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The strong consistency of least squares estimates in multiple regression
models is established under minimal assumptions on the design and weak
dependence and moment restrictions on the errors.

1. INTRODUCTION AND SUMMARY

In this paper we establish the strong consistency of the least squares
estimates for the parameters 8; of the multiple regression model

Yi=PBxat+ v tBrpte  (E=12,..) (1.1

under minimal assumptions on the design constants x,; and very weak conditions
on the random variables ¢, . Specifically, we shall assume that
Y cie; converges a.s. for all real sequences {¢;} such that ) ¢;2 < o0, (1.2)
1 1
In particular, if the ¢; are i.i.d. with Ee; =0 and Ee,? < oo, then (1.2) holds.
More generally, by the martingale convergence theorem, (1.2) holds if {¢;} is an
L3-bounded martingale difference sequence; i.e.,

Elesq| €150 6) =0  foralli > 1 and sup Ee? < c0. (1.3)

The condition (1.2) also includes a large class of other important dependence
structures for {¢,}, as will be shown in Section 4. It is interesting to note that
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even when the ¢; are nonrandom constants such that 37 €2 < oo, (1.2) still
holds by the Schwarz inequality.

Throughout the sequel we shall let X, denote the design matrix (%;;);<icn,1<5<00
andlet Y, = (¥,,...,¥,) and 8 = (B, ,..., B,)’, where a prime denotes transpose.
For n > p, the leastsquares estimate b, = (b, ,..., b,,,)" of the vector § based
on the design matrix X,, and the response vector Y, is given by

= (X, X,) XY, (1.4)

provided that X, X, is nonsingular. Assuming X, X, to be nonsingular and
the ¢, to be uncorrelated random variables with zero means and common variance
a2, the Gauss~Markov theorem says that b, is the best linear unbiased estimate
of B, with Cov(b,) = 0*(X,X,). Therefore, for b, to converge as n — co to 8
in quadratic mean, and hence in probability, it is sufficient that

(XX, t—0 as n— co. (1.5)

For the Gauss—-Markov model (with o > 0), the condition (1.5) is also necessary
for &, to converge to B in probability, as has been shown by Drygas [3].

The question whether (1.5) implies that b, converges a.s. to 8, however, is much
harder, even under the assumption that the ¢; are i.i.d. with Ee; = 0 and Ee,® <
c0. When the ¢; are i.i.d. N(0, ¢%), Anderson and Taylor [1] have shown that
(1.5) indeed implies the strong consistency of b, . Without the assumption of
normality, they have alsoc shown in [2] that &, converges a.s. to § under the
assumption that the ¢; are i.i.d. generalized Gaussian random variables and that

tr[(X, X)) = o(1/log n) as n — 0. (1.6)

The latter assumption on the design is much stronger than (1.5), and the gener-
alized Gaussian condition (E exp(}e;) < exp(A4A?) for some 4 > 0 and all real A)
is rather restrictive. Eatlier, Drygas [3] considered independently distributed
errors ¢; that satisfy (1.3) and obtained the strong consistency of &, under the
alternative assumption that

Y ahy=00 for j=1,.,p,

n=1

and

| diag

n n
Y KRy 3 X
=

te=1

= O(1), (1.7)

where || A|| denotes the maximum of the entries of the matrix A, and
diag{a, ,..., a,} denotes the diagonal matrix with @,,...,q, as its successive
diagonal elements. Although the condition (1.7) reduces to (1.5) when p = 1, it
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is much stronger than (1.5) when p > 1. In [6], Lai and Robbins considered
the simple linear model y; = B, + Byt; + ¢;, where the ¢; are i.i.d. with Ee; =0
and Ele;*(log* | € |)*] << o0 for some r > 1, and established the strong consis-
tency of the slope estimate b,, under the minimal assumption

i(t,. — i) —> '(f,, = n‘li t,—) (1.8)

on the design. Their method, based on an embedding technique to reduce the
problem to the normal case, does not extend to the general multiple regression
model (1.1), and therefore an alternative approach is needed for general p.

We have recently announced in [7], without giving details of the proof, that for
the multiple regression model (1.1) the least squares estimate b, indeed converges
a.s. to f, under the assumption that (1.3) holds and that the design satisfies the
minimal condition (1.5). The main purpose of the present paper is to give a
complete proof of this theorem and to show that the method actually extends
to the much more general case where the ¢; satisfy (1.2). Specifically, we shall
prove the following.

