Strong Consistency of Least Squares Estimates in Multiple Regression II*

T. L. Lai, Herbert Robbins, and C. Z. Wei
Columbia University

Communicated by E. J. Hannan

The strong consistency of least squares estimates in multiple regression models is established under minimal assumptions on the design and weak dependence and moment restrictions on the errors.

1. Introduction and Summary

In this paper we establish the strong consistency of the least squares estimates for the parameters β_{j} of the multiple regression model

$$
\begin{equation*}
y_{i}=\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}+\epsilon_{i} \quad(i=1,2, \ldots) \tag{1.1}
\end{equation*}
$$

under minimal assumptions on the design constants $x_{i j}$ and very weak conditions on the random variables ϵ_{i}. Specifically, we shall assume that

$$
\begin{equation*}
\sum_{1}^{\infty} c_{i} \epsilon_{i} \text { converges a.s. for all real sequences }\left\{c_{i}\right\} \text { such that } \sum_{1}^{\infty} c_{i}{ }^{2}<\infty . \tag{1.2}
\end{equation*}
$$

In particular, if the ϵ_{i} are i.i.d. with $E \epsilon_{1}=0$ and $E \epsilon_{1}{ }^{2}<\infty$, then (1.2) holds. More generally, by the martingale convergence theorem, (1.2) holds if $\left\{\epsilon_{i}\right\}$ is an L^{2}-bounded martingale difference sequence; i.e.,

$$
\begin{equation*}
E\left(\epsilon_{i+1} \mid \epsilon_{1}, \ldots, \epsilon_{i}\right)=0 \quad \text { for all } i \geqslant 1 \text { and } \sup _{i} E \epsilon_{i}{ }^{2}<\infty \tag{1.3}
\end{equation*}
$$

The condition (1.2) also includes a large class of other important dependence structures for $\left\{\epsilon_{i}\right\}$, as will be shown in Section 4. It is interesting to note that

Received February 22, 1979.
AMS 1970 subject classifications: Primary 62J05; Secondary 60F15.
Key words and phrases: Multiple regression, strong consistency, martingale difference sequence, weakly multiplicative sequence, generalized inverse.

* Research supported by the National Science Foundation, the National Institute of Medical Sciences, and the Office of Naval Research.
even when the ϵ_{i} are nonrandom constants such that $\sum_{1}^{\infty} \epsilon_{i}{ }^{2}<\infty$, (1.2) still holds by the Schwarz inequality.

Throughout the sequel we shall let X_{n} denote the design matrix $\left(x_{i j}\right)_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant p}$, and let $Y_{n}=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$ and $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime}$, where a prime denotes transpose. For $n \geqslant p$, the leastsquares estimate $b_{n}=\left(b_{n 1}, \ldots, b_{n p}\right)^{\prime}$ of the vector β based on the design matrix X_{n} and the response vector Y_{n} is given by

$$
\begin{equation*}
b_{n}=\left(X_{n}^{\prime} X_{n}\right)^{-1} X_{n}^{\prime} Y_{n} \tag{1.4}
\end{equation*}
$$

provided that $X_{n}^{\prime} X_{n}$ is nonsingular. Assuming $X_{n}^{\prime} X_{n}$ to be nonsingular and the ϵ_{i} to be uncorrelated random variables with zero means and common variance σ^{2}, the Gauss-Markov theorem says that b_{n} is the best linear unbiased estimate of β, with $\operatorname{Cov}\left(b_{n}\right)=\sigma^{2}\left(X_{n}^{\prime} X_{n}\right)^{-1}$. Therefore, for b_{n} to converge as $n \rightarrow \infty$ to β in quadratic mean, and hence in probability, it is sufficient that

$$
\begin{equation*}
\left(X_{n}^{\prime} X_{n}\right)^{-1} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{1.5}
\end{equation*}
$$

For the Gauss-Markov model (with $\sigma>0$), the condition (1.5) is also necessary for b_{n} to converge to β in probability, as has been shown by Drygas [3].

The question whether (1.5) implies that b_{n} converges a.s. to β, however, is much harder, even under the assumption that the ϵ_{i} are i.i.d. with $E \epsilon_{1}=0$ and $E \epsilon_{1}{ }^{2}<$ ∞. When the ϵ_{i} are i.i.d. $N\left(0, \sigma^{2}\right)$, Anderson and Taylor [1] have shown that (1.5) indeed implies the strong consistency of b_{n}. Without the assumption of normality, they have also shown in [2] that b_{n} converges a.s. to β under the assumption that the ϵ_{i} are i.i.d. generalized Gaussian random variables and that

$$
\begin{equation*}
\operatorname{tr}\left[\left(X_{n}^{\prime} X_{n}\right)^{-1}\right]=o(1 / \log n) \quad \text { as } n \rightarrow \infty \tag{1.6}
\end{equation*}
$$

The latter assumption on the design is much stronger than (1.5), and the generalized Gaussian condition $\left(E \exp \left(\lambda \epsilon_{1}\right) \leqslant \exp \left(A \lambda^{2}\right)\right.$ for some $A>0$ and all real $\left.\lambda\right)$ is rather restrictive. Earlier, Drygas [3] considered independently distributed errors ϵ_{i} that satisfy (1.3) and obtained the strong consistency of b_{n} under the alternative assumption that

$$
\sum_{n=1}^{\infty} x_{n j}^{2}=\infty \quad \text { for } \quad j=1, \ldots, p
$$

and

$$
\begin{equation*}
\left.\|\left(X_{n}^{\prime} X_{n}\right)^{-1} \operatorname{diag}\left\{\sum_{i=1}^{n} x_{i 1}^{2}, \ldots, \sum_{i=1}^{n} x_{i p}^{2}\right\}\right\}=O(1) \tag{1.7}
\end{equation*}
$$

where $\|A\|$ denotes the maximum of the entries of the matrix A, and $\operatorname{diag}\left\{a_{1}, \ldots, a_{p}\right\}$ denotes the diagonal matrix with a_{1}, \ldots, a_{p} as its successive diagonal elements. Although the condition (1.7) reduces to (1.5) when $p=1$, it
is much stronger than (1.5) when $p>1$. In [6], Lai and Robbins considered the simple linear model $y_{i}=\beta_{1}+\beta_{2} t_{i}+\epsilon_{i}$, where the ϵ_{i} are i.i.d. with $E \epsilon_{1}=0$ and $E\left[\epsilon_{1}{ }^{2}\left(\log ^{+}\left|\epsilon_{1}\right|\right)^{r}\right]<\infty$ for some $r>1$, and established the strong consistency of the slope estimate $b_{n 2}$ under the minimal assumption

$$
\begin{equation*}
\sum_{1}^{n}\left(t_{i}-\bar{t}_{n}\right)^{2} \rightarrow \infty \quad\left(\bar{t}_{n}=n^{-1} \sum_{1}^{n} t_{i}\right) \tag{1.8}
\end{equation*}
$$

on the design. Their method, based on an embedding technique to reduce the problem to the normal case, does not extend to the general multiple regression model (1.1), and therefore an alternative approach is needed for general p.

We have recently announced in [7], without giving details of the proof, that for the multiple regression model (1.1) the least squares estimate b_{n} indeed converges a.s. to β, under the assumption that (1.3) holds and that the design satisfies the minimal condition (1.5). The main purpose of the present paper is to give a complete proof of this theorem and to show that the method actually extends to the much more general case where the ϵ_{i} satisfy (1.2). Specifically, we shall prove the following.

Theorem 1. Suppose that in (1.1), $\left\{x_{i j}\right\}(i=1,2, \ldots ; j=1, \ldots, p)$ is a double array of constants and $\epsilon_{1}, \epsilon_{2}, \ldots$, are random variables satisfying (1.2). Assume that $X_{m}^{\prime} X_{m}$ is nonsingular for some m (so that $X_{n}^{\prime} X_{n}$ is nonsingular for all $n \geqslant m$). For $n \geqslant m$, let $b_{n}=\left(b_{n 1}, \ldots, b_{n p}\right)^{\prime}$ be the least squares estimate defined by (1.4), and let

$$
\begin{equation*}
V_{n}=\left(v_{i j}^{(n)}\right)_{1 \leqslant i, j \leqslant p}=\left(X_{n}^{\prime} X_{n}\right)^{-1} \tag{1.9}
\end{equation*}
$$

Fix $j=1, \ldots, p$. If $\lim _{n \rightarrow \infty} v_{j j}^{(n)}=0$, then for every $\delta>0$, with probability 1 ,

$$
\begin{equation*}
b_{n j}-\beta_{j}=o\left(\left\{v_{j j}^{(n)}\left|\log v_{j j}^{(n)}\right|^{1+\delta}\right\}^{1 / 2}\right) \quad \text { as } \quad n \rightarrow \infty \tag{1.10}
\end{equation*}
$$

In Section 2 we shall establish some lemmas. Using these lemmas, we shall prove Theorem 1 in Section 3, where we shall also prove the following closely related result which is itself of independent interest.

