Sj(0)∂Sp(0)
=

∫ 1

0

εjεpajape

(
r−

σ2j
2 −

σ2p
2

)
T+(Aj+Ap)Φ−1(u)+(Yj+Yp)F(u,K)−

F(u,K)2
2

√
2π

2∑
i=1
εiaiSi(0)Yie(r−

σ2i
2 )T+AiΦ

−1(u)+YiF(u,K)

du

∂Γ

∂σj
= εjajSj(0)(−γ 2j σjT + γj

√
TΦ−1(u))

∫ 1

0
e−

A2j
2 +AjΦ

−1(u)Φ(Yj − F(u, K))du

+ ajSj(0)

√
1− γ 2j
2π

√
T
∫ 1

0
eAjΦ

−1(u)−
σ2j T
2 −

F(u,K)2
2 +YjF(u,K)du

∂Γ

∂ρ
=

2∑
i=1

εiaiSi(0)
∫ 1

0

σi

2
T
(
−
σi

2
+
Φ−1(u)
σΛ

)
e−

A2i
2 +AiΦ

−1(u)Φ(Yi − F(u, K))du

−

2∑
i=1

σi
√
T

4
√
2π(1− γ 2i )

aiSi(0)
∫ 1

0
e−

σ2i T
2 +AiΦ

−1(u)− F(u,K)
2

2 +YiF(u,K)du

where F(u, K) = Φ−1(FSic |U=u(K)), Ai = γiσi
√
T , Yi = εiσi

√
T
√
1− γ 2i with γ

2
i =

1+ρ
2 .

5.2. Asian basket spread approximation

In this case a simple trick allows us to compute the Greeks easily. Start by replacing the conditioning variable (16) by
Λ = X1 + X2.
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The parameters σj, µj and ρ are determined according to

µj = 2 ln(m1j)−
1
2
ln(m2j)

σ 2j = ln(m2j)− 2 ln(m1j)

ρ =
ln(crm)− µ1 − µ2

σ1σ2
−
1
2

(
σ1

σ2
+
σ2

σ1

)
,

with crm given in (14). Assume we want to recover the sensitivity of the price with respect to a parameter (denote this
parameter by G). First of all, remark that

∂µj

∂G
= 2

∂m1j
∂G

m1j
−
1
2

∂m2j
∂G

m2j

∂σ 2j

∂G
=

∂m2j
∂G

m2j
− 2

∂m1j
∂G

m1j
.

(23)

From these computations one can easily write ∂ρ/∂G as

∂ρ

∂G
=

1
σ1σ2

(
1
crm

∂crm
∂G
−
∂µ1

∂G
−
∂µ2

∂G

)
−
ln(crm)− µ1 − µ2

(σ1σ2)2

(
σ2
∂ σ1

∂G
+ σ1

∂σ2

∂G

)
−
1
2

(
∂σ1

∂G
1
σ2
−
σ1

σ 22

∂σ2

∂G
+
∂σ2

∂G
1
σ1
−
σ2

σ 21

∂σ1

∂G

)
. (24)

With these elements in hand we can now recover an arbitrary Greek by differentiating (15), which we denote by Γ̃ , with
respect to G by using the relations in (23) and (24):

∂Γ̃

∂G
= e−rT

2∑
i=1

∫ 1

0
hieµi+AiΦ

−1(u)− F(u,K)
2

2 +YiF(u,K)du+ e−rT
2∑
i=1

εi

∫ 1

0
fi(u)eµi+AiΦ

−1(u)+
Y2i
2 Φ(Yi − F(u, K))du

with

hi =
1

σi

√
8π(1− γ 2i )

(
(1− γ 2i )

∂σ 2i

∂G
−
σ 2i

2
∂ρ

∂G

)

fi(u) =
∂µi

∂G
+

[
σi

2
√
2(1+ ρ2)

Φ−1(u)−
σ 2i

4

]
∂ρ

∂G
+
1
2

[
1+ γi

(
Φ−1(u)
σi

− γi

)]
∂σ 2i

∂G

and F(u, K) = Φ−1(FSic |U=u(K)), Ai = γiσi, Yi = εiσi
√
1− γ 2i , γ

2
i =

1+ρ
2 .

