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Strong Consistency of Least Squares Estimates 

in Multiple Regression II* 

T. L. LAI, HERBERT ROBBINS, AND C. Z. WEI 

Columbia University 

Communicated by E. J. Hannan 

The strong consistency of least squares estimates in multiple regression 
models is established under minimal assumptions on the design and weak 
dependence and moment restrictions on the errors. 

1. INTRODUCTION AND SUMMARY 

In this paper we establish the strong consistency of the least squares 
estimates for the parameters Bj of the multiple regression model 

y* = p,x,, + **. + paxis + Ei (i = 1, 2,...) U-1) 

under minimal assumptions on the design constants xij and very weak conditions 
on the random variables ci . Specifically, we shall assume that 

f cici converges as. for all real sequences {ci} such that 5 Ci2 < CO. (1.2) 
1 1 

In particular, if the Ei are i.i.d. with EEL = 0 and J&r2 < CO, then (1.2) holds. 
More generally, by the martingale convergence theorem, (1.2) holds if {Q} is an 
L2-bounded martingale difference sequence; i.e., 

E(ci+l 1 El ,..., Q) = 0 for all i > 1 and sup Eei2 < co. (1.3) I 
The condition (1.2) also includes a large class of other important dependence 
structures for {Q}, as will be shown in Section 4. It is interesting to note that 
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even when the ei are nonrandom constants such that C,” ei2 < co, (1.2) still 
holds by the Schwarz inequality. 

Throughout the sequel we shall let X, denote the design matrix (~~~)r~(~,r(~~~, 
and let Y, = (yr ,..., yJ’ and /3 = (& ,..., &,)‘, where a prime denotes transpose. 
For n 3 p, the leastsquares estimate b, = (b,, ,..., b,,)’ of the vector B based 
on the design matrix X, and the response vector Y, is given by 

6, = (x;xJ’x;,Y, (l-4) 

provided that XiXn is nonsingular. Assuming Xix, to be nonsingular and 
the l i to be uncorrelated random variables with zero means and common variance 
u2, the Gauss-Markov theorem says that b, is the best linear unbiased estimate 
of /3, with Cov(b,) = os(XiX,J-l. Therefore, for b, to converge as it -+ 00 to /I 
in quadratic mean, and hence in probability, it is sufficient that 

(XAX,)-l --+ 0 as n+co. (1.5) 

For the Gauss-Markov model (with u > 0), the condition (1.5) is also necessary 
for b, to converge to /3 in probability, as has been shown by Drygas [3]. 

The question whether (1.5) implies that b, converges a.s. to 8, however, is much 
harder, even under the assumption that the l i are i.i.d. with Eel = 0 and Eel2 < 
co. When the l i are i.i.d. N(0, u2), Anderson and Taylor [1] have shown that 
(1.5) indeed implies the strong consistency of b, . Without the assumption of 
normality, they have also shown in [2] that 6, converges a.s. to /3 under the 
assumption that the ci are i.i.d. generalized Gaussian random variables and that 

tr[(XhX&l] = Q/log fl) asn-+co. (1.6) 

The latter assumption on the design is much stronger than (1.5), and the gener- 
alized Gaussian condition (E exp(hr,) < exp(AP) for some A > 0 and all real h) 
is rather restrictive. Earlier, Drygas [3] considered independently distributed 
errors ci that satisfy (1.3) and obtained the strong consistency of b, under the 
alternative assumption that 

and 

for j = l,...,p, 

= O(l), (1.7) 

where 11 A ]I denotes the maximum of the entries of the matrix A, and 
diag(a, ,..., a,} denotes the diagonal matrix with a, ,..., a, as its successive 
diagonal elements. Although the condition (1.7) reduces to (1.5) when p = 1, it 
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is much stronger than (1.5) when p > 1. In [6], Lai and Robbins considered 
the simple linear model yi = 8, + flati + ci , where the ci are i.i.d. with EC, = 0 
and E[c12(log+ I cl I)‘] < co for some I > 1, and established the strong consis- 
tency of the slope estimate b,, under the ‘minimal assumption 

$ (tr - is,)2 + co (in = *-Ii to 
1 

u.fq 

on the design. Their method, based on an embedding technique to reduce the 
problem to the normal case, does not extend to the general multiple regression 
model (l.l), and therefore an alternative approach is needed for general p. 