Theorem 2. Let $\left\{\epsilon_{i}\right\}$ be a sequence of random variables satisfying (1.2). Let k be a positive integer. For each $n \geqslant 1$, let T_{n} be a k-dimensional vector of constants and let $H_{n}=\Sigma_{1}^{n} T_{i} T_{i}^{\prime}$. Assume that H_{m} is positive definite for some m (so that H_{n} is positive definite for all $n \geqslant m$). Let $\left\{c_{n}\right\}$ be a sequence of constants such that

$$
\begin{equation*}
\sum_{m+1}^{\infty} c_{i}^{2}\left(1+T_{i}^{\prime} H_{i-1}^{-1} T_{i}\right)<\infty \tag{1.11}
\end{equation*}
$$

Then with probability 1,

$$
\begin{equation*}
\sum_{i=m+1}^{n} c_{i} T_{i}^{\prime} H_{i-1}^{-1}\left(\sum_{j=1}^{i-1} T_{j} \epsilon_{j}\right) \quad \text { converges as } n \rightarrow \infty \tag{1.12}
\end{equation*}
$$

Theorem 2, which we announced without proof in [7] for the case where (1.3) holds, plays a key role in the proof of Theorem 1. Putting $k=1$ and $T_{i}=1$ in Theorem 2, we obtain

Corollary 1. Let $\left\{\epsilon_{i}\right\}$ be a sequence of random variables satisfying (1.2), and let $\left\{c_{i}\right\}$ be a sequence of constants such that $\sum_{1}^{\infty} c_{i}{ }^{2}<\infty$. Then $\sum_{2}^{\infty} c_{i} \bar{\epsilon}_{i-1}$ converges a.s., where $\bar{\epsilon}_{n}=n^{-1} \sum_{1}^{n} \epsilon_{i}$.

Thus Theorem 2 can be regarded as a multivariate generalization of this interesting result. Some other corollaries of Theorems 1 and 2 will be given in Section 4.

2. Basic Lemmas

An important tool in proving the strong consistency of b_{n} for error structures satisfying (1.2) is the following.

Lemma 1. Let $\left\{a_{n}\right\},\left\{c_{n}\right\}, n \geqslant m$, be two sequences of real numbers such that $a_{m} \neq 0$ and

$$
\begin{equation*}
\sum_{n=m}^{\infty}\left(c_{n}^{2} A_{n+1} / A_{n}\right)<\infty \tag{2.1}
\end{equation*}
$$

where $A_{n}=A+\sum_{i=m}^{n} a_{i}{ }^{2}$ and $A \geqslant 0$. Then

$$
\begin{gather*}
\sum_{n=m}^{\infty}\left|c_{n} a_{n+1} / A_{n}\right|<\infty \tag{2.2}\\
\sum_{n=m}^{\infty}\left(\sum_{i=n}^{\infty} c_{i} a_{i+1} / A_{i}\right)^{2} a_{n}{ }^{2}<\infty \tag{2.3}
\end{gather*}
$$

and

$$
\begin{align*}
\sum_{n=m}^{\infty}\left(c_{n}^{2} A_{n+1} / A_{n}\right)= & \sum_{n=m}^{\infty}\left\{\left(\sum_{i=n}^{\infty} c_{i} a_{i+1} / A_{i}\right) a_{n}-c_{n-1}\right\}^{2} \\
& +A\left\{\sum_{i=m}^{\infty} c_{i} a_{i+1} / A_{i}\right\}^{2} \tag{2.4}
\end{align*}
$$

where $c_{m-1}=0$.

Proof. We first establish (2.4) by showing that both sides of the identity are equal to the square of the l^{2}-norm of the same square-summable sequence. For $\mathbf{u}=\left\{u_{n}\right\}_{n\rangle_{m-1}} \in l^{2}, \mathbf{v}=\left\{v_{n}\right\}_{n\rangle_{m-1}} \in l^{2}$, we shall write $\mathbf{u} \perp \mathbf{v}$ to denote that they are orthogonal, i.e., $\sum_{n=m-1}^{\infty} u_{n} v_{n}=0$. We let $\|u\|$ denote the l^{2}-norm $\left(\sum_{n=m-1}^{\infty} u_{n}^{2}\right)^{1 / 2}$. For $i \geqslant m$, define $\mathfrak{u}(i)=\left\{u_{n}(i)\right\}_{n \geqslant m-1}$ by

$$
\begin{aligned}
& u_{n}(i)=A^{1 / 2} a_{i+1} / A_{i} \quad \text { if } \quad n=m-1, \\
& =a_{n} a_{i+1} / A_{i} \quad \text { if } \quad m \leqslant n \leqslant i, \\
& =-1 \quad \text { if } \quad n=i+1 \text {, } \\
& =0 \quad \text { if } n \geqslant i+2 .
\end{aligned}
$$

Then $\left\|c_{i} \mathbf{u}(i)\right\|^{2}=c_{i}{ }^{2} A_{i+1} / A_{i}$ and $\mathbf{u}(i) \perp \mathbf{u}(j)$ if $i \neq j$. Hence in view of (2.1),

$$
\sum_{i=m}^{\infty} c_{i} \mathbf{u}(i) \in l^{2} \quad \text { and } \quad\left\|\sum_{i=m}^{\infty} c_{i} \mathbf{u}(i)\right\|^{2}=\sum_{i=m}^{\infty} c_{i}{ }^{2} A_{i+1} / A_{i}
$$

Since $\sum_{i=m}^{\infty} c_{i} u_{m-1}(i)=A^{1 / 2} \sum_{i=m}^{\infty} c_{i} a_{i+1} / A_{i}$, and since for fixed $n \geqslant m$,

$$
\sum_{i=m}^{\infty} c_{i} u_{n}(i)=\left(\sum_{i=n}^{\infty} c_{i} a_{i+1} / A_{i}\right) a_{n}-c_{n-1}
$$

we obtain (2.4). Replacing c_{i} by $\left|c_{i}\right|$ in (2.4), (2.2) then follows. Moreover, using (2.4) and the inequality $x^{2} \leqslant 2(x-y)^{2}+2 y^{2}$, we obtain that

$$
\begin{aligned}
\sum_{n=m}^{\infty}\left(\sum_{i=n}^{\infty} c_{i} a_{i+1} / A_{i}\right)^{2} a_{n}{ }^{2} & \leqslant 2 \sum_{n=m}^{\infty} c_{n-1}^{2}+2 \sum_{n=m}^{\infty}\left(c_{n}^{2} A_{n+1} / A_{n}\right) \\
& =2 \sum_{n=m}^{\infty} c_{n}^{2}\left(1+A_{n+1} / A_{n}\right)<\infty, \quad \text { by }(2.1)
\end{aligned}
$$

Hence (2.3) holds.
Remark. In the special case $A=0$ and $a_{n} \equiv 1$, (2.4) becomes

$$
\sum_{n=m}^{\infty} c_{n}^{2}(n+1) / n=\sum_{n=m}^{\infty}\left\{\left(\sum_{i=n}^{\infty} c_{i} / i\right)-c_{n-1}\right\}^{2} \quad\left(c_{m-1}=0\right)
$$

Letting $B_{n}=\sum_{i=n}^{\infty} c_{i} / i$, we obtain from the above identity that

$$
\begin{aligned}
\sum_{n=m}^{\infty} B_{n}^{2} & =\sum_{n=m}^{\infty} c_{n}^{2} / n+2 \sum_{n=m}^{\infty} c_{n-1} B_{n} \leqslant 2 \sum_{n=m}^{\infty} c_{n}\left\{\left(c_{n} / n\right)+B_{n+1}\right\} \\
& =2 \sum_{n=m}^{\infty} c_{n} B_{n} \leqslant 2\left(\sum_{n=m}^{\infty} c_{n}^{2}\right)^{1 / 2}\left(\sum_{n=m}^{\infty} B_{n}^{2}\right)^{1 / 2}
\end{aligned}
$$

This therefore implies that $\sum_{n=m}^{\infty}\left(\sum_{i=n}^{\infty} c_{i} / i\right)^{2} \leqslant 4 \sum_{n=m}^{\infty} c_{n}{ }^{2}$, which is the CopsonHardy inequality (cf. [4, p. 246]). Thus Lemma 1 also gives a new proof of this classical result.