Taking G to be σj, ρ or Sj(0) yields the Greeks.

6. Quanto and compo options

When the underlying is not denominated in the domestic currency, the option contains an additional risk, the exchange
rate risk. In order to cover this risk, the buyer/seller may choose to modify the contract in order to include the exchange
rate dynamics in it. Below, we consider two ways of studying these quanto and compo options. We describe how previous
results can be adapted in order to price quanto and compo Asian basket spread options. To our knowledge, this is the first
time that such an extension is considered.
Let rd be the domestic risk free interest rate and rf the foreign risk free interest rate, and assume that both are constant.

The dynamics of the exchange rate and foreign assets price under the domestic risk neutral probability measure Q d are

dIt = (rd − rf )Itdt + σeItdBet ,

and

dS fjt = (rf − ρ̂jσjσe)S
f
jtdt + σjS

f
jtdBjt

where {Bet : t ≥ 0} and {Bjt : t ≥ 0} are Brownian motions under the measure Q
d with correlation coefficient ρ̂j, and with

σe and σj constant volatilities.
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6.1. Quanto options

The price of a quanto option is evaluated as

e−rdTEQ d

(
1
n

n∑
i=1

m∑
j=1

εjajS
f
jti
Iti − K

)
+

, (25)

where EQ d is the expectation under the domestic risk neutral measure Q
d.

It is not hard to see that under Q d the underlying of (25) can be written as

1
n

n∑
i=1

m∑
j=1

εjajS
f
j (0)I(0)e

(
rd−

σ̂2j
2

)
ti+σ̂jB̂jti

, (26)

where {B̂jt : t ≥ 0} are Q d Brownian motions and

B̂jti =
σjBjti + σeB

e
ti

σ̂j
,

σ̂j =

√
σ 2j + σ

2
e + 2σjσeρ̂j,

corr(B̂jti , B̂lts) =
σjσlρjl + σjσeρ̂j + σlσeρ̂l + σ

2
e

σ̂jσ̂l

min(ti, ts)
√
tits

.

We can see that in this case the underlying is still log-normally distributed. Thuswe can apply themethods explained before
but with the basket given in (26).

6.2. Compo options

The option price is given by

e−reTEQ d

(1
n

n∑
i=1

m∑
j=1

εjajS
f
jti
− K

)
+

IT

 . (27)

Due to the no arbitrage assumption (see [29]) (27) is equivalent to

e−rf T I(0)EQ f

1
n

n∑
i=1

m∑
j=1

εjajS
f
j (0)e

(
rf−

σ2j
2

)
ti+σjB̂jti

− K


+

 ,
where EQ f is the foreign risk neutral measure and {B̂jt : t ≥ 0} are standard Brownian motions under Q

f . So, we manage to
reduce the pricing of the compo option to the calculation of a stop-loss premium of a sum of log-normal random variables.
Thus once more, we can use our previous methodologies in order to price this option.

7. Conclusion

In this paper, we found that the ICUB offers a good approximation of the price of spread options. We tried several
approximation methods for Asian basket spread options and found that a combination of hybrid moment matching
combined with the ICUB and shifted log-normal moment matching seems to work best. We developed formulae for the
Greeks for the hybrid moment matching method with an ICUB approximation. We also showed how our methodology can
easily be applied to the case of options in foreign currency. Extension of the above approximation techniques to Lévymarket
models is a topic under current investigation.
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Appendix A. Proofs

Proof of Proposition 1. The underlying is of the type

S =
1
n

n∑
i=1

m∑
j=1

εjajSj(0)e

(
r−

σ2j
2

)
ti+σjBjti

.