We have recently announced in [7], without giving details of the proof, that for 
the multiple regression model (1.1) the least squares estimate b, indeed converges 
a.s. to /3, under the assumption that (1.3) holds and that the design satisfies the 
minimal condition (1.5). The main purpose of the present paper is to give a 
complete proof of this theorem and to show that the method actually extends 
to the much more general case where the ci satisfy (1.2). Specifically, we shall 
prove the following. 

THEOREM 1. Suppose that in (l.l), (.Q} (i = 1, 2 ,... ; j = l,..., p) is u do&e 
array of constants and l 1 , l 2 ,..., are random variables satisfying (1.2). Assume that 
XhX,,, is nonsingular for some m (so that XLXn is nonsingula~ for all II > m). 
For n > m, let b, = (b,I ,..., a,,)’ be the least squares estimate deftzed by (1.4), 
and let 

v, = (v~;))l(*,js&l = (-Gxn)-1. (1.9) 

Fixj=l,..., p.Iflim,,, vi;) = 0, then for every 6 > 0, with probability 1, 

bnj - fij = o({vj;’ 1 log vj;’ 11+*}1’2) as n--+cc. 

In Section 2 we shall establish some lemmas. Using these lemmas, we shall 
prove Theorem 1 in Section 3, where we shall also prove the following closely 
related result which is itself of independent interest. 

THEOREM 2. Let {q} be a sequence of random variables satisfying (1.2). Let h be 
a positive integer. For each n 2 1, let T,, be a h-dimensional vector of constants and 
let H,, = CT T,Tj . Assume that H, is positive def;n;e for some m (so that 
H,, is positive dejkite for all n > m). Let {cm} be a sequence of constants such 
that 

(1.11) 
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Then with probability 1, 

converges as n--f CO. (1.12) 

Theorem 2, which we announced without proof in [7] for the case where 
(1.3) holds, plays a key role in the proof of Theorem 1. Putting K = 1 and Ti = 1 
in Theorem 2, we obtain 

COROLLARY 1. Let {ei> be a sequence of random variables satisf$ng (1.2), and 
let {ci} be a sequence of constants such that CT ciB < a~ Then Cr ciSi_, converges 
a.s., where Z, = n-lx: l i . 

Thus Theorem 2 can be regarded as a multivariate generalization of this 
interesting result. Some other corollaries of Theorems 1 and 2 will be given in 
Section 4. 

2. BASIC LEMMAS 

An important tool in proving the strong consistency of b, for error structures 
satisfying (1.2) is the following. 

LEMMA 1. Let (a,}, (cn}, n > m, be two sequences of real numbers such that 
a,,, # 0 and 

f (cn2&+11&) < a, (2.1) 
n=m 

where A,, = A + C,“=, ai and A > 0. Then 

and 

nc (cn2An+J4J = a, - c~-~/’ 

(2.4) 

where cmpl = 0. 
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Proof. We first establish (2.4) by showing that both sides of the identity 
are equal to the square of the P-norm of the same square-summable sequence. 
For u = {uJ,+~-~ E P, v = {v~}~>,,+~ E la, we shah write u I v to denote that 
they are orthogonal, i.e., Cz++r il,v, = 0. We let llu 11 denote the P-norm 

CC” n=m-l un2)112. For i > m, define u(i) = (~~(i)}~~~-~ by 

z&(i) = Al/2af+l/A, if n=m-1, 

= ana~+llA~ if m < n < i, 
= -1 if n=i+l, 
= 0 if n 2 i + 2. 