As an application of Lemma 1, we obtain the following.
Lemma 2. Let $\left\{a_{n}\right\},\left\{c_{n}\right\}, n \geqslant 1$, be two sequences of constants such that $a_{m} \neq 0$ and

$$
\begin{equation*}
\sum_{n=m+1}^{\infty}\left(c_{n}{ }^{2} A_{n} / A_{n-1}\right)<\infty, \quad \text { where } \quad A_{n}=\sum_{1}^{n} a_{i}{ }^{2} \text { for } n \geqslant m \tag{2.5}
\end{equation*}
$$

Let $\left\{\tilde{a}_{n}\right\}$ be a sequence of constants such that for some $C>0$,

$$
\begin{equation*}
\left|\tilde{a}_{n}\right| \leqslant C\left|a_{n}\right| \quad \text { for all } n \geqslant 1 \tag{2.6}
\end{equation*}
$$

If $\left\{\epsilon_{n}\right\}$ is a sequence of random variables satisfying (1.2), then

$$
\left.\sum_{i=m+1}^{n} c_{i} a_{i} A_{i-1}^{-1}\left(\sum_{j=1}^{i-1} \tilde{a}_{j} \epsilon_{j}\right) \quad \text { converges a.s. (as } n \rightarrow \infty\right)
$$

Proof. In view of (2.5) and (2.6), Lemma 1 implies that

$$
\begin{equation*}
\sum_{m+1}^{\infty}\left|c_{n} a_{n}\right| A_{n-1} \mid<\infty \quad \text { and } \quad \sum_{n=m}^{\infty}\left(\sum_{i=n+1}^{\infty} c_{i} a_{i} / A_{i-1}\right)^{2} \tilde{a}_{n}^{2}<\infty \tag{2.7}
\end{equation*}
$$

For $n \geqslant m$, let $p_{n}=\sum_{n+1}^{\infty}\left(c_{i} a_{i} / A_{i-1}\right)$. Then

$$
\begin{align*}
& \sum_{i=m+1}^{n} c_{i} a_{i} A_{i-1}^{i 1}\left(\sum_{j=1}^{i-1} \tilde{a}_{j} \epsilon_{j}\right) \\
& \quad=\left(\sum_{j=1}^{m} \tilde{a}_{j} \epsilon_{j}\right)\left(\sum_{i=m+1}^{n} c_{i} a_{i} A_{i-1}^{-1}\right)+\sum_{j=m+1}^{n-1} \tilde{a}_{j} \epsilon_{j}\left(\sum_{i=j+1}^{n} c_{i} a_{i} A_{i-1}^{-1}\right) \\
& \quad=\left(\sum_{j=1}^{m} \tilde{a}_{j} \epsilon_{j}\right)\left(p_{m}-p_{n}\right)+\sum_{j=m+1}^{n-1} p_{j} \tilde{a}_{j} \epsilon_{j}-p_{n} \sum_{j=m+1}^{n-1} \tilde{a}_{j} \epsilon_{j} . \tag{2.8}
\end{align*}
$$

Since $\sum_{m}^{\infty} p_{n}{ }^{2} \tilde{a}_{n}{ }^{2}<\infty$ by (2.7), the condition (1.2) implies that

$$
\begin{equation*}
\sum_{m+1}^{\infty} p_{j} \tilde{a}_{j} \epsilon_{j} \quad \text { converges a.s. } \tag{2.9}
\end{equation*}
$$

Clearly, (2.9) still holds if we replace p_{j} by $p_{j}^{*}=\sum_{j+1}^{\infty}\left|c_{i} a_{i}\right| / A_{i-1}$. Since $p_{j}^{*} \downarrow 0$, it then follows from the Kronecker lemma that $p_{n}^{*} \sum_{m+1}^{n} \tilde{a}_{j} \epsilon_{j} \rightarrow 0$ a.s.

Therefore as $n \rightarrow \infty$,

$$
\begin{equation*}
\left|p_{n} \sum_{m+1}^{n-1} \tilde{a}_{j} \epsilon_{j}\right| \leqslant p_{n-1}^{*}\left|\sum_{m+1}^{n-1} \tilde{a}_{j} \epsilon_{j}\right| \rightarrow 0 \quad \text { a.s. } \tag{2.10}
\end{equation*}
$$

From (2.8), (2.9), and (2.10), the desired conclusion follows.
To prove Theorem 1, it suffices to consider only $b_{n 1}$ (i.e., $j=1$ in (1.10)). For $p \geqslant 2$, defining the ($p-1$)-dimensional vector

$$
\begin{equation*}
T_{n}=\left(x_{n 2}, \ldots, x_{n \mathfrak{p}}\right)^{\prime} \tag{2.11}
\end{equation*}
$$

and partitioning the matrix $X_{n}^{\prime} X_{n}$ as

$$
X_{n}^{\prime} X_{n}=\left(\begin{array}{ll}
\sum_{i=1}^{n} x_{i 1}^{2} & K_{n} \tag{2.12}\\
K_{n}^{\prime} & H_{n}
\end{array}\right)
$$

so that H_{n} is a $(p-1) \times(p-1)$ matrix, we have the following representation of $b_{n 1}$.

Lemma 3. Let $p \geqslant 2$. Assume that $X_{n}^{\prime} X_{n}$ is positive definite for $n \geqslant m(\geqslant p)$. Define H_{n}, K_{n}, and T_{n} by (2.11) and (2.12). Then for $n \geqslant m$,

$$
b_{n 1}=\beta_{1}+\frac{\sum_{i=1}^{n}\left(x_{i 1}-K_{n} H_{n}^{-1} T_{i}\right) \epsilon_{i}}{\sum_{i=1}^{n}\left(x_{i 1}-K_{n} H_{n}^{-1} T_{i}\right)^{2}}
$$

Define for $n \geqslant m$

$$
\begin{gather*}
u_{n}=\sum_{i=1}^{n}\left(x_{i 1}-K_{n} H_{n}^{-1} T_{i}\right) \epsilon_{i}, \quad w_{n}=u_{n}-u_{n-1} \\
d_{n}=x_{n 1}-K_{n} H_{n}^{-1} T_{n} \tag{2.13}
\end{gather*}
$$

Then for $n>m$,

$$
\begin{align*}
& \sum_{i=1}^{n}\left(x_{i 1}-K_{n} H_{n}^{-1} T_{i}\right)^{2}= \sum_{i=1}^{n-1}\left(x_{i 1}-K_{n-1} H_{n-1}^{-1} T_{i}\right)^{2} \\
&+d_{n}^{2}\left(1+T_{n}^{\prime} H_{n-1}^{-1} T_{n}\right) \tag{2.14}\\
& w_{n}=d_{n}\left\{\epsilon_{n}-T_{n}^{\prime} H_{n-1}^{-1}\left(\sum_{i=1}^{n-1} T_{i} \epsilon_{i}\right)\right\} \tag{2.15}
\end{align*}
$$

Moreover, if the ϵ_{i} are uncorrelated and have zero mean and the same variance σ^{2} $(0 \leqslant \sigma<\infty)$, then

$$
\begin{equation*}
E\left(w_{l} w_{n}\right)=0=E\left(u_{m} w_{n}\right) \quad \text { for } \quad l>n>m . \tag{2.16}
\end{equation*}
$$

The above lemma is due to Anderson and Taylor [1]. Note that if the ϵ_{i} are uncorrelated with zero mean and the same variance σ^{2}, then for $n>m$,

$$
\begin{equation*}
E w_{n}=0, \quad E w_{n}^{2}=d_{n}^{2}\left(1+T_{n}^{\prime} H_{n-1}^{-1} T_{n}\right) \sigma^{2} \tag{2.17}
\end{equation*}
$$

Moreover, in view of (2.16) and the fact that $u_{n}=u_{n-1}+w_{n}$,

$$
\begin{equation*}
E u_{n}^{2}=E u_{n-1}^{2}+E w_{n}^{2} \quad \text { for } n>m \tag{2.18}
\end{equation*}
$$

On the other hand, by (2.13),

$$
\begin{equation*}
E u_{n}^{2}=\sum_{i=1}^{n}\left(x_{i 1}-K_{n} H_{n}^{-1} T_{i}\right)^{2} \sigma^{2} \quad \text { for } n>m \tag{2.19}
\end{equation*}
$$

Thus the matrix identity (2.14) has a probabilistic interpretation through the relations (2.17)-(2.19). Combining (2.13) and (2.15), we also obtain the following useful identity:

$$
\begin{align*}
\sum_{i=m+1}^{n} & \left(x_{i 1}-K_{n} H_{n}^{-1} T_{i}\right) \epsilon_{i} \\
& =\sum_{i=m+1}^{n}\left(x_{i 1}-K_{i} H_{i}^{-1} T_{i}\right)\left\{\epsilon_{i}-T_{i}^{\prime} H_{i-1}^{-1}\left(\sum_{l=1}^{i-1} T_{l} \epsilon_{i}\right)\right\} \tag{2.20}
\end{align*}
$$

For convenience in reference, we now restate the identities (2.14) and (2.20) in parts (i) and (ii) of the following lemma, which also contains some other useful matrix identities related to (1.12).

