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a b s t r a c t

This work is dedicated to constructing a multi-scale structural health monitoring system to monitor and
evaluate the serviceability of bridges based on the Hadoop Ecosystem (MS-SHM-Hadoop). By taking the
advantages of the fault-tolerant distributed file system called the Hadoop Distributed File System (HDFS)
and high-performance parallel data processing engine called MapReduce programming paradigm, MS-
SHM-Hadoop features include high scalability and robustness in data ingestion, fusion, processing, re-
trieval, and analytics. MS-SHM-Hadoop is a multi-scale reliability analysis framework, which ranges from
nationwide bridge-surveys, global structural integrity analysis, and structural component reliability
analysis. This Nationwide bridge survey uses deep-learning techniques to evaluate the bridge service-
ability according to real-time sensory data or archived bridge-related data such as traffic status, weather
conditions and bridge structural configuration. The global structural integrity analysis of a targeted
bridge is made by processing and analyzing the measured vibration signals incurred by external loads
such as wind and traffic flow. Component-wise reliability analysis is also enabled by the deep learning
technique, where the input data is derived from the measured structural load effects, hyper-spectral
images, and moisture measurement of the structural components. As one of its major contributions, this
work employs a Bayesian network to formulate the integral serviceability of a bridge according to its
components serviceability and inter-component correlations. Here the inter-component correlations are
jointly specified using a statistics-oriented machine learning method (e.g., association rule learning) or
structural mechanics modeling and simulation.
& 2016 Chongqing University of Posts and Telecommunications. Production and Hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Public transportation plays an extremely significant role in
human society; however, the safety of transportation infra-
structure such as bridges is becoming an increasingly critical issue.
According to a report from the United States Federal National
Bridge Inventory, the average age of the nation's 607,380 bridges is
currently 42 years old. One in nine of those bridges is rated as
structurally deficient. The American Society of Civil Engineers
(ASCE) has given our nation's infrastructure a very poor grade of
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Dþ overall according to the 2013 America's infrastructure report
card. Safeguarding the most critical structures is necessary to save
citizen's lives and protect the nation's economy foundation.

A complete traditional structural health monitoring (SHM)
system includes sensory system, data acquisition and transmission
system, data processing and management system, and structural
evaluation system [1]. With the development of computing and
networking technologies, wireless sensor networks (WSNs) have
received extensive attention which are generally composed of
multiple wireless smart sensor nodes (WSSNs) and a base station
which can be a computer server with ample computation and
storage resources. A WSSN consists of a Mote platform (such as
Imotes), a sensor board and a battery board. Featured with low
cost in installation and maintenance and high scalability, the
WSSNs have been deployed on the Golden Gate Bridge by UC
Berkeley in 2006 [2] and recently on Jindo Bridge in Korea through a
collaborative research among Korea, US and Japan [3]. Researchers
and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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have also displayed enthusiasm using wireless smart sensors to
monitor full-scale civil bridge structures in [4,5]. Full-scale deploy-
ment of WSNs on real bridge structures is transformative because the
employment of a wired sensor network still dominates SHM projects.
Challenges lay in the availability of the power supply and mature
damage monitoring algorithms.

Although there has been some work that adopted data man-
agement infrastructure and machine learning techniques for
structural monitoring, few platforms have been investigated to
seamlessly integrate full spectrum input data. In [6] neural net-
work based techniques are used for modeling and analyzing dy-
namic structural information for recognizing structural defects. In
[7], to avoid the need of a large amount of labeled real-world data
as training data, a large amount of unlabeled data is used to train a
feature extractor based on the sparse coding algorithm. Features
learned from the sparse coding are then used to train a neural
network classifier to distinguish different statuses of a bridge. The
work in [8] presents a layered big data and a real-time decision-
making framework for bridge data management as well as health
monitoring. In [9], both supervised and unsupervised learning
techniques for structural health monitoring are investigated by
considering acoustic emission signals. A data management infra-
structure based on NoSQL database technologies for bridge mon-
itoring applications was proposed in [10]. Cloud service infra-
structure is also deployed to enhance scalability, flexibility and
accessibility of the data management system [11].