TueoreM 1. Suppose that in (1.1), {x;3 ¢ =1, 2,...; ] = 1,..., p) is a double
array of constants and ¢, , , ,..., are random variables satisfying (1.2). Assume that
XX is nonsingular for some m (so that X, X, is nonsingular for all n >m).
For n =m, let b, = (b ,.-., by;) be the least squares estimate defined by (1.4),
and let

Vo = @Mi<iico = (Xn X)L (1.9)
Fixj = 1,.., p. If lim,,,, ©§;’ = O, then for every 8 > 0, with probability 1,
boy — By = o({} | log o} %) as n— co. (1.10)

In Section 2 we shall establish some lemmas. Using these lemmas, we shall
prove Theorem 1 in Section 3, where we shall also prove the following closely
related result which is itself of independent interest.

THeOREM 2. Let {¢;} be a sequence of random variables satisfying (1.2). Let k be
a positive integer. For eachn > 1, let T,, be a k-dimensional vector of constants and
let H, =Y, T,T;. Assume that H, is positive definite for some m (so that
H, is positive definite for all n > m). Let {c,} be a sequence of constants such
that

Y a1+ THAT,) < . (1.11)

m+1
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Then with probability 1,

n -1
Y THZ (Z Tjej) converges as 1 — 00. (1.12)

t=m+1 j=1

Theorem 2, which we announced without proof in [7] for the case where
(1.3) holds, plays a key role in the proof of Theorem 1. Puttingk =1and 7; =1
in Theorem 2, we obtain

CoroLLARY 1. Let {¢;} be a sequence of random variables satisfying (1.2), and
let {c;} be a sequence of constants such that 35 ¢ < co. Then Y5 c;é;_, converges
as., where &, =n1Y ¢ .

Thus Theorem 2 can be regarded as a multivariate generalization of this
interesting result. Some other corollaries of Theorems 1 and 2 will be given in
Section 4.

2. Basic LEMMas

An important tool in proving the strong consistency of b,, for error structures
satisfying (1.2) is the following.

Lemma 1. Let {a,}, {c,}, n = m, be two sequences of real numbers such that
a, #* 0 and

i (cn®*Apia/An) < 0, 2.1)

n=m

where A, = A + Y a2 and A > 0. Then

Y | ennifd,| < o, 2.2)
®© 2
) ( Y c,a,-ﬂ/Ai) a,* < o, (2.3)

and

@

Y (et pald) = 3

( ioc,-aiﬂ/A,-) Gy — Cp_ 1%2

n=m i=n
© 2

+43y ciam/A,-i, (2.4)
i=m

where ¢,,_; = 0.
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Proof. We first establish (2.4) by showing that both sides of the identity
are equal to the square of the />-norm of the same square-summable sequence.
For u = {#t,}nom—1 €1% Vv = {¥}nsm_1 €12, we shall writeu | v to denote that
they are orthogonal, i.e., Z:,,,,_l u,v, = 0. We let ||u] denote the /2-norm
(2:=m—1 u,"}/%. For i 2 m, define u(i) = {#,(:)}x5m-1 bY

(i) = Ay JA;,  if m=m—1,

= @,a;,4/4; if m<n<y,
=0 if n>i+2.

Then || c;u(@)|? = ¢24;,,/4; and u(Z) | u(y) if £ 7 j. Hence in view of (2.1),

Y cu@)el?  and

i=m

@ 2 @,
2 Ci“(’)” = E cA:/4; .
i=m i=m
Since X5, Cithn_i(1) = AV2 Y5 . €,8;.1/A; , and since for fixed n > m,

o [oe]
3, cuta®) = ( 3 st de) an — ur,
i=m i=n

we obtain (2.4). Replacing ¢; by | ¢; | in (2.4), (2.2) then follows. Moreover, using
(2.4) and the inequality ¥* < 2(x — y)? 4 2y%, we obtain that

o0

@ 2 w© )
5 (z c,-a,-ﬂ/Ai-) W <2Y E11+2 Y (etdnaldn)

n=m \i

=2 Y Xl + 4nna/ds) <o,  by(2.1).