Lemma 4. Let $k \geqslant 2$. For each $i \geqslant 1$, let $T_{i}=\left(t_{i 1}, \ldots, t_{i k}\right)^{\prime}$ be a k-dimensional vector and let $H_{n}=\sum_{i=1}^{n} T_{i} T_{i}^{\prime}$. Partition the matrix H_{n} as

$$
H_{n}=\left(\begin{array}{ll}
\sum_{i=1}^{n} t_{i 1}^{2} & P_{n} \tag{2.21}\\
P_{n}^{\prime} & Q_{n}
\end{array}\right)
$$

so that Q_{n} is a $(k-1) \times(k-1)$ matrix. Let $\hat{T}_{i}=\left(t_{i 2}, \ldots, t_{i k}\right)^{\prime}$. Assume that H_{n} is positive definite for all $n \geqslant m(\geqslant k)$. Let $\left\{e_{n}\right\}$ be a sequence of real numbers. Define for $n \geqslant m$

$$
\begin{aligned}
z_{n} & =\sum_{i=1}^{n}\left(t_{i 1}-P_{n} Q_{n}^{-1} \hat{T}_{i}\right) e_{i} \\
s_{n} & =\sum_{i=1}^{n}\left(t_{i 1}-P_{n} Q_{n}^{-1} \hat{T}_{i}\right)^{2}
\end{aligned}
$$

Then for $n>m$,
(i) $s_{n}=s_{n-1}+\left(t_{n 1}-P_{n} Q_{n}^{-1} \hat{T}_{n}\right)^{2}\left(1+\hat{T}_{n}^{\prime} Q_{n-1}^{-1} \hat{T}_{n}\right) ;$
(ii) $z_{n}=z_{m}+\sum_{i=m+1}^{n}\left(t_{i 1}-P_{i} Q_{i}^{-1} \hat{T}_{i}\right)\left\{e_{i}-\hat{T}_{i}^{\prime} Q_{i-1}^{-1}\left(\sum_{j=1}^{i-1} \hat{T}_{j} e_{j}\right)\right\}$;
(iii) $Q_{n}=\sum_{i=1}^{n} \hat{T}_{i} \hat{T}_{i}^{\prime}, \quad P_{n}=\sum_{i=1}^{n} t_{i 1} \hat{T}_{i}^{\prime}$;
(iv) $T_{n}^{\prime} H_{n-1}^{-1}\left(\sum_{i=1}^{n-1} T_{i} e_{i}\right)=\hat{T}_{n}^{\prime} Q_{n-1}^{-1}\left(\sum_{i=1}^{n-1} \hat{T}_{i} e_{i}\right)$

$$
+\left(t_{n 1}-P_{n-1} Q_{n-1}^{-1} \hat{T}_{n}\right)\left(z_{n-1} / s_{n-1}\right)
$$

(v) $\quad t_{n 1}-P_{n-1} Q_{n-1}^{-1} \hat{T}_{n}=\left(t_{n 1}-P_{n} Q_{n}^{-1} \hat{T}_{n}\right)\left(1+\hat{T}_{n}^{\prime} Q_{n-1}^{-1} \hat{T}_{n}\right) ;$
(vi) $1+T_{n}^{\prime} H_{n-1}^{-1} T_{n}=\left(s_{n} / s_{n-1}\right)\left(1+\hat{T}_{n}^{\prime} Q_{n-1}^{-1} \hat{T}_{n}\right)$.

Proof. (iii) is obvious. To prove (iv), partition the matrix $A=H_{n-1}^{-1}$ as

$$
H_{n-1}^{-\mathbf{1}}=\left(\begin{array}{ll}
a_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

so that A_{22} is a $(k-1) \times(k-1)$ matrix. We shall make use of the following identities:

$$
\begin{gather*}
Q_{n-1}^{-1}=A_{22}-a_{11}^{-1} A_{21} A_{12} \tag{2.22}\\
a_{11}^{-1} A_{12}=a_{11}^{-1} A_{21}^{\prime}=-P_{n-1} Q_{n-1}^{-1}, \tag{2.23}\\
a_{11}^{-1}=\sum_{i=1}^{n-1} t_{i 1}^{2}-P_{n-1} Q_{n-1}^{-1} P_{n-1}^{\prime}=s_{n-1} \tag{2.24}
\end{gather*}
$$

The last relation in (2.24) follows from (iii). Since $T_{i}^{\prime}=\left(t_{i 1}, \hat{T}_{i}^{\prime}\right)$, we obtain that for $n>m$

$$
\begin{aligned}
& T_{n}^{\prime} H_{n-1}^{-1}\left(\sum_{i=1}^{n-1} T_{i} e_{i}\right) \\
& = \\
& =t_{n 1}\left\{a_{11} \sum_{1}^{n-1} t_{i 1} e_{i}+A_{12} \sum_{1}^{n-1} \hat{T}_{i} e_{i}\right\}+\hat{T}_{n}^{\prime}\left\{A_{21} \sum_{1}^{n-1} t_{i 1} e_{i}+A_{22} \sum_{1}^{n-1} \hat{T}_{i} e_{i}\right\} \\
& = \\
& \quad\left(t_{n 1}+a_{11}^{-1} \hat{T}_{n}^{\prime} A_{21}\right)\left(a_{11} \sum_{1}^{n-1} t_{i 1} e_{i}+A_{12} \sum_{1}^{n-1} \hat{T}_{i} e_{i}\right) \\
& \quad+\hat{T}_{n}^{\prime}\left(A_{22}-a_{11}^{-1} A_{21} A_{12}\right) \sum^{n-1} \hat{T}_{i} e_{i}
\end{aligned}
$$

$$
\begin{aligned}
= & \left(t_{n 1}-P_{n-1} Q_{n-1}^{-1} \hat{T}_{n}\right)\left\{a_{11} \sum_{1}^{n-1}\left(t_{i 1}-P_{n-1} Q_{n-1}^{-1} \hat{T}_{i}\right) e_{i}\right\} \\
& +\hat{T}_{n}^{\prime} Q_{n-1}^{-1}\left(\sum_{1}^{n-1} \hat{T}_{i} e_{i}\right) \quad \text { by }(2.22) \text { and (2.23) } \\
= & \left(t_{n 1}-P_{n-1} Q_{n-1}^{-1} \hat{T}_{n}\right)\left(z_{n-1} / s_{n-1}\right)+\hat{T}_{n}^{\prime} Q_{n-1}^{-1}\left(\sum_{1}^{n-1} \hat{T}_{i} e_{i}\right) \quad \text { by (2.24). }
\end{aligned}
$$

To prove (v) and (vi), define for $n>m$

$$
\begin{equation*}
f_{n}=t_{n 1}-P_{n} Q_{n}^{-1} \hat{T}_{n}, \quad g_{n}=t_{n 1}-P_{n-1} Q_{n-1}^{-1} \hat{T}_{n} . \tag{2.25}
\end{equation*}
$$

Then

$$
\begin{aligned}
g_{n}-f_{n} & =\left(P_{n} Q_{n}^{-1}-P_{n-1} Q_{n-1}^{-1}\right) \hat{T}_{n} \\
& =\left\{\left(P_{n}-P_{n-1}\right)-P_{n} Q_{n}^{-1}\left(Q_{n}-Q_{n-1}\right)\right\} Q_{n-1}^{-1} \hat{T}_{n} \\
& =\left\{t_{n 1} \hat{T}_{n}^{\prime}-P_{n} Q_{n}^{-1} \hat{T}_{n} \hat{T}_{n}^{\prime}\right\} Q_{n-1}^{-1} \hat{T}_{n} \quad \text { by (iii) } \\
& =f_{n} \hat{T}_{n}^{\prime} Q_{n-1}^{-1} \hat{T}_{n} .
\end{aligned}
$$

Hence (v) follows.
For $1 \leqslant i, j \leqslant n-1$, let

$$
\begin{equation*}
e_{i j}=1 \quad \text { if } \quad i=j \quad \text { and } \quad e_{i j}=0 \quad \text { if } i \neq j . \tag{2.26}
\end{equation*}
$$

It follows from (iv) that for $j=1, \ldots, n-1$,

$$
\begin{align*}
T_{n}^{\prime} H_{n-1}^{-1}\left(\sum_{i=1}^{n-1} T_{i} e_{i j}\right)= & \hat{T}_{n}^{\prime} Q_{n-1}^{-1}\left(\sum_{i=1}^{n-1} \hat{T}_{i} e_{i j}\right) \\
& +\left(g_{n} / s_{n-1}\right) \sum_{i=1}^{n-1}\left(t_{i 1}-P_{n-1} Q_{n-1}^{-1} \hat{T}_{i}\right) e_{i j} . \tag{2.27}
\end{align*}
$$

We note that

$$
\begin{equation*}
\sum_{1}^{n-1}\left(t_{i 1}-P_{n-1} Q_{n-1}^{-1} \hat{T}_{i}\right) \hat{T}_{i}=0 \tag{2.28}
\end{equation*}
$$

(cf. [1, Eq. (13)]). From (2.26), (2.27), and (2.28), it then follows that

$$
\begin{aligned}
T_{n}^{\prime} H_{n-1}^{-1} T_{n} & =T_{n}^{\prime} H_{n-1}^{-1}\left(\sum_{1}^{n-1} T_{i} T_{i}^{\prime}\right) H_{n-1}^{-1} T_{n} \\
& =\sum_{j=1}^{n}\left\{T_{n}^{\prime} H_{n-1}^{-1}\left(\sum_{i=1}^{n-1} T_{i} e_{i j}\right)\right\}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n}\left\{\hat{T}_{n}^{\prime} Q_{n-1}^{-1}\left(\sum_{i=1}^{n-1} \hat{T}_{i} e_{i j}\right)\right\}^{2}+\left(g_{n} / s_{n-1}\right)^{2} \sum_{i=1}^{n-1}\left(t_{i 1}-P_{n-1} Q_{n-1}^{-1} \hat{T}_{i}\right)^{2} \\
& =\hat{T}_{n}^{\prime} Q_{n-1}^{-1} \hat{T}_{n}+g_{n}^{2} / s_{n-1} \quad \text { by the definition of } s_{n-1} \\
& =\hat{T}_{n}^{\prime} Q_{n-1}^{-1} \hat{T}_{n}+\left(1+\hat{T}_{n}^{\prime} Q_{n-1}^{-1} \hat{T}_{n}\right)^{2} f_{n}^{2} / s_{n-1} \quad \text { by (v). }
\end{aligned}
$$

Hence

$$
\begin{aligned}
1+T_{n}^{\prime} H_{n-1}^{-1} T_{n} & =\left(1+\hat{T}_{n}^{\prime} Q_{n-1}^{-1} \hat{T}_{n}\right)\left\{1+\left(1+\hat{T}_{n}^{\prime} Q_{n-1}^{-1} \hat{T}_{n}\right)\left(f_{n}^{2} / s_{n-1}\right)\right\} \\
& =\left(1+\hat{T}_{n}^{\prime} Q_{n-1}^{-1} \hat{T}_{n}\right)\left(s_{n} / s_{n-1}\right) \quad \text { by }(\mathbf{i}) .
\end{aligned}
$$

3. Proof of Theorems 1 and 2

In this section we shall first prove Theorem 2 by induction on k and then use Theorem 2 to prove Theorem 1.