Then 11 cp(i)l12 = czA,+,/Ai and u(i) J-u(j) if i #j. Hence in view of (2.1), 

Since C,“m cium-r(i) = All2 C&, ciai,,lAi , and since for fixed n > m, 

f w,(i) = 
e-m 

( f wltl14) a, - G,-~ , 
i=n 

we obtain (2.4). Replacing ci by I ci 1 in (2.4), (2.2) then follows. Moreover, using 
(2.4) and the inequality x2 < 2(x - y)2 + 2y2, we obtain that 

= 2 f ~~(1 + An+&%) -=c 00, by (2.1). 

Hence (2.3) holds. l 

Remark. In the special case A = 0 and a, = 1, (2.4) becomes 

2 cn2(n + 1)/n = 2 I( Fn 4) - cn-j2 (kl = 0). 

Letting B, = x-z, c,/i, we obtain from the above identity that 

f Bn2 = 2 cn2/n + 2 ‘f c,-IB,, < 2 f c,&&) + &+I) 
R==m n==m n=m *==??a 

= 2 f c,B, < 2 ( f cn2),” ( 5 B,B)l”. 
7+4?3 n-WI n=m 
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This therefore implies that C~+,&~n cJi)” < 4 Cz==, c,~, which is the Copson- 
Hardy inequality (cf. [4, p. 246j). Thus Lemma 1 also gives a new proof of this 
classical result. 

As an application of Lemma 1, we obtain the following. 

LEMMA 2. Let {a,}, {c,,}, n > 1, be two sequences of cortstants such that a,,, # 0 
a?& 

f h2h&l&-l) < 00, 

n 

where A, = c ai for n > m. (2.5) 
n=m+l 1 

Let {a,,} be a sequenze of constants such that for some C > 0, 

IrS,l <CIa,I foralZn>l. (2.6) 

If {en} is a sequence of random variables satisfying (1.2), then 

converges a.s. (as n -+ co). 

Proof. In view of (2.5) and (2.6), Lemma 1 implies that 

c,a,A& + 1 +j ) n--l j=m+l 
( i cdaiAT?l) 

i-j+1 

= 

Since Czp,aZn2 < co by (2.7), the condition (1.2) implies that 

(2.8) 

converges a.s. (2.9) 

Clearly, (2.9) still holds if we replace pj by pf = CT+, 1 CiUf I/A,-,. Since 
p$ J 0, it then follows from the Kronecker lemma that p$ Ci+, iijcj --+ 0 a.s. 
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Therefore as n + co, 
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(2.10) 

From (2.8), (2.9), and (2.10), the desired conclusion follows. a 

To prove Theorem 1, it suffices to consider only b,, (i.e., j = 1 in (1.10)). 
For p > 2, defining the (p - 1)-dimensional vector 

Tn = (x,z ,..., xnp)’ (2.11) 

and partitioning the matrix XkX,, as 

(2.12) 

sothatH,isa(p- 1) x (p- 1) ma t rix, we have the following representation 
of b,, . 

LEMMA 3. Let p > 2. Assume that XkX,, is positive dejnite for n > m( > p). 
Define H, , K,, , and T,, by (2.11) and (2.12). Then fbr n > m, 

u, = f  (xi1 - KJ?Ti) l t , w, = 11, - l&-l ) 
i=l 

d,, = x,,~ - K,,H,-IT,, . (2.13) 

Thenforn>m, 

gl (xi1 - K,,H,-‘Ti)2 = 5’ (xi1 - Kn-1H,!lTi)2 
i-1 

+ h2(1 + WK:,T,J, 

n-1 

w, = d,, E, - T;H;tl c T,ci 
I ( )I 

. 
i=l 

(2.14) 

(2.15) 

Moreover, if tk ei are uncorrelated and have zero mean and the same variance aa 
(0 < u < co), then 