In this work, a multiscale structural health monitoring and
measuring system [12,13] based on the Hadoop Ecosystem, which
is denoted as MS-SHM-Hadoop for simplicity, is investigated. By
integrating sensor technology, a wireless network, data-mining
based on a big-data platform, and structural mechanics modeling
and simulation, MS-SHM-Hadoop is equipped with the following
functions: (1) real-time sensory data acquisition, integration, and
analysis [14–17]; (2) quantitative measurement of the deficiency of
nation-wide bridges; (3) identification of bridge structural faults
and quantitative prediction of their life expectancy according to
the long-term surveillance of the dynamic behavior of bridges.

The remainder of this paper is organized as follows: Section 2
provides an overview of the proposed MS-SHM-Hadoop system.
Section 3 describes the infrastructure and flowchart of MS-SHM-
Hadoop; Section 4 introduces the acquisition of sensory data and
the integration of structure-related data; Section 5 presents a
nationwide bridge survey; Section 6 investigates the global
structural integrity of bridges according to structural vibration;
Section 7 investigates the reliability analysis for localized critical
components; Section 8 employs a Bayesian network to investigate
bridge global integrity according to their component reliability,
which is obtained in Section 7; and Section 9 concludes the paper.
Fig. 1. Three major inputs
2. Overview of the proposed MS-SHM-Hadoop

Fig. 1 illustrates the three major inputs for MS-SHM-Hadoop.
Sensory data includes the cyclic external load and structural re-
sponse, and surrounding environmental conditions. The support-
ing information refers to all bridge-related information such as the
bridge configuration database (National Bridge Inventory), trans-
portation status (National Transit Database), and weather condi-
tions (National Climatic Data Center). Structural configurations
include the geometric formulation of bridges and construction
material description.

We marry big-data with sensor-oriented structural health
monitoring and measuring due to the following motivations:
(1) Many critical aspects of bridge performance are not well un-
derstood. The reasons for this include the extreme diversity of the
bridge infrastructure, the widely varying conditions under which
bridges serve, and the lack of reliable data needed to understand
performance. Meanwhile, as sensors for bridge structural health
monitoring are increasingly employed across the country, massive
information-rich data from different kinds of sensors are acquired
and transmitted to the racks of the bridge management adminis-
tration database. (2) There exists a high-degree of correlation
among bridges data, which can be effectively disclosed by data
mining over a big-data platform.

The objectives include: (1) Real-time processing and integra-
tion of structure-related sensory data derived from heterogeneous
sensors; (2) highly efficient storage and retrieval of SHM-related
heterogeneous data (i.e., with differences in format, durability,
function, etc.) over a big-data platform; (3) prompt while accurate
evaluation about the safety of civil structures according to his-
torical and real-time sensory data.

The accomplishment of the above objectives consists of the
following tasks: (1) research samples screening: survey the na-
tion-wide bridge information platform, characterize and screen
representative research samples with low safety levels; (2) per-
formance indicators (PIs) determination: evaluate and determine
the proper multiple PIs to predict bridge performance in a quan-
titative manner; (3) data fetching and processing: fetch relevant
sensor data from the Hadoop platform, according to the PI re-
quirement, and process the raw sensor data into load effects and
load spectrums [18]; (4) multi-scale structural dynamic modeling
and simulation: based on historical data of sample bridges, es-
tablish finite element (FE) and particle models for global structural
analysis and local component fatigue analysis [19]; (5) evaluate
the impact of innovative bridge construction methods on bridge
performance by instrumenting two new bridges in Tennessee.
Bridge construction, design, and materials have changed over
time, and these changes may affect bridge performance. For ex-
ample, accelerated bridge construction (ABC) is a new process in
bridge construction and may affect bridge performance [20]. These
for MS-SHM-Hadoop.
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two new bridges can also serve as a test bed for the proposed
activities in this project. (6) Bridge performance evaluation: assess
the bridge performance by PIs of the global structure and local
critical components [21]. The implementation of MS-SHM-Hadoop
involves the following cutting-edge technologies: (1) machine
learning including classification, clustering, regression, and pre-
dictive analysis, based on general bridge information (e.g., age,
maintenance management, and weather conditions, etc.), sensory
data, and structural configurations (e.g., bridge material, length,
etc.), Bayesian network and stochastic analysis; (2) structural dy-
namic analysis; (3) signal processing for external load and struc-
ture response; (4) a multi-scale strategy ranging from the na-
tionwide bridges survey to specific component structural relia-
bility analysis; and (5) the Hadoop ecosystem to achieve high-
scalability including acquisition, fusion, normalization of hetero-
geneous sensory data, and highly scalable and robust data analysis
and information queries.
3. Implementation framework about MS-SHM-Hadoop