Proof of Theorem 2. For the case $k=1, T_{n}$ and H_{n} are scalars and $H_{n}=$ $\sum_{1}^{n} T_{i}{ }^{2}$; moreover, the condition (1.11) becomes

$$
\sum_{m+1}^{\infty} c_{i}^{2}\left(1+T_{i}^{2} / H_{i-1}\right)<\infty
$$

Hence $\sum_{i=m+1}^{\infty} c_{i} T_{i} H_{i-1}^{-1}\left(\sum_{j=1}^{i-1} T_{j} \epsilon_{j}\right)$ converges a.s. by Lemma 2.
Assume that the theorem holds for dimension $k-1(\geqslant 1)$. We shall now show that it holds for dimension k. With the same notation as in Lemma 4, set $e_{j}=\epsilon_{j}$, and define f_{n}, g_{n} as in (2.25). Then by Lemma 4(iv),

$$
\begin{align*}
& \sum_{i=m+1}^{n} c_{i} T_{i}^{\prime} H_{i-1}^{-1}\left(\sum_{j=1}^{i-1} T_{j} \epsilon_{j}\right) \\
& \quad=\sum_{i=m+1}^{n}\left(c_{i} g_{i} z_{i-1} / s_{i-1}\right)+\sum_{i=m+1}^{n} c_{i} \hat{T}_{i}^{\prime} Q_{i-1}^{-1}\left(\sum_{j=1}^{i-1} \hat{T}_{j} \epsilon_{j}\right) . \tag{3.1}
\end{align*}
$$

Note that \hat{T}_{n} is a $(k-1)$-dimensional vector and that Q_{n} is a $(k-1) \times(k-1)$ matrix. By Lemma 4(vi) and (1.11),

$$
\sum_{m+1}^{\infty} c_{i}^{2}\left(1+\widehat{T}_{i}^{\prime} Q_{i-1}^{-1} \hat{T}_{i}\right) \leqslant \sum_{m+1}^{\infty} c_{i}^{2}\left(1+T_{i}^{\prime} H_{i-1}^{-1} T_{i}\right)<\infty .
$$

Hence by the induction hypothesis,

$$
\sum_{i=m+1}^{\infty} c_{i} \hat{T}_{i}^{\prime} Q_{i-1}^{-1}\left(\sum_{j=1}^{i-1} \hat{T}_{j} \epsilon_{j}\right) \quad \text { converges a.s. }
$$

Therefore, in view of (3.1), it remains to show that

$$
\begin{equation*}
\sum_{i=m+1}^{\infty} c_{i} g_{i} z_{i-1} / s_{i-1} \quad \text { converges a.s. } \tag{3.2}
\end{equation*}
$$

By Lemma 4(ii), for $n>m, z_{n}=z_{m}+\sum_{m+1}^{n} f_{j}\left(\epsilon_{j}-\xi_{j}\right)$, where

$$
\begin{equation*}
\xi_{i}=\hat{T}_{i}^{\prime} Q_{i-1}^{-1}\left(\sum_{j=1}^{i-1} \hat{T}_{j} \epsilon_{j}\right), \quad i>m \tag{3.3}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\sum_{i=m+1}^{n} & c_{i} g_{i} z_{i-1} / s_{i-1} \\
= & \sum_{i=m+1}^{n}\left(c_{i} g_{i} / s_{i-1}\right)\left\{z_{m}+\sum_{j=m+1}^{i-1} f_{j} \epsilon_{j}-\sum_{j=m+1}^{i-1} f_{j} \xi_{j}\right\} \\
= & \left(\sum_{i=m+1}^{n} c_{i} g_{i} / s_{i-1}\right) z_{m}+\sum_{i=m+1}^{n} c_{i} g_{i} s_{i-1}^{-1}\left(\sum_{j=m+1}^{i-1} f_{j} \epsilon_{j}\right) \\
& -\sum_{i=m+1}^{n} c_{i} g_{i} s_{i-1}^{-1}\left(\sum_{j=m+1}^{i-1} f_{j} \xi_{j}\right) . \tag{3.4}
\end{align*}
$$

By Lemma 4(v), for $i>m$,

$$
\begin{align*}
c_{i} g_{i} & =\left\{c_{i}\left(1+\hat{T}_{i}^{\prime} Q_{i-1}^{-1} \hat{T}_{i}\right)^{1 / 2}\right\}\left\{\left(1+\hat{T}_{i}^{\prime} Q_{i-1}^{-1} \hat{T}_{i}\right)^{1 / 2} f_{i}\right\} \\
& =\tilde{c}_{i} \tilde{f}_{i} \tag{3.5}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{c}_{i}=c_{i}\left(1+\hat{T}_{i}^{\prime} Q_{i-1}^{-1} \hat{T}_{i}\right)^{1 / 2}, \quad \tilde{f}_{i}=\left(1+\hat{T}_{i}^{\prime} Q_{i-1}^{-1} \hat{T}_{i}\right)^{1 / 2} f_{i} \tag{3.6}
\end{equation*}
$$

By Lemma 4(i), for $\boldsymbol{n}>\boldsymbol{m}$,

$$
\begin{equation*}
s_{n}=s_{m}+\sum_{m+1}^{n} \tilde{f}_{i}{ }^{2} \tag{3.7}
\end{equation*}
$$

By Lemma 4(vi) and (1.11),

$$
\begin{align*}
\sum_{m+1}^{\infty} \tilde{c}_{i}{ }^{2} s_{i} / s_{i-1} & =\sum_{m+1}^{\infty} c_{i}{ }^{2}\left(1+\hat{T}_{i}^{\prime} Q_{i-1}^{-1} \hat{T}_{i}\right)\left(s_{i} / s_{i-1}\right) \\
& =\sum_{m+1}^{\infty} c_{i}{ }^{2}\left(1+T_{i}^{\prime} H_{i-1}^{-1} T_{i}\right)<\infty \tag{3.8}
\end{align*}
$$

In view of (3.5), (3.7), and (3.8), we can apply Lemma 2 to obtain that

$$
\begin{equation*}
\sum_{i=m+1}^{\infty} c_{i} g_{i} s_{i-1}^{-1}\left(\sum_{j=m+1}^{i-1} f_{j} \epsilon_{j}\right)=\sum_{i=m+1}^{\infty} \tilde{c}_{i} \tilde{f}_{i} s_{i-1}^{-1}\left(\sum_{j=m+1}^{i-1} f_{j} \epsilon_{j}\right) \tag{3.9}
\end{equation*}
$$

converges a.s. Moreover, by Lemma 1,

$$
\begin{equation*}
\sum_{m+1}^{\infty}\left|c_{i} g_{i} / s_{i-1}\right|<\infty \tag{3.10}
\end{equation*}
$$

For $n \geqslant m$, let $p_{n}=\sum_{n+1}^{\infty} \tilde{c}_{i} \tilde{f}_{i} / s_{i-1}=\sum_{n+1}^{\infty} c_{i} g_{i} / s_{i-1}$. Then

$$
\begin{align*}
\sum_{i=m+1}^{n} c_{i} g_{i} s_{i-1}^{-1}\left(\sum_{j=m+1}^{i-1} f_{j} \xi_{j}\right) & =\sum_{j=m+1}^{n-1} f_{j} \xi_{j}\left(\sum_{i=j+1}^{n} c_{i} g_{i} s_{i-1}^{-1}\right) \\
& =\sum_{j=m+1}^{n-1} p_{j} f_{j} \xi_{j}-p_{n} \sum_{j=m+1}^{n-1} f_{j} \xi_{j} \tag{3.11}
\end{align*}
$$

By (3.6), (3.8), and Lemma 1,

$$
\begin{aligned}
\sum_{m+1}^{\infty}\left(p_{n} f_{n}\right)^{2}\left(1+\hat{T}_{n}^{\prime} Q_{n-1}^{-1} \hat{T}_{n}\right) & =\sum_{m+1}^{\infty} p_{n}^{2} \tilde{f}_{n}^{2} \\
& =\sum_{n=m+1}^{\infty}\left(\sum_{i=n+1}^{\infty} \tilde{c}_{i} \tilde{f}_{i} / s_{i-1}\right)^{2} \tilde{f}_{n}^{2}<\infty
\end{aligned}
$$