E(w~w,,) = 0 = E(u,,,w,J for I > n > m. (2.16) 
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The above lemma is due to Anderson and Taylor [l]. Note that if the ei are 
uncorrelated with zero mean and the same variance ua, then for n > m, 

Ew, = 0, Ew,2 = a,,‘(1 5 T;H&Z,) 02. (2.17) 

Moreover, in view of (2.16) and the fact that U, = unwl $ W, , 

Eu,,~ = Eu:, + Ew,,~ for 71 > m. (2.18) 

On the other hand, by (2.13), 

Eu,,~ = 2 (xi1 - KnH,-1T,)2 u2 
i=l 

for n > m. (2.19) 

Thus the matrix identity (2.14) h as a probabilistic interpretation through the 
relations (2.17)-(2.19). Combining (2.13) and (2.15), we also obtain the following 
useful identity: 

= i (xi1 - . (2.20) 
i=m+l 

For convenience in reference, we now restate the identities (2.14) and (2.20) 
in parts (i) and (ii) of the following lemma, which also contains some other useful 
matrix identities related to (1.12). 

LEMMA 4. Let k > 2. For each i 3 1, let Ti = (ti, ,..., tJ be a k-dimen.&& 
vector and let H, = CL, T,T,’ . Partition tke matrix H,, as 

(2.21) 

so that Q,, is a (k - 1) x (k - 1) matrix. Let pi = (ti2 ,..., t,,)‘. Assume that 
H, is positive dejnite for all n > m (>k). Let {e,} be a sequence of real numbers. 
Dejnefor n > m 

z, = ‘f (til - P,,Q;‘pi) ei , 
i-1 

sn = iz (til - PnQZ1f'ij2. 
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(vi) 1 + TAHG!lT,, = (~,&+~)(l + ~~Q;!,~,,). 

Proof. (iii) is obvious. To prove (iv), partition the matrix A = H;:, as 

so that A,, is a (K - 1) x (It - 1) matrix. We shall make use of the following 
identities: 

Q& = 4, - a;~A,,&, (2.22) 

a-‘A 11 l2 = al-,lALl = -P,,-lQi?l , (2.23) 

n-1 

a,;’ = 2 t& - P,,-lQ~?rP~-, = ~~-1. (2.24) 

The last .relation in (2.24) follows from (iii). Since Ti = (til , iii), we obtain 
that for 7t > m 

78-l n-1 n-1 n-1 

= h&l all 7 tile, + 4, T  f'if,ei 4, C tile, + 4, 1 piei 
1 1 

n-1 n-1 

= (h + ~;-%%l) all 1 tile, + 4, C piei 
1 1 

n-1 
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To prove (v) and (vi), define for tt > m 

Then 

gm -fn = V’nQ,l - Pm-,Q;:,> pm 

= V’n - Pn-1) - PnQ;‘(Qn - Qn-1))Q;:lf’n 

Hence (v) follows. 
For1 <ci,j<n- 1,let 

eij = 1 if i=j and et, - -0 if i # j. (2.26) 

It follows from (iv) that for j = l,..., n - 1, 

+ (g,/& gl (t,l- P+IQA~J etj * (2.27) 

We note that 

(cf. [l, Eq. (13)]). From (2.26), (2.27), and (2.28), it then follows that 



MULTIPLE REGRESSION 353 

3. PROOF OF THEOREMS 1 AND 2 

In this section we shall first prove Theorem 2 by induction on k and then use 
Theorem 2 to prove Theorem 1. 

Proof of Theorem 2. For the case k = 1, T,, and H, are scalars and H, = 
Cl” Ti2; moreover, the condition (1 .l 1) becomes 

il ci2(1 + Ti2/H,-,) < co. 