3.1. Infrastructure of MS-SHM-Hadoop

Fig. 2 shows the infrastructure of MS-SHM-Hadoop, which
consists of the following three modules: the sensor grid (SG)
module, the data processing and management (DPM) module
based on the Hadoop platform, and the structural evaluation (SE)
module based on structural dynamics modeling and simulation. A
more detailed description about each module is given below.

The sensor grid (SG) module mainly acquires, pre-processes the
raw sensory data and then transmits it to the data processing and
management (DPM) module. The mobile computing gateway
(denoted as MC for simplicity) coordinates with each other
through a wireless network. SensorCtrl is the control-module that
tunes the sensor's configurations for better observation of the
area-of-interest, which is located through the structural analysis
(SE module).

The Hadoop-enabled data processing and management (DPM)
module mainly integrates, transforms, classifies, and stores the
data with high fault-tolerance and scalability. Based on Hadoop
Distributed File System (HDFS) and MapReduce high-performance
parallel data processing paradigm [22], R-Connector and Mahout
[22] provide powerful statistics and machine learning capability.
Inspired by big-table techniques (including row-key, column-key,
Fig. 2. Infrastructure of
and time-stamp), HBase [22] efficiently accesses large-scale het-
erogeneous real-time or historical data. Flume [22] collects, ag-
gregates, and moves a large amount of streaming data (i.e., the
sensory data about bridge status) into Hadoop from a variety of
sources. Hive [22] provides a data warehouse infrastructure to
manage all the data corresponding to bridge serviceability; Pig
[22] offers MapReduce-enabled query and processing. Sqoop [22]
supports the ingestion of log data, which is related to bridge de-
sign and operation such as the bridge configuration (e.g., National
Bridge Inventory), transportation status (e.g., National Transit
Database), and weather conditions (e.g., NOAA's National Climatic
Data Center). In this work, InfoSys manages the external log data.
VIBRA stores the cyclic external force load (or vibration signals),
which is applied by the wind or vehicles, and the corresponding
structural response. The StConD component stores the structure
configuration (i.e., geometry configuration and mesh) of civil
structure. The EnvD (Environmental data component) keeps cir-
cumstance parameters such as temperature, moisture, etc. SenD is
a database component that keeps the configurations (e.g., location,
brand, mechanism, maintenance schedule, etc.) of sensors at-
tached to the bridges.

Based on structural dynamics theory and signal processing
techniques, the SE module mainly uses historical or real-time
sensory data to identify the global (or bridge-wise) or component-
wise structural faults. In addition, a Bayesian network is employed
to formulate the integrity analysis according to components'
structural reliability.

3.2. Flowchart of the MS-SHM-Hadoop

Fig. 3 shows the systematic approach of the implementation of
the MS-SHM-Hadoop system. Based on the acquired sensory data
and bridge-related log data, multiscale structural health monitor-
ing and measurement consist of the following stages: Stage 1:
nationwide bridges database survey using machine learning
techniques; Stage 2: global structural integrity analysis using sig-
nal processing, and structural dynamics; and Stage 3: localized
structural component reliability analysis using stochastic methods,
or multiscale modeling and simulation.