Hence (2.3) holds. ||
Remark. 1In the special case 4 = 0 and a,, = 1, (2.4) becomes
© Ll © 2
3 ot = 3 |(Zat)—anf a0
n=m n=m \ \i=n
Letting B, = Yy, ¢;/i, we obtain from the above identity that

Z B2 = z cadln + 2 Z cn1Bn <2 Z cni(cn/n) + B}

n=m n=m n=m

* x© 1/2 [ *® \1/2
~273 cB, <'2(ch") (z B,,z) .

n=m n=m N=m
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This therefore implies that ¥ _, (3, ¢,fi)? < 43, _,, % which is the Copson—
Hardy inequality (cf. [4, p. 246]). Thus Lemma 1 also gives a new proof of this

classical result.
As an application of Lemma 1, we obtain the following.

Lemma 2. Let {a,}, {c.}, n > 1, be two sequences of constants such that a,, = 0

and

Y (en?A4/Any) < 0,  where A, =Y a?forn>m.
1

n=m+1

Let {4,} be a sequence of constants such that for some C > 0,
lé, | <Cla,| foralln>=1.

If {e,.} is a sequence of random variables satisfying (1.2), then

n i-1
Y cad (Z &,-e,-) converges a.s. (as 7 — o0).
i1 i=1

Proof. In view of (2.5) and (2.6), Lemma 1 implies that

@© © @« 2
S emdl <o and 3 (3 calde) 6t <eo.

m+1 n=m \i=n+1

Forn >m, let p, = Y,,1(c:0:/4;_y)- Then

” X i—1
Z caa Aty (Z 51":‘)

=m-+1 j=1

m n n—1 n
= (Z ae N Y CcaiAt_fl)‘F ) dl‘j( ) CiaiAi——11)

J=1 i=m+1 j=m+1 i=j+1

m n—-1 n—1

= (Fae)tm—pa+ 5 phs—p T ae
j=1 I=m+1 2=m+1

Since 3% %, < oo by (2.7), the condition (1.2) implies that

o)
Y. pidj;  converges as.
mt1

(2.5)

(2.6)

@.7)

(2.8)

(2.9)

Clearly, (2.9) still holds if we replace p; by pf :zfﬂl c.a; |[A;_,. Since
2} 10, it then follows from the Kronecker lemma that p} p 8¢~ 0 as.
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Therefore as n — 00,

n—1

Pn z dye;

m+1l

n-1

Z dje;

m+1

< pxy —0 as. (2.10)

From (2.8), (2.9), and (2.10), the desired conclusion follows. [|

To prove Theorem 1, it suffices to consider only b,, (i.e., j = 1 in (1.10)).
For p >> 2, defining the (p — 1)-dimensional vector

T,y = (ng yoves Xnp), @.11)

and partitioning the matrix X, X, as

z 2
xx, = | &% K 2.12)
K, H,

so that H,isa (p — 1) X (p — 1) matrix, we have the following representation
of by, .

LemMa 3. Let p > 2. Assume that X, X, is positive definite for n = m(> p).
Define H, , K, , and T, by (2.11) and (2.12). Then for n > m,

ot (%0 — Ko H T ¢
b, = Ei—l (le niin (20
m=Fht iz, — KHIT)

Define forn =m

n ‘
U, = Z (xil - KnH;lTi) €, Wy = Uy — Up,,
i=1

d, = x,, — K,H'T, . (2.13)
Then for n > m,

n n—-1
Y (% — KHITR =Y (%3 — K, HT)?

i=]1 i=1
+ da2(1 + T.HLT,), (2.14)
n—1
W, = d, jen —_ T;IH;EI(Z Ti‘i) . (2-15)
i=1

Moreover, if the €; are uncorrelated and have zero mean and the same variance o*
(0 < 0 < ), then

E(ww,) =0 = E(u,w,) for I>n>m (2.16)
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The above lemma is due to Anderson and Taylor [1]. Note that if the ¢; are
uncorrelated with zero mean and the same variance ¢, then for n > m,

Ew, =0, Ew.?=d} 1+ T,H;;T,) " 2.17)
Moreover, in view of (2.16) and the fact that u, = u,_; + w,,
Eu,® = Eu}_, + Ew,” forn >m. (2.18)
On the other hand, by (2.13),
Eu,? = z": (%5 — K H'T))*a*  forn >m. (2.19)

i=1

Thus the matrix identity (2.14) has a probabilistic interpretation through the
relations (2.17)~(2.19). Combining (2.13) and (2.15), we also obtain the following
useful identity:

n
Z (% — KnH;lTi) €

i=m+1

= Y (04— KH'T)

i=m+1

7—1
o — T;H,-‘_ll(z T,e,)g. (2.20)

1=1

For convenience in reference, we now restate the identities (2.14) and (2.20)
in parts (i) and (ii) of the following lemma, which also contains some other useful
matrix identities related to (1.12).