Hence C’ rSpn+l ciTiH&(&: Tj cj) converges a.s. by Lemma 2. 
Assume that the theorem holds for dimension k - 1 (al). We shall now show 

that it holds for dimension k. With the same notation as in Lemma 4, set q = l j , 
and define fn , g, as in (2.25). Then by Lemma 4(iv), 

Note that rf, is a (k - 1)-dimensional vector and that QIE is a (k - 1) x (k - 1) 
matrix. By Lemma 4(vi) and (1.1 l), 

il c:( 1 + ?“qJQrJr Pi) < 5 c:( 1 + TiH&Ti) < CO. 
m+1 

Hence by the induction hypothesis, 

f c&Q& (2 f’+,) converges as. 
i-m+1 j=l 
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Therefore, in view of (3.1), it remains to show that 

$+, ci&w-lb-1 converges a.s. 

By Lemma 4(ii), for n > m, z, = z, + X~+,f~(~j - 5,), where 

4 > Tn. 

Therefore, 

= ic;+l (WilSi-1) j 

i-l i-1 

%n + C fFi - C f&j 
GnL+1 j=m+l 1 

= ( i$+l Wiisi-1) %a + f 
i=m+1 

cigis21 ( jz+,fjc*) 

BY Lemma 4(v), for i > m, 

- j+, Wdl (j;glf.iz’). 

(3.2) 

(3.3) 

(3.4) 

where 

By Lemma 4(i), for 12 > m, 

s, = s, + i p, 
w-1 

By Lemma 4(vi) and (1 .l I), 

(3.7) 

(3-g) 
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In view of (3.5), (3.7), and (3.8), we can apply Lemma 2 to obtain that 

converges a.s. Moreover, by Lemma 1, 

f I cigilsGl I < C0* 
ma+1 

For it 2 m, let p, = Cz+‘,, I$/s~...~ = C,“,, Cigi/S+l. Then 

n-1 n-1 

= j=g+l P,fd* - Pn C .fXi * 
j-m+1 

By (3.6), (3.8), and Lemma 1, 

zl ( PnfJV + %Q;;%J = il ~r$i? 

= ni+l (ji+l 2,f,/%-1)efn2 < 03. 

Hence by (3.3) and the induction hypothesis, as n + co, 

355 

(3.9) 

(3.10) 

(3.11) 

,i, P,fdi = i (Pifi) f’iQZl[~ pjcj) converges a.s. (3.12) 
i=m+l i=l 

Clearly (3.12) still holds if we replace p, by pT = CT+, 1 &fi I/si-, . Since pT 4 0, 
we then obtain by Kronecker’s lemma that 

From (3.4) and (3.9)-(3.13), the desired conclusion (3.2) follows. 1 

Proof of Theorem 1. We shall only consider b,, . For the case p = 1, 
b,, - /3 = (C: x&/(C~ &). Since xy xfI = l/w::) --t co a.s., the desired 
conclusion (1.10) follows easily from (1.2) and Kronecker’s lemma. 

Let p 2 2. Define the (p - I)-dimensional vector T, by (2.11) and partition 
the matrix XkX, as in (2.12). Using the notation and results of Lemma 3, we 
obtain that bnl - PI = u,,/s, , where 

s,, = i (xi1 - K,H;‘T,)’ = l/r@. (3.14) 
id 
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(For the last equality in (3.14), see the identity (2.24).) Since us = Us + CLm+r 
wi , it suffices for the proof of (1.10) to show that 

{sn 1 log s, 11+6}1/2 + 0 a.s. 

By (2.14) and (3.14), for n > m, 

s, = s, + i d,2( 1 + T;H&Ti). 
m+1 

(3.15) 

(3.16) 

From (3.14) and (3.16), s, r co. Therefore by the Kronecker lemma, (3.15) 
indeed holds if it can be shown that as n + w 

By (2.15), for i > 112, 

converges a.s. (3.17) 

wi = diei - 

In view of (3.16) and the integral comparison test, 

(3.18) 

Hence by (1.2), as tt + CO, 

$($ 1 lo~,l+6)l'" converges as. (3.20) 

Moreover, in view of (3.19) and the fact that H, = C: T,Ti, we can apply 
Theorem 2 to obtain that 

diT;H;ll(C;-lTjej) 
{St 1 lig si p+*}l’s converges a.s. 