Hence by (3.3) and the induction hypothesis, as $n \rightarrow \infty$,

$$
\begin{equation*}
\sum_{i=m+1}^{n} p_{i} f_{i} \xi_{i}=\sum_{i=m+1}^{n}\left(p_{i} f_{i}\right) \hat{T}_{i}^{\prime} Q_{i-1}^{-1}\left(\sum_{j-1}^{i-1} \hat{T}_{j} \epsilon_{j}\right) \quad \text { converges a.s. } \tag{3.12}
\end{equation*}
$$

Clearly (3.12) still holds if we replace p_{j} by $p_{j}^{*}=\sum_{j+1}^{\infty}\left|\tilde{c}_{i} \tilde{f}_{i}\right| / s_{i-1}$. Since $p_{j}^{*} \downarrow 0$, we then obtain by Kronecker's lemma that

$$
\begin{equation*}
\left|p_{n} \sum_{m+1}^{n-1} f_{j} \xi_{j}\right| \leqslant p_{n-1}^{*}\left|\sum_{m+1}^{n-1} f_{j} \xi_{j}\right| \rightarrow 0 \quad \text { a.s. } \tag{3.13}
\end{equation*}
$$

From (3.4) and (3.9)-(3.13), the desired conclusion (3.2) follows.
Proof of Theorem 1. We shall only consider $b_{n 1}$. For the case $p=1$, $b_{n 1}-\beta=\left(\sum_{1}^{n} x_{i 1} \epsilon_{i}\right) /\left(\sum_{1}^{n} x_{i 1}^{2}\right)$. Since $\sum_{1}^{n} x_{i 1}^{2}=1 / v_{11}^{(n)} \rightarrow \infty$ a.s., the desired conclusion (1.10) follows easily from (1.2) and Kronecker's lemma.

Let $p \geqslant 2$. Define the ($p-1$)-dimensional vector T_{n} by (2.11) and partition the matrix $X_{n}^{\prime} X_{n}$ as in (2.12). Using the notation and results of Lemma 3, we obtain that $b_{n 1}-\beta_{1}=u_{n} / s_{n}$, where

$$
\begin{equation*}
s_{n}=\sum_{i=1}^{n}\left(x_{i 1}-K_{n} H_{n}^{-1} T_{n}\right)^{2}=1 / v_{11}^{(n)} \tag{3.14}
\end{equation*}
$$

(For the last equality in (3.14), see the identity (2.24).) Since $u_{n}=u_{m}+\sum_{i=m+1}^{n}$ w_{i}, it suffices for the proof of (1.10) to show that

$$
\begin{equation*}
\left(\sum_{i=m+1}^{n} w_{i}\right) /\left\{s_{n}\left|\log s_{n}\right|^{1+\delta\}^{1 / 2}} \rightarrow 0\right. \tag{3.15}
\end{equation*}
$$

By (2.14) and (3.14), for $n>m$,

$$
\begin{equation*}
s_{n}=s_{m}+\sum_{m+1}^{n} d_{i}^{2}\left(1+T_{i}^{\prime} H_{i-1}^{-1} T_{i}\right) . \tag{3.16}
\end{equation*}
$$

From (3.14) and (3.16), $s_{n} \uparrow \infty$. Therefore by the Kronecker lemma, (3.15) indeed holds if it can be shown that as $n \rightarrow \infty$

$$
\begin{equation*}
\sum_{i=m+1}^{n}\left(w_{i} /\left\{s_{i}\left|\log s_{i}\right|^{1+\delta}\right\}^{1 / 2}\right) \quad \text { converges a.s. } \tag{3.17}
\end{equation*}
$$

By (2.15), for $i>m$,

$$
\begin{equation*}
w_{i}=d_{i} \epsilon_{i}-d_{i} T_{i}^{\prime} H_{i-1}^{-1}\left(\sum_{j=1}^{i-1} T_{j} \epsilon_{j}\right) \tag{3.18}
\end{equation*}
$$

In view of (3.16) and the integral comparison test,

$$
\begin{equation*}
\sum_{m+1}^{\infty} \frac{d_{i}{ }^{2}}{s_{i}\left|\log s_{i}\right|^{1+\delta}} \leqslant \sum_{m+1}^{\infty} \frac{d_{i}{ }^{2}\left(1+T_{i}^{\prime} H_{i-1}^{-1} T_{i}\right)}{s_{i}\left|\log s_{i}\right|^{1+\delta}}<\infty . \tag{3.19}
\end{equation*}
$$

Hence by (1.2), as $n \rightarrow \infty$,

$$
\begin{equation*}
\sum_{m+1}^{n} \frac{d_{i} \epsilon_{i}}{\left\{s_{i}\left|\log s_{i}\right|^{1+\delta}\right\}^{1 / 2}} \quad \text { converges a.s. } \tag{3.20}
\end{equation*}
$$

Moreover, in view of (3.19) and the fact that $H_{n}=\sum_{1}^{n} T_{i} T_{i}^{\prime}$, we can apply Theorem 2 to obtain that

$$
\begin{equation*}
\sum_{m+1}^{n} \frac{d_{i} T_{i}^{\prime} H_{i-1}^{-1}\left(\sum_{1}^{i-1} T_{\epsilon_{j}}\right)}{\left\{s_{i}\left|\log s_{i}\right|^{1+\delta}\right\}^{1 / 2}} \quad \text { converges a.s. } \tag{3.21}
\end{equation*}
$$

From (3.18), (3.20), and (3.21), (3.17) follows.

4. Some Corollaries

As we have indicated in Section 1, Theorem 1 provides a complete solution to the problem of strong consistency of b_{n} when the ϵ_{i} are i.i.d. with zero mean and finite variance.

Corollary 2. Suppose that in the multiple regression model (1.1) the errors $\epsilon_{1}, \epsilon_{2}, \ldots$ are i.i.d. woith $E \epsilon_{1}=0$ and $0<E \epsilon_{1}{ }^{2}<\infty$. Moreover, assume that the design matrix $X_{n}=\left(x_{i j}\right)_{1 \leqslant i \leqslant n, 1 \leqslant \leqslant \leqslant p}$ is of full rank p for some n. Then

$$
\begin{equation*}
b_{n} \rightarrow \beta \text { a.s. } \Leftrightarrow\left(X_{n}^{\prime} X_{n}\right)^{-1} \rightarrow 0, \tag{4.1}
\end{equation*}
$$

where b_{n} is the least squares estimate of β defined by (1.4).
In the Gauss-Markov model, the ϵ_{i} are assumed to be uncorrelated with mean 0 and variance σ^{2}. A refinement of the concept of orthogonal random variables is the notion of a multiplicative sequence. Let r be a positive even integer. A sequence of random variables $\left\{\epsilon_{i}\right\}$ is said to be multiplicative of order r if

$$
\begin{equation*}
E\left(\epsilon_{i_{1} \epsilon_{2}} \cdots \epsilon_{i_{r}}\right)=0 \quad \text { for all } 1 \leqslant i_{1}<i_{2}<\cdots<i_{r} . \tag{4.2}
\end{equation*}
$$

When $r=2$, this reduces to the case of orthogonal random variables. In [5], Komlos has shown that the condition (1.2) is satisfied when the ϵ_{i} have zero means and common variance σ^{2} and form a multiplicative sequence of order $r \geqslant 4(r$ even $)$ such that $\sup _{i} E \epsilon_{i}{ }^{4}<\infty$. Recently Longnecker and Serfing [8] extended this result of Komlós to the following three types of weakly multiplicative sequences.

Definition. Let r be a positive even integer. Let $\left\{\epsilon_{i}\right\}$ be a sequence of random variables.
(i) The sequence $\left\{\epsilon_{i}\right\}$ is said to be weakly multiplicative of type A_{r} if $E \epsilon_{i}{ }^{r}<\infty$ for all i and there exists a symmetric function g with $r-1$ arguments such that

$$
\left|E\left(\epsilon_{i_{1}} \cdots \epsilon_{i_{r}}\right)\right| \leqslant g\left(i_{2}-i_{1}, i_{3}-i_{2}, \ldots, i_{r}-i_{r-1}\right) \prod_{j=1}^{r}\left(E \epsilon_{i_{j}}^{r}\right)^{1 / r}
$$

for all $1 \leqslant i_{1}<\cdots<i_{r}$ and

$$
\sum_{k=1}^{\infty} \sum_{j_{1}=1}^{n} \cdots \sum_{j_{r-2}=1}^{k} g\left(j_{1}, \ldots, j_{r-2}, k\right)<\infty .
$$

(ii) The sequence $\left\{\epsilon_{i}\right\}$ is said to be weakly multiplicative of type B_{r} if $E \epsilon_{i}{ }^{r}<\infty$ for all i and there exists a symmetric function g with $\frac{1}{2} r$ arguments such that

$$
\left|E\left(\epsilon_{i_{1}} \cdots \epsilon_{i_{r}}\right)\right| \leqslant g\left(i_{2}-i_{1}, i_{4}-i_{3}, \ldots, i_{r}-i_{r-1}\right) \prod_{j=1}^{r}\left(E \epsilon_{i_{\xi}}\right)^{1 / r}
$$

for all $1 \leqslant i_{1}<\cdots<i_{r}$ and

$$
\sum_{k=1}^{\infty} \sum_{j_{1}=1}^{k} \ldots \sum_{j_{r / 2-1}=1}^{k} g\left(j_{1}, \ldots, j_{\tau / 2-1}, k\right)<\infty
$$