Lemma 4. Letk > 2. Foreachi > 1,let T; = (t; ..., i) be a k-dimensional
vector and let H, =3} | T;T; . Partition the matrix H,, as

- 2
H, = th“ P (2.21)
P, 0,

so that Q, is a (k — 1) X (k — 1) matrix. Let Ty = (tig serer i) Assume that
H,, is positive definste for all n > m (>=2R). Let {e,} be a sequence of real numbers.
Define forn = m

By = ﬁ (ta — PuQn'Ty) e,

i=1

n
s =3, (g — PO
i=1
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Then for n > m,
(i) s = $ng + (g — PuQ' 1AL + T207L, T,
@) sm—gnt Y (a— PORTY Ee,. 707 (f T,e,)(

t=m+1 j=1

(iii) Q, = f .7, P,= i . T,

a o]
(iv) T.H;Y, Ci: Tiei) T, ,,_1(2 Te,)

+ (tar — PraQn1 To)Bna/$na);
()t — Paa Qa8 T0 = (b — PO T + TR T,
(vi) 1+ TRHLT, = (sofsna)(1 + T2070.T0).

Proof. (iii) is obvious. To prove (iv), partition the matrix 4 = H,?*, as

= (g )

so that 4y, 1s a (A — 1) X (A — 1) matrix. We shall make use of the following
identities:

Q;l1 = Ay — a1_11 A4y, (2.22)

ay (4, = ay AZI = —P, n—lQ;il s (2.23)
n—-1

au = Z tn n—1Q;i1P el = Spq- (2.24)
i=1

The last relation in (2.24) follows from (iii). Since T; = (t;;, T;), we obtain
that forn > m

n—1
v rr—1
Tan—-l (Z Tiei)
i=1
n—1 n—1 n—1

anZt,le +Alzz Te‘—}—f‘ ;Azlztue +A222 Tee;

- tnl

n—1
= (tm + aulT A1) (‘111 Z e, + Ay, Z T, ez)

n—1
+ T;»(Azz — a1 4,,4,,) Z Tiei
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= (tnl - n—lQ:zllTn)

am "‘12,1 (tu — P, n—1Q;11Ti) ei§

+ o7, (f T,.ei) by (2.22) and (2.23)
1

= (try — PaaO7s 1) 3nsfn) + To0R: (z Te) by (2.24).

To prove (v) and (vi), define for n > m

fo=tm — PO T, go=tm—PoyQ5T,.
Then
— fa = (PuQ2' — Poy Qi) T,
= {(Pn — Pny) — Pr074(0n — Qn} Q21T
= {twTs — PO T T Q7L T, Dy (iid)
= T2 Qe T

Hence (v) follows.
Forl <i,j<n—1,let

ey=1 if i=j and e;=0 if i#j

It follows from (iv) that forj =1,...,n — 1,

n—1
Tr’zH;ll (Z Tieif) n n—1 (z T:eti)

i=1 i=1

n—1

+ (gnfsn-) Y, (ti — PucaQalaT) €5

i=1

We note that
n—1
z (tz‘l—' n—1 n—lT) T =0
1
(cf. [1, Eq. (13)]). From (2.26), (2.27), and (2.28), it then follows that

n—1
T, H\T, = T HY (2 T,.T;) H.\T,
1

-y gT,',H;ll ("f T,.ei,.)‘2

j=1 =1

(2.25)

(2.26)

2.27)

(2.28)
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- 21 T‘l’l n-—l (/El Teu) + (gﬂ/s'n—-l)2 2:1 (tzl —fna n—lTi)z

= 1,05 T, + g.% /s by the definition of s,_;

= NOL T+ (1 + TrO L T isny by (9).