From (3.18), (3.20), and (3.21), (3.17) follows. 4 

4. SOME COROLLARIES 

(3.21) 

As we have indicated in Section 1, Theorem 1 provides a complete solution 
to the problem of strong consistency of b, when the “i are i.i.d. with zero mean 
and finite variance. 
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COROLLARY 2. Suppose that in tke multiple regression dl(l.1) the errors 

El , % I-*- are i.i.d. with Eel = 0 and 0 < Eela < co. Moreover, assume that the 
design matrix X,, = (~~~)~<~t(,,~<,~, is of full rank p for some n. Then 

b, --+ /3 a.s. 9 (XhXJ-l --t 0, 

where b, is the least squares estimate of j3 defined by (1.4). 

(4.1) 

In the Gauss-Markov model, the Q are assumed to be uncorrelated with 
mean 0 and variance ua. A refinement of the concept of orthogonal random 
variables is the notion of a multiplicative sequence. Let Y be a positive even 
integer. A sequence of random variables {Q} is said to be multiplicutiwe of order Y if 

E(w, **a EC,) = 0 for all 1 < i1 < i2 < **a < i,. (4.2) 

When Y = 2, this reduces to the case of orthogonal random variables. In [5J, 
Kornl6s has shown that the condition (1.2) is satisfied when the ei have zero 
means and common variance u2 and form a multiplicative sequence of order 
Y >, 4 (Y even) such that sup, EQ* < co. Recently Longnecker and Serflmg [8] 
extended this result of Kornlb to the following three types of weakly multi- 
plicative sequences. 

DEFINITION. Let Y be a positive even integer. Let {ei} be a sequence of 
random variables. 

(i) The sequence (Q} is said to be weakly multiplicative of type A, if 
Eci* < co for all i and there exists a symmetric function g with Y - 1 arguments 
such that 

7 
I Ek,, --- EJ < g(i2 - il , i3 - i2 ,..., i,. - irJ fl (Eel,)“’ 

j=l 

for all 1 < i1 < a** < i, and 

(ii) The sequence {Q} is said to be weakly multiplicative of type B, if 
EQ* < co for all i and there exists a symmetric function g with +Y arguments 
such that 

r 

I EGi, -.* ~~$1 < g(i2 - il , i4 - ia ,. . ., i, - irJ 17 (E$)l” 
j-1 

foralll <i,<***<i,and 

5 g(jl ,...,jrla-l , k) -c ~0. 
3,/1-1-l 

683/9/3-z 
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(iii) The sequence {ci> is said to be weakly multiplicative of type C, if 
,%<r < co for all i and there exists a function f ( j) and a function g with &Y - 1 
arguments such that 

I Ekil *a* l ,)l < mini f (ia - iI), f (iv - irJ} 
z 

c l/T x g(is - iz , i5 - i4 ,..., irWI - i,.J fl (EQ,) 
f-l 

for all 1 < iI < --- < i, , Cj”=,f (j) < 00, and Ccg( j, ,..., jr12-J < ~0, where 
C denotes the set of all (4~ - I)-tuples (jr ,..., jr,,-,) with 1 < jV < jrn for 
v # m, 1 <j,,, < co, and m = l,..., +Y - 1. 

LEMMA 5 (Longnecker and Serfling [8, p. 171). Let Y 2 4 be an even integer. 
Let (Q} be a sequence of random variables such that supi EQ < 00, and let {c~} be a 
sequence of constants such that C,” ca2 < co. Suppose that (Q} is weakly multi- 
plicative of type A, or B, or C,. . Then C,” cici converges a.s. 