With reference to Fig. 2, it is observed that: Stage 1 is im-
plemented in the Sensor Grid (SG) module and partially in the
Data Processing and Management (DPM) module; Stage 2 is im-
plemented in the DPM module; and Stage 3 is implemented in the
Structure Evaluation module.
MS-SHM-Hadoop.



Fig. 3. Flowchart of multiscale structural health evaluation: (a) nationwide bridges survey; (b) global structural integrity analysis; and (c) localized structural component
reliability analysis. The bridges' pictures are derived from mnpoliticalroundtable.com.

Table 1
List of sensors.

Monitoring data
category

Sensor type Data to be collected

External loading and
structural response

Accelerometer Proper acceleration
Displacement
transducer

Structural displacement

Strain gage Strain of the structure
Laser Doppler
vibrometer

Vibration amplitude and
frequency

GPS station Location of structure and
time synchronization

Environmental
conditions

Thermometer Temperature and humidity
Anemometer and
wind-vane

Wind speed and direction

Traffic flow CCD camera Vehicle type, throughput,
velocity

Weight in motion Weight of the still/moving
vehicles
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By surveying the nation-wide bridge status on a big-data
platform, Stage 1 aims to obtain a preliminary characterization of
the safety level of all the 607,380 bridges in the United States from
the National Bridge Inventory (NBI) database. NBI involves di-
mensions, location, type, design criteria, traffic, structural and
functional conditions, and lots of other information. A general
screening and prioritization analysis based on weighting con-
siderations is performed to determine the relatively low safety
level aging bridges. The serviceability of a bridge is qualitatively
determined by a number of overall factors, such as, the year-of-
build, structure configuration, construction material, weather
conditions, traffic flow intensity and life cycle cost. In this project,
cluster analysis is employed to categorize the bridges according to
their serviceability.

Stage 2 aims to quantitatively evaluate the global structural
health status of the targeted bridges that are characterized with a
low safety level from Stage 1. Global structural integrity analysis
consists of the following intensive data-based structural dynamics:
(1) extraction of the measured structural resonance frequencies
from the time-history sensory data via Fast Fourier transformation
(FFT) for the targeted bridges; (2) computation of the fundamental
natural frequency (e.g., the 10 lowest natural frequencies) of the
bridges using the finite-element method (FEM), which gives the
upper bound of the solution; (3) computation of the fundamental
natural frequency of the bridges using the node-based finite-ele-
ment method (NS-FEM), which gives the lower bound of the so-
lution; (4) evaluation of the discrepancy about fundamental nat-
ural frequencies between the measured and computed ones;
(5) establishment of the relationship between the discrepancy of
the fundamental natural frequencies and the healthy status of the
bridge; and (6) based on the distribution of the discrepancy ob-
tained using a sufficient large number of sensors deployed over
the span of the bridge, the possible zones with heavy damage and
degradation are identified.

Following the time-domain or frequency-domain algorithm,
Stage 3 aims to obtain a precise description about the service-
ability of the local components in the heavily damaged zones
identified in Stage 2. This is to provide the remaining service life of
the bridge, as well as prepare possible strategies for life-pro-
longation. With the load effects from sensors and computational
values from the FE analysis, structural performance indicators are
calculated respectively in local scale and global scale. Proper as-
sessment theory, such as the neuro-fuzzy hybrid method [23] or
the DER&U method [24] is evaluated and utilized. Finally the
structural performance evaluation results are updated to the
management system of structural administration to provide pro-
fessional support for decision making [25].
4. Acquisition of sensory data and integration of structure-
related data

Table 1 lists representative sensors in the proposed system
needed to acquire the following information: external load;
structural response to external load; and environmental

http://mnpoliticalroundtable.com
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circumstance parameters. To provide a localized monitoring data
analysis, we adopt a mobile computing (MC) gateway that collects
the raw sensory data, pre-processes and sends them to the DPM
module via a wired or wireless network. The MC is used to provide
real-time analysis of the situation at a specific location on the
infrastructure. The MC is carried by a robot or unmanned aerial
vehicles (UAVs) to collect the acquired data from the sensors
covering a specified area on the bridge. The MC also communicates
with the DPM module where further extensive analysis of the
collected data is performed. For large-scale monitoring, multiple
MCs can be deployed based on the structure of a bridge and
communicate with each other to acquire more data from sensors
and broaden the monitoring analysis.