Hence
1+ ToHA T, = (14 To0R5 T + (1 + ToQnta T (falsna)}
=1+ 1205 T )sa/5n) by (). 11

3. ProoF OF THEOREMS 1 AND 2

In this section we shall first prove Theorem 2 by induction on & and then use
Theorem 2 to prove Theorem 1.

Proof of Theorem 2. For the case k = 1, T, and H,, are scalars and H, =
Y1 T.%; moreover, the condition (1.11) becomes

Y, el + T#H; ) < oo.
m+1
Hence Y5 iy ciTiH,-"_ll(Z:;i T; €;) converges a.s. by Lemma 2.
Assume that the theorem holds for dimension 2 — 1 (>1). We shall now show

that it holds for dimension k. With the same notation as in Lemma 4, set ¢; = ¢; ,
and define f,, , g, as in (2.25). Then by Lemma 4(iv),

n i—1
S o TH, (z T)

t=m+1 j=1

= Y (gl + 3 ol Q,_l(i Tje,-). @a.1)
t=m+1 i=m+1 j=1

Note that T, is a (¢ — 1)-dimensional vector and that O, isa(k — 1) X (k — 1)
matrix. By Lemma 4(vi) and (1.11),

oo

Y cd(l+ ALY < Y. (1 + THAT) < co.

m+1 m+1

Hence by the induction hypothesis,

© i—1
Y. e Ti02 (z T,e,) converges a.s.

f=m+1 j=1
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Therefore, in view of (3.1), it remains to show that

@K
Y €igi%ia[siy  converges a.s.
i=m+1

By Lemma 4(ii), for #n > m, 2, = 2,, + 3. +1fie; — &), where
i—1
& = T024 (Z Te]), i >m.

Therefore,

n

Z Cifi%i /S

i=m+1
n i—1 i-1
- 3 st T = 3 18]
i=m+1 j=m+1 j=m+1
n n -1
=( Z Cigi/si—l) 2y 1 Z Cigis:—ll( Z f,-e,)
i=m+1 i=m+1 J=m+1
n i—1
- Z Ci8iSi— 1( Z faga)
i=m+1 Jj=m+1

By Lemma 4(v), for i > m,
csgi = {el + IO TV + TIOA T
= Ezfz’ ’

where

L= o1 + TIOAATYHE,  fi=Q + TIoA TV,

By Lemma 4(i), for n > m,

Sp = Sm + Z fiz
m1
By Lemma 4{vi) and (1.11),
Y E3silsig = Y. 1+ TiOTXselsiy)
m+1 m41

== z Ciz(l + TéH;—_lT,) < 0.

m+1

(3.2)

(3.3)

(3.4)

(3.5)

(.6)

3.7

(3-8)
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In view of (3.5), (3.7), and (3.8), we can apply Lemma 2 to obtain that

© -1 @ i—1
S ot (3 se)= 5 afar (3 fe) 69
f=m+41 Jj=m+1 i=m+1 j=m+1
converges a.s. Moreover, by Lemma 1,

Y legifsia | < oo, (3.10)

m+1

Forn >m,let p, = Z:+1 Eifi/si-l = E:-H ¢:8i/si—y - Then

i Cté’i‘f—ﬂ( PZI fjfj) = 'il fjfj( f Cfg.'-‘:-ll)

i=m+1 j=m+1 j=m+1 i=j+1
n—1 n—1
= Y pififi—tn Y fifi. (311)
j=m+1 j=m+1

By (3.6), (3.8), and Lemma 1,

w©

Z (pnfn)2(1 + T;Q;EITN) = i Pﬂzfﬂz

m+1 m+1
@« o] . 2
= Y ( Y Eifi/si—-l) fu2 < 0.
n=m+1 \i=n+l

Hence by (3.3) and the induction hypothesis, as z —» co,
n n t—1
Z pifiéi = Z (2:12) T{Q,T_ll (Z T,-e,-) converges a.s.  (3.12)
i=m+1 . i=m+1 j=1

Clearly (3.12) still holds if we replace p; by p¥ = Y51 | & |/s:y - Since p¥ | 0,
we then obtain by Kronecker’s lemma that

n—1 n—1
pn X fibs | <pnia| Y fi€i|—0  as (3.13)
m+1 m+1

From (3.4) and (3.9)—(3.13), the desired conclusion (3.2) follows. |

Proof of Theorem 1. We shall only consider J,,. For the case p =1,
bpy — B = (X1 %:€)/(Xy #%). Since Yy a% = /i’ — 00 as., the desired
conclusion (1.10) follows easily from (1.2) and Kronecker’s lemma.