This lemma is an extension of the result of Komlos for multiplicative sequences 
to weakly multiplicative sequences. Together with Theorem 1 it gives 

COROLLARY 3. Suppose that in the multiple regression model (l.l), {ci> is a 
weakly multiplicative sequence of type A, or B, OY C,. , where Y is an even integer 
34. AS.WWE that SUP* EEir < CO, and that the design m&ix X, = (xi,)l<i<n,l<i<D 
isoffullrankpfor somen. DeJne V, asin(1.9). ThenforeachJixedj = l,...,p, 

kz vjy’ = 0 =z- (1.10) holds a.s. for every 6 > 0. (4.3) 

As shown in [8, p. 5, 181, the weakly multiplicative sequences in Corollary 3 
include important classes of Gaussian time series and stationary mixing sequen- 
ces. Thus Corollary 3 contains as a special case the following. 

COROLLARY 4. Suppose that in (1. l), {Q} is a stationary sequence with EQ = 0. 
Assume that the design matrix X,, is of full rank p for some n, and de+ V, as in 
(1.9). 

(i) Suppose that {ei} is a Gaussian sequence with covariance function 
y(k) = E(w,+J. Y I r(k)1 ‘is rwnincreasing and Ey 1 r(k)1 < ot), then (4.3) holds. 

(ii) Suppose that (ei} is Ia strongly rmixing sequence with mixing coe@cient 
q(k) = sup{1 P(A n B) - P(A)P(B)I: A E F, , B E G,,, , n > l], wh.ere F, is 
the a-field generated by {Q ,. . . , l ,} and G, is the a-jieldgenerated by {E, , E,+~ ,...}. 
If C,” kq(k) < co and {ei} is utaz~ormly bounded (i.e., I q 1 < Cfor some constant C 
and all i), then (4.3) still holds. 

Suppose that {I} is a martingale difference sequence such that E 1 l i lr < co 
for all i, where Y is a positive even integer. Then {Q} is multiplicative of order Y. 
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While Corollary 3 gives the strong consistency of b,$ under the assumption that 
supi Eei+ < cc for some Y 2 4, the martingale convergence theorem implies, 
however, that supi Eei2 < co suffices for (1.2) to hold in this case, and therefore 
we obtain from Theorem 1 the following result announced in [7]. 

COROLLARY 5. Suppose that in (1.1), (q} is a martingale difference sequence 
such that supi Eci2 < co. Assume that the design matrix X, is of fd rank p for 
some n, and define V, as in (1.9). Then (4.3) holds. 

In the above corollaries we have assumed that XkX, is nonsingular for some, 
and therefore for all, large n. We now consider the general case where Xix, may 
be singular for all n. Let &?P denote the p-dimensional Euclidean space of column 
vectors. For OL E W’, ar’b is unique for all solutions 6 E WP of the normal equation 
XiX,b = XAY,, if and only if (Y E 9, where 9 is the linear space generated 
by the set of vectors (2,: i = 1, 2,...} and 

.q = (Xi1 ,...) Xip)’ (4.4) 

(cf. [9, p. 1811). A solution of the equation XiX,b = XiY, is 

b = X,+Y, , (4.5) 

where X,+ denotes the MoorePenrose generalized inverse of the matrix X, 
(cf. [3]). This reduces to the unique solution (1.4) when XLXn is nonsingular. 
Even when XLXm is singular, a’X,+Y, is the unique least squares estimate of 
~‘fl for all large n if 01 E DEP. Assume that in (1 .l) the random variables ci are 
uncorrelated and have a common variance u2 > 0. Then for 01 E 8, or’X,+Y, is an 
unbiased estimate of a’p for all large n, with Var(ol’X,+Y,J = u2a’Xn+(Xn+)’ 01, 
and a necessary and sufficient condition for OI’X~+Y,, to converge to 01’/3 in 
probability is 

oL’xn+(xn+)‘a + 0 as n-03 (4.6) 

(cf. [3]). By reducing the general case to the nonsingular case, we obtain from 
Theorem 1 the strong consistency of ol’Xn+Yn under the minimal assumption 
(4.6) on the design in the following. 