Thus using Proposition 1 from [2], its comonotonic counterpart is given by

F−1Sc (U) =
1
n

n∑
i=1

m∑
j=1

εjajSj(0)e

(
r−

σ2j
2

)
ti+εjσj

√
tiΦ−1(U)

,

where U is uniformly distributed over (0, 1). Then by means of Theorem 1 we can rewrite the upper bound as

e−rT
1
n

n∑
i=1

m∑
j=1

εjajE

Sj(0)e
(
r−

σ2j
2

)
ti+εjσj

√
tiΦ−1(U)

− Kij


εj

,

where

Kij = Sj(0)e

(
r−

σ2j
2

)
ti+εjσj

√
tiΦ−1(FSc (K))

,

where (X)εj is equal to the function max(X, 0) if εj = 1 and min(X, 0) if εj = −1. The result then follows from standard
computations. �

Proof of Proposition 2. First, notice that the conditional distribution of the underlying is

1
n

n∑
i=1

m∑
j=1

εjajSj(0)e

(
r−

σ2j
2

)
ti+γjiσj

√
tiΦ−1(U)+εjσj

√
1−γ 2ji

√
tiΦ−1(V )

,

where the random variables U = Φ[(Λ− E[Λ])/σΛ] and V are independent and are uniformly distributed on (0, 1). Then,
using the tower property

E[(Sic − K)+] = E[E[(Sic − K)+|Λ]],

the rest follows by applying Theorem 1 and some standard computations. �

Proof of Proposition 3. Simply start by noting that

S` =
1
n

n∑
i=1

m∑
j=1

εjajSj(0)e

(
r−

(γjiσj)
2

2

)
ti+γjiσj

√
tiΦ−1(U)

.

The proof then follows from the discussion in Section 2.3, an application of Theorem 1 and some standard computations. �

Proof of Proposition 4. The proof is completely analogous to the one of Theorem 7 in [10]. �

Proof of Proposition 5. See the proof of Proposition 2. �

Proof of Proposition 6. Let, for K − η > 0, A = {x : eµ+σ x ≥ K − η}, then

E(X − K)+ =
∫
A
(eµ+σ x + η − K)ψ(x, α, τ )dx

= eµ+
1
2 σ
2 Φ(τ + δσ )

Φ(τ )

∫
A−σ

ψ(x, α, τ + δσ )dx− (K − η)
∫
A
ψ(x, α, τ )dx

= eµ+
1
2 σ
2 Φ(τ + δσ )

Φ(τ )
Ψ (−I1;−α; τ + δσ )− (K − η)Ψ (−I2;−α; τ)

where in the last step we used the property that 1− Ψ (x, α, τ ) = Ψ (−x,−α, τ). �

Proof of Proposition 7. Immediate from the proof of Proposition 6. �

Proof of Proposition 8. The proof follows from brute force computation. �
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Appendix B. Numerical results

CUB= comonotonic upper bound ICUB= improved comonotonic upper bound
CLB= comonotonic lower bound CIntB= comonotonic intermediary bound
SLN= shifted log-normal approximation SLESN= shifted log-extended skew normal approximation
Li et al.= Li et al. spread approximation
MC=Monte Carlo price S.E.= standard error
HybMMICUB= Hybrid moment matching with improved comonotonic upper bound
HybMMLi= Hybrid moment matching with Li et al. spread approximation

B.1. Spread options

See Tables 1–3.
Table 1
a = [1,−1], S(0) = [100, 200], σ = [0.6, 0.6], ρ12 = 0.28, 100 millions of paths (negative skewness).

Strike CUB ICUB CLB CIntB SLN SLESN Li et al. MC S.E.

−70 51.4002 29.0854 26.9232 28.7313 31.0619 29.7272 29.0742 29.0846 0.0005
−80 55.8467 33.6150 30.8369 33.3442 35.8096 34.5680 33.6083 33.6142 0.0005
−90 60.5351 38.5281 35.1084 38.3007 40.8772 39.7385 38.5235 38.5273 0.0006
−100 65.4629 43.8043 39.7382 43.5861 46.2500 45.2212 43.7990 43.8034 0.0006
−110 70.6261 49.4212 44.7238 49.1844 51.9127 50.9979 49.4130 49.4203 0.0006
−120 76.0199 55.3561 50.0590 55.0786 57.8497 57.0506 55.3433 55.3552 0.0006
−130 81.6384 61.5861 55.7345 61.2516 64.0453 63.3615 61.5678 61.5851 0.0007

Table 2
a = [1,−1], S(0) = [100, 40], σ = [0.4, 0.17], ρ12 = 0.12, 60 millions of paths (positive skewness).

Strike CUB ICUB CLB CIntB SLN SLESN Li et al. MC S.E.