Let p > 2. Define the (p — 1)-dimensional vector T, by (2.11) and partition
the matrix X, X, as in (2.12). Using the notation and results of Lemma 3, we
obtain that b,, — By = u,[s, , where

sn=Y (¥ — K HT,)? = 1/o?. (3.14)

fe=1
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(For the last equality in (3.14), see the identity (2.24).) Since #, = #,, + Y11
w, , it suffices for the proof of (1.10) to show that

( n )/{s |log s, 112 >0  as. (3.15)

i=m+1

By (2.14) and (3.14), for n > m,

5y = S + z dX(1 + THAT). (3.16)

m+1

From (3.14) and (3.16), s, 1 co. Therefore by the Kronecker lemma, (3.15)
indeed holds if it can be shown that as n — o0

n
Y, (wil{s; | log s, *+¥}1/%)  converges a.s. (3.17)

T=m+1
By (2.15), for i > m,
i—1
w; = diei et d,T,/H:_ll (Z TjEj). (3-18)
J=1

In view of (3.16) and the integral comparison test,

2 |logs [1+8 < Z

mi1 Si m+1

di(1 + T{HANT,)
s; | log s; |10

< o0. (3.19)

Hence by (1.2), as n — oo,

n
diei
= {S_‘TW converges a.s. (3.20)
m £ i
Moreover, in view of (3.19) and the fact that H, = Yy T;T;, we can apply
Theorem 2 to obtain that

" 3T -1 1_1T~ )
) ‘{S, i 10;(5211 +6}’1€/;) converges a.s. (3.21)
m-

From (3.18), (3.20), and (3.21), (3.17) follows. [

4. SOME COROLLARIES

As we have indicated in Section 1, Theorem 1 provides a complete solution
to the problem of strong consistency of b, when the ¢; are i.i.d. with zero mean
and finite variance.
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CoRroLLARY 2. Suppose that in the multiple regression model (1.1) the errors
€ » €3 5. are t.i.d. with Ee;, = 0 and 0 < Ee,® < 0. Moreover, assume that the
design matrix X,, = (%;)1<i<n.1<i< 15 Of full rank p for some n. Then

b, — B as. < (X X,)1—0, 4.1)
where b, is the least squares estimate of B defined by (1.4).

In the Gauss-Markov model, the ¢; are assumed to be uncorrelated with
mean 0 and variance o A refinement of the concept of orthogonal random
variables is the notion of a multiplicative sequence. Let r be a positive even
integer. A sequence of random variables {¢;} is said to be multiplicative of order r if

Eleses,re) =0 foralll <o) <1y, <0 < i 4.2)

When r = 2, this reduces to the case of orthogonal random variables. In [5],
Komlé6s has shown that the condition (1.2) is satisfied when the ¢; have zero
means and common variance ¢* and form a multiplicative sequence of order
r >4 (r even) such that sup, Ee < co. Recently Longnecker and Serfling [8]
extended this result of Komlés to the following three types of weakly multi-
plicative sequences.

DrerinrrioN.  Let r be a positive even integer. Let {¢;} be a sequence of
random variables.

(i) The sequence {¢;} is said to be weakly multiplicative of type A, if
Ee;r < oo for all  and there exists a symmetric function g with 7 — 1 arguments
such that

| E(egy e €)| < 8lig — 11,85 — iy, — 1) H (Efz, v

forall 1 <7, < - <4, and

k k
Z Z g(]l ’"-ajr—z ’ k) < 0.