COROLLARY 6. Suppose that in (1.1) the errors e1 , e2 ,... satisfy (1.2). Let 5? 
be the linear subspace of 9P generated by th.e set of vectors {Zi , i = 1, 2,...), 
where Zi = (xi1 ,..., xJ, and let 01 # 0 belong to 64. Let pn2(~) = a’Xn+(Xn+)‘a. 
Then the sequence bpn(a)) is eventually nonincreasiq and pJti> > 0 for all large n. 
Moreover, if lim,,, p,(a) = 0, then for every 6 > 0, with probability 1, 

a’X,+Y, - rip = O{&(a) 1 log p&)l(l+a)/2} as n - co. (4.7) 
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Proof. Let 11 a I/ denote (a’a)liz. Let 

5fn = (x,9: e E 9~ and B’a = Q), (4.8) 

and let II, denote the projection matrix associated with the linear subspace 
Z?,, of W”, i.e., 17, x is the projection of x into -Ep, for every x E W”. Let 

wn = (In - l&J xna, W) 

where I,, is the identity (n x n) matrix. Then as shown in [3, pp. 121-1221, for 
all large n (say n > n,), W, # 0 and 

a’&fY, = a’B + II a /I2 II w, ll-2wz3 , (4.10) 

where E, = (cl ,..., 6,)‘. We note that for 0 E 99 

z;e 
x,e = i ~92~ 

0 z;e 
(4.11) 

From (4.8) and (4.1 l), it follows that dim 9” is nondecreasing in n. Since 
dirngn<p-l,thereexistN>n,andm<p-lsuchthat 

dim 9* = m for all n > N. (4.12) 

Choose linearly independent vectors 13~ ,..., l?, E Wp such that e;a = 0 (i = 
l,..., m) and (X,6, ,..., X&J is a basis of ,EoN. In view of (4.1 l), (X,0, ,..., X,0,) 
is a linearly independent set for rz 3 N, and therefore by (4.12), 

ix,e, ,..., x,e,j is a basis of 9n for tz > N. (4.13) 

Since (In - I7,) X,a( = W,) # 0 for 11 > N, it then follows from (4.13) 
that {X%~ll, X,0, ,..., X,+9,} is a linearly independent set. Therefore, the 
matrix 

= (xna, x,4 ,..., x,e,) 

zha z;e, --- z;e, 

is nonsingular for rz > N. Define & = (&?,J-‘~~En and r = (@‘) = (X,$,J-1 
for n > N. Then 

(4.14) 
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where U, = (u,r ,..., u&’ is the projection of X,a into the linear subspace 
generated by {X,0, ,..., X,0,}. From (4.9), (4.13), and (4.14), it then follows 
that for n > N 

L = II wn ll-2wzl * (4.15) 

By (3.14), GE) = I/ W, lj-2, and as shown in [3, p. 1221, II W, lj-2 = 11 (Y ll-4pn2(a) 
is positive and nonincreasing in n > N. From (4.10), (4.15), and Theorem 1, 
the desired conclusion (4.7) follows. 1 

As we have mentioned above, Komlos’ theorem implies that condition (1.2) 
is satisfied if 

EQ = 0 and Eei2 = u2 for all i, sup Eei4 < co, 
i 

and {Q} is multiplicative of order 4. (4.16) 

Hence by Corollary 6, (4.7) holds under the assumptions (4.6) and (4.16). In [J 
we have shown by a simpler argument that (4.7) holds under (4.6), (4.16), and 
the additional assumption 

E(ejq) = E(E&) = E(E~$E~E~) = 0 for any distinct i, j, k. (4.17) 

However, this simpler argument depends heavily on (4.17) and does not generalize 
to weakly multiplicative sequences or P-bounded martingale difference se- 
quences. 
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