(iii) The sequence $\left\{\epsilon_{i}\right\}$ is said to be weakly multiplicative of type C_{r} if $E \epsilon_{i}{ }^{r}<\infty$ for all i and there exists a function $f(j)$ and a function g with $\frac{1}{2} r-1$ arguments such that

$$
\begin{aligned}
\left|E\left(\epsilon_{i_{1}} \cdots \epsilon_{i_{r}}\right)\right| \leqslant & \min \left\{f\left(i_{2}-i_{1}\right), f\left(i_{r}-i_{r-1}\right)\right\} \\
& \times g\left(i_{3}-i_{2}, i_{5}-i_{4}, \ldots, i_{r-1}-i_{r-2}\right) \prod_{j=1}^{r}\left(E \epsilon_{i_{j}}^{r}\right)^{1 / r}
\end{aligned}
$$

for all $1 \leqslant i_{1}<\cdots<i_{r}, \sum_{j=1}^{\infty} f(j)<\infty$, and $\sum_{c} g\left(j_{1}, \ldots, j_{r / 2-1}\right)<\infty$, where C denotes the set of all $\left(\frac{1}{2} r-1\right)$-tuples $\left(j_{1}, \ldots, j_{r / 2-1}\right)$ with $1 \leqslant j_{v} \leqslant j_{m}$ for $\nu \neq m, 1 \leqslant j_{m}<\infty$, and $m=1, \ldots, \frac{1}{2} r-1$.

Lemma 5 (Longnecker and Serfling [8, p. 17]). Let $r \geqslant 4$ be an even integer. Let $\left\{\epsilon_{i}\right\}$ be a sequence of random variables such that $\sup _{i} E \epsilon_{i}{ }^{r}<\infty$, and let $\left\{c_{i}\right\}$ be a sequence of constants such that $\sum_{1}^{\infty} c_{i}{ }^{2}<\infty$. Suppose that $\left\{\epsilon_{i}\right\}$ is weakly multiplicative of type A_{r} or B_{r} or C_{r}. Then $\sum_{1}^{\infty} c_{i} \epsilon_{i}$ converges a.s.

This lemma is an extension of the result of Komlós for multiplicative sequences to weakly multiplicative sequences. Together with Theorem 1 it gives

Corollary 3. Suppose that in the multiple regression model (1.1), $\left\{\epsilon_{i}\right\}$ is a weakly multiplicative sequence of type A_{r} or B_{r} or C_{r}, where r is an even integer $\geqslant 4$. Assume that $\sup _{i} E \epsilon_{i}^{r}<\infty$, and that the design matrix $X_{n}=\left(x_{i j}\right)_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant p}$ is of full rank p for some n. Define V_{n} as in (1.9). Then for each fixed $j=1, \ldots, p$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} v_{j j}^{(n)}=0 \Rightarrow(1.10) \text { holds a.s. for every } \delta>0 \tag{4.3}
\end{equation*}
$$

As shown in [8, p. 5, 18], the weakly multiplicative sequences in Corollary 3 include important classes of Gaussian time series and stationary mixing sequences. Thus Corollary 3 contains as a special case the following.

Corollary 4. Suppose that in (1.1), $\left\{\epsilon_{i}\right\}$ is a stationary sequence with $E \epsilon_{1}=0$. Assume that the design matrix X_{n} is of full rank p for some n, and define V_{n} as in (1.9).
(i) Suppose that $\left\{\epsilon_{i}\right\}$ is a Gaussian sequence with covariance function $r(k)=E\left(\epsilon_{1} \epsilon_{k+1}\right)$. If $|r(k)|$ is nonincreasing and $\sum_{1}^{\infty}|r(k)|<\infty$, then (4.3) holds.
(ii) Suppose that $\left\{\epsilon_{i}\right\}$ is 'a strongly mixing sequence with mixing coefficient $\varphi(k)=\sup \left\{|P(A \cap B)-P(A) P(B)|: A \in F_{n}, B \in G_{n+k}, n \geqslant 1\right\}$, where F_{n} is the σ-field generated by $\left\{\epsilon_{1}, \ldots, \epsilon_{n}\right\}$ and G_{n} is the σ-field generated by $\left\{\epsilon_{n}, \epsilon_{n+1}, \ldots\right\}$. If $\sum_{1}^{\infty} k \varphi(k)<\infty$ and $\left\{\epsilon_{i}\right\}$ is uniformly bounded (i.e., $\left|\epsilon_{i}\right| \leqslant C$ for some constant C and all i), then (4.3) still holds.

Suppose that $\left\{\epsilon_{i}\right\}$ is a martingale difference sequence such that $E\left|\epsilon_{i}\right|^{r}<\infty$ for all i, where r is a positive even integer. Then $\left\{\epsilon_{i}\right\}$ is multiplicative of order r.

While Corollary 3 gives the strong consistency of $b_{n j}$ under the assumption that $\sup _{i} E \epsilon_{i}{ }^{r}<\infty$ for some $r \geqslant 4$, the martingale convergence theorem implies, however, that $\sup _{i} E \epsilon_{i}{ }^{2}<\infty$ suffices for (1.2) to hold in this case, and therefore we obtain from Theorem 1 the following result announced in [7].

Corollary 5. Suppose that in (1.1), $\left\{\epsilon_{i}\right\}$ is a martingale difference sequence such that $\sup _{i} E \epsilon_{i}{ }^{2}<\infty$. Assume that the design matrix X_{n} is of full rank p for some n, and define V_{n} as in (1.9). Then (4.3) holds.

In the above corollaries we have assumed that $X_{n}^{\prime} X_{n}$ is nonsingular for some, and therefore for all, large n. We now consider the general case where $X_{n}^{\prime} X_{n}$ may be singular for all n. Let \mathscr{R}^{n} denote the p-dimensional Euclidean space of column vectors. For $\alpha \in \mathscr{R}^{p}, \alpha^{\prime} b$ is unique for all solutions $b \in \mathscr{R}^{p}$ of the normal equation $X_{n}^{\prime} X_{n} b=X_{n}^{\prime} Y_{n}$ if and only if $\alpha \in \mathscr{L}$, where \mathscr{L} is the linear space generated by the set of vectors $\left\{Z_{i}: i-1,2, \ldots\right\}$ and

$$
\begin{equation*}
Z_{i}=\left(x_{i 1}, \ldots, x_{i p}\right)^{\prime} \tag{4.4}
\end{equation*}
$$

(cf. [9, p. 181]). A solution of the equation $X_{n}^{\prime} X_{n} b=X_{n}^{\prime} Y_{n}$ is

$$
\begin{equation*}
b=X_{n}+Y_{n} \tag{4.5}
\end{equation*}
$$

where $X_{n}{ }^{+}$denotes the Moore-Penrose generalized inverse of the matrix X_{n} (cf. [3]). This reduces to the unique solution (1.4) when $X_{n}^{\prime} X_{n}$ is nonsingular. Even when $X_{n}^{\prime} X_{n}$ is singular, $\alpha^{\prime} X_{n}+Y_{n}$ is the unique least squares estimate of $\alpha^{\prime} \beta$ for all large n if $\alpha \in \mathscr{L}$. Assume that in (1.1) the random variables ϵ_{i} are uncorrelated and have a common variance $\sigma^{2}>0$. Then for $\alpha \in \mathscr{L}, \alpha^{\prime} X_{n}+Y_{n}$ is an unbiased estimate of $\alpha^{\prime} \beta$ for all large n, with $\operatorname{Var}\left(\alpha^{\prime} X_{n}{ }^{+} Y_{n}\right)=\sigma^{2} \alpha^{\prime} X_{n}{ }^{+}\left(X_{n}{ }^{+}\right)^{\prime} \alpha$, and a necessary and sufficient condition for $\alpha^{\prime} X_{n}{ }^{+} Y_{n}$ to converge to $\alpha^{\prime} \beta$ in probability is

$$
\begin{equation*}
\alpha^{\prime} X_{n}+\left(X_{n}^{+}\right)^{\prime} \alpha \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{4.6}
\end{equation*}
$$

(cf. [3]). By reducing the general case to the nonsingular case, we obtain from Theorem 1 the strong consistency of $\alpha^{\prime} X_{n}{ }^{+} Y_{n}$ under the minimal assumption (4.6) on the design in the following.