Jrp=1

||M8

(ii) The sequence {;} is said to be weakly multiplicative of type B, if
Ee;” < oo for all ¢ and there exists a symmetric funétion g with }r arguments
such that

r
[ E(eil e €i,.)l < g(iz - il ’ i4 - ia yeroy ir - ir—-l) H (EE:, 1
J=1

foralll <4 < <i,and

© k %
Z Z e Z g(]l )'-')jr/2—1 ’ k) < 00.

k=14y=1  Jpppy=l

683/9/3-2
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(iii) The sequence {e;} is said to be weakly multiplicative of type C, if
Ee;” <C o0 for all ¢ and there exists a function f (f) and a function g with § — 1
arguments such that

| E(e;, - €5,)] << min{ f(5y — 4,), f(E — 221)}
X g(ia - i2 ’ i5 had i4 yoary i’r—l —_ i?"—2) H (EE:-" 1/r
J=1

for all 1 <iy < <4y, Yya f(J) < 0, and X g(Fy seees firsoa) < 00, Where
C denotes the set of all (37 — 1)-tuples (fy,..., frio_y) With 1 <j, <j,, for
vEml <j,<oo,andm=1,.,4 — 1.

Lemma 5 (Longnecker and Serfling {8, p. 17]). Let r >4 be an even integer.
Let {¢,} be a sequence of random variables such that sup; Ee,' < oo, and let {¢;} be a
sequence of constants such that Y5 ¢ < c0. Suppose that {e;} is weakly multi-
plicative of type A, or B, or C, . Then Yy c;e; converges a.s.

This lemma is an extension of the result of Komlés for multiplicative sequences
to weakly multiplicative sequences. Together with Theorem 1 it gives

CoOROLLARY 3. Suppose that in the multiple regression model (1.1), {¢;} is a
weakly multiplicative sequence of type A, or B, or C, , where r is an even integer
>4. Assume that sup; Ee,” < o0, and that the design matrix X, = (%;h<ic<n 1<5<p
is of full rank p for some n. Define V,, as in (1.9). Then for each fixedj = 1,..., p,

}11_1)151<> ‘v,(;') = 0 = (1.10) holds a.s. for every § > 0. 4.3)

As shown in [8, p. 5, 18], the weakly multiplicative sequences in Corollary 3
include important classes of Gaussian time series and stationary mixing sequen-
ces. Thus Corollary 3 contains as a special case the following.

CorOLLARY 4. Suppose that in (1.1), {¢,} is a stationary sequence with Ec, = 0.
Assume that the design mairix X, is of full rank p for some n, and define V,, as in
(L.9).

(i) Suppose that {¢;} is a Gaussian sequence with covariance function
(k) = E(eyey.ry). If | 7(R)| s nonincreasing and 37 | r(k)| < oo, then (4.3) holds.

(i) Suppose that {e;} is 'a strongly 'mixing sequence with mixing coefficient
(k) = sup{| P(A " B) — P(A)P(B)|: AeF,,BeG, ;,n > 1}, where F, is
the o-field generated by {¢, ,..., €,} and G, is the o-field generated by {¢,, , €, ,...}-
If Y7 ko(k) < oo and {e;} is uniformly bounded (i.e., | €; | < C for some constant C
and all 1), then (4.3) still holds.

Suppose that {¢;} is a martingale difference sequence such that E | ¢; |* < o0
for all 7, where r is a positive even integer. Then {¢;} is multiplicative of order 7.
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While Corollary 3 gives the strong consistency of b,,; under the assumption that
sup; Ee;” < oo for some r > 4, the martingale convergence theorem implies,
however, that sup; Ee;? < o suffices for (1.2) to hold in this case, and therefore
we obtain from Theorem 1 the following result announced in [7].

CoROLLARY 5. Suppose that in (1.1), {¢;} is a martingale difference sequence
such that sup; Ee? < co. Assume that the design matrix X, is of full rank p for
some n, and define V,, as in (1.9). Then (4.3) holds.

In the above corollaries we have assumed that X, X, is nonsingular for some,
and therefore for all, large 7. We now consider the general case where X, X,, may
be singular for all #. Let #7 denote the p-dimensional Euclidean space of column
vectors. For o € Z?, o'b is unique for all solutions b € #? of the normal equation
X, X,.b = X,V, if and only if « € &#, where % is the linear space generated
by the set of vectors {Z;:7 =1, 2,...} and