45 27.3131 24.5975 22.1702 24.5788 24.6096 24.6064 24.5982 24.5981 0.0006
50 24.5923 21.8240 19.0498 21.8093 21.8441 21.8328 21.8247 21.8247 0.0006
55 22.0846 19.3079 16.2331 19.2957 19.3342 19.3161 19.3086 19.3085 0.0005
60 19.7844 17.0384 13.7215 17.0275 17.0692 17.0458 17.0391 17.0391 0.0005
65 17.6840 15.0022 11.5087 14.9914 15.0355 15.0085 15.0029 15.0029 0.0005
70 15.7739 13.1835 9.5811 13.1719 13.2178 13.1887 13.1842 13.1842 0.0005
75 14.0436 11.5656 7.9202 11.5525 11.5997 11.5698 11.5663 11.5664 0.0004

Table 3
a = [1,−1], S(0) = [100, 50], σ = [0.6, 0.2], ρ12 = 0.89, 60 millions of paths (positive skewness).

Strike CUB ICUB CLB CIntB SLN SLESN Li et al. MC S.E.

35 34.8962 27.4968 17.8043 28.2332 27.5689 27.4974 27.4992 27.4964 0.0008
40 32.5542 25.1757 13.9743 25.9171 25.2255 25.1761 25.1781 25.1754 0.0008
45 30.3585 23.0587 10.6097 23.7962 23.0877 23.0591 23.0611 23.0585 0.0008
50 28.3029 21.1293 7.7776 21.8555 21.1395 21.1297 21.1317 21.1291 0.0008
55 26.3808 19.3715 5.4995 20.0808 19.3651 19.3721 19.3739 19.3715 0.0008
60 24.5854 17.7703 3.7499 18.4584 17.7496 17.7711 17.7727 17.7704 0.0007
65 22.9101 16.3117 2.4667 16.9753 16.2790 16.3128 16.3141 16.3119 0.0007

B.2. Basket spread options

See Tables 4–7.
Table 4
a = [1,−1,−1], S(0) = [100, 24; 46], σ = [0.4, 0.22, 0.3], ρ12 = 0.17, ρ13 = 0.91, ρ23 = 0.41, 300 millions of paths (positive skewness).

Strike ICUB SLN HybMMLi HybMMICUB MC S.E.

15 19.9819 19.6925 19.5251 19.5231 19.6849 0.00009
20 17.0143 16.7345 16.5693 16.5673 16.7051 0.00008
25 14.4105 14.1460 13.9964 13.9944 14.1010 0.00008
30 12.1523 11.9059 11.7811 11.7790 11.8519 0.00007
35 10.2123 9.9851 9.8898 9.8876 9.9281 0.00007
40 8.5588 8.3506 8.2860 8.2837 8.2951 0.00006
45 7.1581 6.9683 6.9330 6.9305 6.9174 0.00006
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Table 5
a = [1,−1,−1,−1], S(0) = [100, 100, 50, 70], σ = [0.5, 0.15, 0.2, 0.17], ρij = 0.9 for all i and j, 300 millions of paths (positive skewness).

Strike ICUB SLN HybMMLi HybMMICUB MC S.E.

−90 2.8088 2.4884 2.1748 2.4043 2.4089 0.00004
−100 3.8757 3.4820 3.6191 3.3098 3.3122 0.00005
−110 5.4669 4.9521 5.3296 4.6565 4.6670 0.00006
−120 7.9235 7.1616 7.3458 6.7643 6.7757 0.00006
−130 11.7246 10.5190 10.6016 10.2529 10.2660 0.00007
−140 17.2439 15.6048 16.3404 15.8233 15.8360 0.00008
−150 24.4315 22.9793 23.3843 23.4623 23.4799 0.00009

Table 6
a = [1,−1,−1,−1], S(0) = [100, 60, 40, 30], σ = [0.16, 0.23, 0.32, 0.43], ρ12 = 0.42, ρ13 = 0.5, ρ14 = 0.3, ρ23 = 0.24, ρ24 = 0.42, ρ34 = 0.35, 500
millions of paths (negative skewness).

Strike ICUB SLN HybMMLi HybMMICUB MC S.E.