Corollary 6. Suppose that in (1.1) the errors $\epsilon_{1}, \epsilon_{2}, \ldots$ satisfy (1.2). Let \mathscr{L} be the linear subspace of \mathscr{R}^{p} generated by the set of vectors $\left\{Z_{i}, i=1,2, \ldots\right\}$, where $Z_{i}=\left(x_{i 1}, \ldots, x_{i p}\right)^{\prime}$, and let $\alpha \neq 0$ belong to \mathscr{L}. Let $\rho_{n}{ }^{2}(\alpha)=\alpha^{\prime} X_{n}{ }^{+}\left(X_{n}{ }^{+}\right)^{\prime} \alpha$. Then the sequence $\left\{\rho_{n}(\alpha)\right\}$ is eventually nonincreasing and $\rho_{n}(\alpha)>0$ for all large n. Moreover, if $\lim _{n \rightarrow \infty} \rho_{n}(\alpha)=0$, then for every $\delta>0$, with probability 1 ,

$$
\begin{equation*}
\alpha^{\prime} X_{n}+Y_{n}-\alpha^{\prime} \beta=o\left\{\rho_{n}(\alpha)\left|\log \rho_{n}(\alpha)\right|^{(1+\delta) / 2}\right\} \quad \text { as } \quad n \rightarrow \infty \tag{4.7}
\end{equation*}
$$

Proof. Let $\|\alpha\|$ denote $\left(\alpha^{\prime} \alpha\right)^{1 / 2}$. Let

$$
\begin{equation*}
\mathscr{L}_{n}=\left\{X_{n} \theta: \theta \in \mathscr{R}^{p} \quad \text { and } \quad \theta^{\prime} \alpha=0\right\}, \tag{4.8}
\end{equation*}
$$

and let Π_{n} denote the projection matrix associated with the linear subspace \mathscr{L}_{n} of \mathscr{R}^{n}, i.e., $\Pi_{n} x$ is the projection of x into \mathscr{L}_{n} for every $x \in \mathscr{R}^{n}$. Let

$$
\begin{equation*}
W_{n}=\left(I_{n}-\Pi_{n}\right) X_{n} \alpha \tag{4.9}
\end{equation*}
$$

where I_{n} is the identity ($n \times n$) matrix. Then as shown in [3, pp. 121-122], for all large n (say $n \geqslant n_{0}$), $W_{n} \neq 0$ and

$$
\begin{equation*}
\alpha^{\prime} X_{n}+Y_{n}=\alpha^{\prime} \beta+\|\alpha\|^{2}\left\|W_{n}\right\|^{-2} W_{n}^{\prime} E_{n}, \tag{4.10}
\end{equation*}
$$

where $E_{n}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)^{\prime}$. We note that for $\theta \in \mathscr{R}^{p}$

$$
X_{n} \theta=\left(\begin{array}{c}
Z_{1}^{\prime} \theta \tag{4.11}\\
\vdots \\
Z_{n}^{\prime} \theta
\end{array}\right) \in \mathscr{R}^{n} .
$$

From (4.8) and (4.11), it follows that $\operatorname{dim} \mathscr{L}_{n}$ is nondecreasing in n. Since $\operatorname{dim} \mathscr{L}_{n} \leqslant p-1$, there exist $N \geqslant n_{0}$ and $m \leqslant p-1$ such that

$$
\begin{equation*}
\operatorname{dim} \mathscr{L}_{n}=m \quad \text { for all } \quad n \geqslant N \tag{4.12}
\end{equation*}
$$

Choose linearly independent vectors $\theta_{1}, \ldots, \theta_{m} \in \mathscr{R}^{p}$ such that $\theta_{i}^{\prime} \alpha=0$ ($i=$ $1, \ldots, m)$ and $\left\{X_{N} \theta_{1}, \ldots, X_{N} \theta_{m}\right\}$ is a basis of \mathscr{L}_{N}. In view of (4.11), $\left\{X_{n} \theta_{1}, \ldots, X_{n} \theta_{m}\right\}$ is a linearly independent set for $n \geqslant N$, and therefore by (4.12),

$$
\begin{equation*}
\left\{X_{n} \theta_{1}, \ldots, X_{n} \theta_{m}\right\} \quad \text { is a basis of } \mathscr{L}_{n} \text { for } n \geqslant N \tag{4.13}
\end{equation*}
$$

Since $\left(I_{n}-\Pi_{n}\right) X_{n} \alpha\left(=W_{n}\right) \neq 0$ for $n \geqslant N$, it then follows from (4.13) that $\left\{X_{n} \alpha, X_{n} \theta_{1}, \ldots, X_{n} \theta_{m}\right\}$ is a linearly independent set. Therefore, the matrix

$$
\tilde{X}_{n}=\left(\begin{array}{cccc}
Z_{1}^{\prime \alpha} & Z_{1}^{\prime} \theta_{1} & \cdots & Z_{1}^{\prime} \theta_{m} \\
Z_{2}^{\prime \alpha} & Z_{2}^{\prime} \theta_{1} & \cdots & Z_{2}^{\prime} \theta_{m} \\
\cdots & \cdots & \cdots & \cdots \\
Z_{n}^{\prime \alpha} & Z_{n}^{\prime} \theta_{1} & \cdots & Z_{n}^{\prime} \theta_{m}
\end{array}\right)=\left(X_{n} \alpha, X_{n} \theta_{1}, \ldots, X_{n} \theta_{m}\right)
$$

is nonsingular for $n \geqslant N$. Define $\tilde{b}_{n}=\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} E_{n}$ and $\tilde{V}=\left(\tilde{v}_{i j}^{(n)}\right)=\left(\tilde{X}_{n} \tilde{X}_{n}\right)^{-1}$ for $n \geqslant N$. Then

$$
\begin{equation*}
\tilde{b}_{n 1}=\left\{\sum_{1}^{n} \epsilon_{i}\left(Z_{i}^{\prime} \alpha-u_{n i}\right)\right\} /\left\{\sum_{1}^{n}\left(Z_{i}^{\prime} \alpha-u_{n i}\right)^{2}\right\}, \tag{4.14}
\end{equation*}
$$

where $U_{n}=\left(u_{n 1}, \ldots, u_{n n}\right)^{\prime}$ is the projection of $X_{n} \alpha$ into the linear subspace generated by $\left\{X_{n} \theta_{1}, \ldots, X_{n} \theta_{m}\right\}$. From (4.9), (4.13), and (4.14), it then follows that for $n \geqslant N$

$$
\begin{equation*}
\tilde{b}_{n 1}=\left\|W_{n}\right\|^{-2} W_{n}^{\prime} E_{n} \tag{4.15}
\end{equation*}
$$

By (3.14), $\tilde{v}_{11}^{(n)}=\left\|W_{n}\right\|^{-2}$, and as shown in [3, p. 122], $\left\|W_{n}\right\|^{-2}=\|\alpha\|^{-4} p_{n}{ }^{2}(\alpha)$ is positive and nonincreasing in $n \geqslant N$. From (4.10), (4.15), and Theorem 1, the desired conclusion (4.7) follows.

As we have mentioned above, Komlós' theorem implies that condition (1.2) is satisfied if

$$
\begin{gather*}
E \epsilon_{i}=0 \text { and } E \epsilon_{i}{ }^{2}=\sigma^{2} \text { for all } i, \sup _{i} E \epsilon_{i}{ }^{4}<\infty, \\
\text { and }\left\{\epsilon_{i}\right\} \text { is multiplicative of order } 4 . \tag{4.16}
\end{gather*}
$$

Hence by Corollary 6, (4.7) holds under the assumptions (4.6) and (4.16). In [7] we have shown by a simpler argument that (4.7) holds under (4.6), (4.16), and the additional assumption

$$
\begin{equation*}
E\left(\epsilon_{i} \epsilon_{j}\right)=E\left(\epsilon_{i}{ }^{3} \epsilon_{j}\right)=E\left(\epsilon_{i}{ }^{2} \epsilon_{j} \epsilon_{k}\right)=0 \quad \text { for any distinct } i, j, k \tag{4.17}
\end{equation*}
$$

However, this simpler argument depends heavily on (4.17) and does not generalize to weakly multiplicative sequences or L^{2}-bounded martingale difference sequences.

References

[1] Anderson, T. W., and Taylor, J. B. (1976). Strong consistency of least squares estimates in normal linear regression. Ann. Statist. 4 788-790.
[2] Anderson, T. W., and Taylor, J. B. (1976). Conditions for Strong Consistency of Least Squares Estimates in Linear Models. Tech. Report No. 213. Institute for Mathematical Studies in Social Sciences, Stanford University.
[3] Drygas, H. (1976). Weak and strong consistency of the least squares estimators in regression models. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 119-127.
[4] Hardy, G. H., Littlewood, J. E., and Polya, G. (1964). Inequalities, 2nd ed. Cambridge Univ. Press, London/New York.
[5] Komlós, J. (1972). On the series $\Sigma_{c_{k}} \varphi_{k}$. Studia Sci. Math. Hungar. 7 451-458.
[6] Lai, T. L., and Robbins, H. (1977). Strong consistency of least squares estimates in regression models. Proc. Nat. Acad. Sci. USA 74 2667-2669.
[7] Lai, T. L., Robbins, H., and Wei, C. Z. (1978). Strong consistency of least squares estimates in multiple regression. Proc. Nat. Acad. Sci. USA 75 3034-3036.
[8] Longneckrr, M., and Serfling, R. J. (1978). Moment inequalities for S_{n} under general dependence restrictions with applications. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 43 1-21.
[9] Rao, C. R. (1965). Linear Statistical Inference and Its Applications. Wiley, New York.