Zi == (% yeery Xyp) 4.4
(cf. [9, p- 181]). A solution of the equation X, X,b = XY, is
b= X,Y,, (4.5)

where X+ denotes the Moore-Penrose generalized inverse of the matrix X,
(cf. [3])- This reduces to the unique solution (1.4} when X, X, is nonsingular.
Even when X, X, is singular, o’ X,,*Y,, is the unique least squares estimate of
«'B for all large n if « €.%. Assume that in (1.1) the random variables ¢, are
uncorrelated and have a common variance ¢ > 0. Then fora € &£, o’ X,,*Y,, isan
unbiased estimate of o'f for all large #, with Var(«' X, *Y,) = %o’ X, (X, ") a,
and a necessary and sufficient condition for «’X,*Y, to converge to «'8 in
probability is

X, HX >0 as n—>oo 4.6)

(cf. [3]). By reducing the general case to the nonsingular case, we obtain from
Theorem 1 the strong consistency of o’ X, *Y,, under the minimal assumption
(4.6) on the design in the following.

COROLLARY 6. Suppose that in (1.1) the errors e, €, ,... satisfy (1.2). Let £
be the linear subspace of R generated by the set of vectors {Z,,i=1,2,.},
where Z; = (%1 y..., X3p), and let o 5 0 belong to L. Let p,*(o) = o' X, H( XY o
Then the sequence {p,(«)} is eventually nonincreasing and p,(c) > 0 for all large n.
Moreover, if lim,_,, p,(«) = O, then for every 8 > 0, with probability 1,

XY, — o'B = ofpn(@) | log pu(a)l D a5 n—>oc0.  (4.7)
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Proof. Let| aff denote (o'a)'/2 Let

L, = (X 0:0cA and Oo=0} (4.8)

and let IT, denote the projection matrix associated with the linear subspace
%, of &, i.e., IT, x is the projection of x into %, for every x € #". Let

W, = (In - Hn) Xpots (49)

where I, is the identity (z X n) matrix. Then as shown in [3, pp. 121-122}, for
all large # (say n = ny), W, % 0 and

XY, = o+ || alP| W, | W,E, , (4.10)

where E,, = (e, ,..., €,)'. We note that for 0 € Z?

Z16
X0=1{: \ea @.11)
A

From (4.8) and (4.11), it follows that dim %, is nondecreasing in z. Since
dim %, < p — 1, there exist N > n, and m < p — 1 such that

dm %, =m forall n > N. (4.12)

Choose linearly independent vectors 8, ,..., 0,, € Z? such that 6o =0 (i =
1,..., m) and {X 6, ,..., XnB,,} is a basis of Z . In view of (4.11), {X,,0, ,..., X,.0,,}
is a linearly independent set for n >> N, and therefore by (4.12),

{X,0; 500y X0} is a basis of &, forn > N. (4.13)

Since (I, — II,) X,o(= W,) #0 for n > N, it then follows from (4.13)
that {X,a, X,0, ,..., Xp0,} is a linearly independent set. Therefore, the
matrix

Zia  Z{6; - Z10,,

b A ZHy e Zbn | _ (Xntts Xy yevey Xubow)

o 2y Zife

is nonsingular for # > N. Define 6, = (X, X)X, E, and V =({]") = (X, X,)
for n > N. Then

51:1 = gf Ei(sza - um‘)
1

/ ?2 (Zio — um»)zg, (4.14)
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where U, = (#,; ,---, ¥5y) is the projection of X,« into the linear subspace
generated by {X,0, ,..., X,,0,,}. From (4.9), (4.13), and (4.14), it then follows
that forn > N

by = || Wa | °WE, (4.15)

By (3.14), 947 = || W, |I"% and as shown in [3, p. 122], || W, % = [} «[~*p%(«)
is positive and nomncreasing in n 2> N. From (4.10), (4.15), and Theorem 1,
the desired conclusion (4.7) follows. ||

As we have mentioned above, Komlés’ theorem implies that condition (1.2)
is satisfied if

Ee; = 0 and Ee;* = o* for all 7, sup Ee;* < oo,

and {¢,;} is multiplicative of order 4. (4.16)

Hence by Corollary 6, (4.7) holds under the assumptions (4.6) and (4.16). In [7]
we have shown by a simpler argument that (4.7) holds under (4.6), (4.16), and
the additional assumption

E(ese;) = E(e%;) = E(e%eje,) =0 for any distinct 7, j, k. (4.17)

However, this simpler argument depends heavily on (4.17) and does not generalize
to weakly multiplicative sequences or L?-bounded martingale difference se-
quences.
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