−5 5.5456 1.3847 1.5248 1.5248 1.4384 0.000009
−10 7.0286 2.2538 2.3780 2.3780 2.2796 0.00001
−20 10.7128 4.9936 5.0508 5.0508 4.9511 0.00001
−30 15.3583 9.2153 9.1940 9.1939 9.1259 0.00001
−40 20.9135 14.8764 14.8006 14.8006 14.7814 0.00003
−50 27.2823 21.7566 21.6606 21.6606 21.6868 0.00004
−60 34.3462 29.5647 29.4747 29.4747 29.5299 0.00004

Table 7
a = [1,−1,−1], S(0) = [100, 63, 12], σ = [0.21, 0.34, 0.63], ρ12 = 0.87, ρ13 = 0.3, ρ23 = 0.43, 15 millions of paths (negative skewness).

Strike ICUB SLN HybMMLi HybMMICUB MC S.E.

2.5 24.6617 23.1681 23.5137 23.5138 23.5925 0.0009
10 18.5944 16.8591 17.1363 17.1373 17.2049 0.0008
17.5 13.0945 11.3394 11.3854 11.3873 11.4099 0.0007
25 8.4135 6.9203 6.6579 6.6584 6.6009 0.0006
32.5 4.8064 3.7629 3.3226 3.3147 3.1872 0.0004
40 2.3929 1.7925 1.3950 1.3853 1.2518 0.0003
47.5 1.0323 0.7369 0.4861 0.4913 0.4026 0.0001

B.3. Asian basket spread options (with maturity 1 year and with 30 averaging dates)

See Tables 8–11.

Table 8
a = [1,−1], S(0) = [100, 60], σ = [0.33, 0.25], ρ12 = 0.4, 400 millions of paths (positive skewness).

Strike SLN HybMMICUB MC S.E.

25 20.8073 20.7637 20.7645 0.00009
30 17.7711 17.6921 17.6931 0.00009
35 15.0630 14.9580 14.9591 0.00008
40 12.6769 12.5566 12.5579 0.00008
45 10.5983 10.4734 10.4747 0.00007
50 8.8065 8.6859 8.6873 0.00007
55 7.2767 7.1671 7.1685 0.00006

Table 9
a = [1,−1], S(0) = [100, 240], σ = [0.18, 0.35], ρ12 = 0.9, 400 millions of paths (negative skewness).

Strike SLN HybMMICUB MC S.E.

−200 61.7315 61.7593 61.7623 0.0002
−180 47.0642 47.0946 47.0975 0.0002
−160 33.9175 33.9449 33.9473 0.0001
−140 22.6666 22.6835 22.6853 0.0001
−120 13.6581 13.6572 13.6585 0.00008
−100 7.1111 7.0901 7.0908 0.00005
−80 2.9895 2.9558 2.9561 0.00003
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Table 10
a = [1,−1,−1], S(0) = [100, 50, 25], σ = [0.35, 0.3, 0.25], ρ12 = 0.3, ρ13 = 0.8, ρ23 = 0.7, 300 millions of paths (positive skewness).

Strike SLN HybMMICUB MC S.E.

10 20.7157 20.5521 20.6014 0.00008
15 17.7346 17.5209 17.5549 0.00008
20 15.0677 14.8236 14.8411 0.00007
25 12.7097 12.4559 12.4577 0.00007
30 10.6478 10.4030 10.3907 0.00007
35 8.8635 8.6425 8.6186 0.00006
40 7.3342 7.1472 7.1146 0.00006

Table 11
a = [1, 1,−1,−1], S(0) = [100, 50, 200, 20], σ = [0.18, 0.2, 0.25, 0.3], ρ12 = 0.6, ρ13 = 0.7, ρ14 = 0.8, ρ23 = 0.5, ρ24 = 0.75, ρ34 = 0.9, 300 millions
of paths (negative skewness).

Strike SLN HybMMICUB MC S.E.

−40 3.6613 3.6643 3.6659 0.00004
−50 6.2375 6.2174 6.2191 0.00005
−60 9.7479 9.7098 9.7103 0.00007
−70 14.2134 14.1659 14.1661 0.00008
−80 19.5929 19.5450 19.5432 0.00008
−90 25.8016 25.7600 25.7580 0.00009
−100 32.7291 32.6977 32.6946 0.0001
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