Wireless sensor networks (WSNs) play a big role in monitoring
the infrastructure health, where data is collected and sent to the data
processing management module [26–28]. Despite the benefits that
WSNs provide, such as, high scalability, high deployment flexibility of
deployment, and low maintenance cost, sensors suffer from com-
putational and energy limitations, which needs to be taken into
consideration for extended, reliable and robust monitoring.

Energy-efficient sensors are crucial for accurate long-duration
monitoring in SHM systems. On the one hand, to accurately for-
mulate the random process of structural mechanics and detect the
potential damage of complex structures in real time, both long-
term monitoring and real-time monitoring of these structures by
sensor networks are needed. On the other hand, sensors usually
have a very limited energy supply, battery power for example,
which is consumed by different modules in the sensors, including
the sensing module, the on-board data processing and storage
module, and the communication module. Therefore, development
of methods and strategies for the optimization of the sensors en-
ergy consumption is imperative.

In the proposed SHM system, the parameters to be monitored
are heterogeneous, such as temperature, wind, acceleration, dis-
placement, corrosion, strain, traffic, etc. These parameters have
different spatial and temporal properties, for example, different
variation speeds and locations. Depending on the nature of the
monitored parameters, some sensors may work continuously
while others may work in trigger mode. Based on these observa-
tions, the sampling rate in data acquisition and duty cycles [29] in
wireless networking is optimized for different types of sensors.
Moreover, in some types of data-intensive monitoring, such as
wireless video based traffic monitoring, energy consumption on
computation for source signal processing and compression might
be the same order of magnitude as energy consumption on wire-
less transmission of the post-processed data. In such scenarios,
joint source-channel coding schemes [30] can be developed based
on rate-distortion theory to achieve the optimal trade-off between
the computation-oriented energy-consumption and energy com-
munication-oriented energy-consumption. To further save energy,
sensors can remain in sleep mode or low duty cycle mode. When
they are approached by the MC for data collection, they are woken
up by the MC or switch from the low duty cycle mode to the high
duty cycle mode. Last, the proposed system may incorporate var-
ious energy-harvesting sensors to capture and generate power
from ambient energy sources such as vibration, strain, wind, solar,
and thermal. Bridges are ideally suited to harvest such types of
energy [31]. For example, sensors with piezoelectric materials can
be mounted or embedded to bridges based on bridge structural
information to harvest vibrational/strain energy generated by the
passing vehicles to supply the energy for low-power sensors.

5. Nationwide bridges survey

As the major task of the data processing and management
(DPM) module, the nationwide bridge survey is dedicated to
classifying the nationwide bridges according to their life-ex-
pectancy. The Hadoop Ecosystem and deep learning are two en-
abling techniques for the nationwide bridge survey.

5.1. The features used in nationwide bridges survey

In this work, more accurate features are used in the nationwide
bridge survey. Besides material erosion, cyclic and random ex-
ternal loads and corresponding structural responses are the major
causes of bridges' aging. A quantitative investigation about the
dynamic behavior of bridges will help us to extract the features for
structural health. The following governing equation shows the
linear dynamics of bridges:

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦{ } { } { } { } { } { } ( )_¨ + ̇ + = + + 1M u C u K u L L L .traffic wind self weight

where [ ]M , [ ]C , and [ ]K are mass, damping and stiffness matrices
respectively α β([ ] = [ ] + [ ])C M K ; { ¨}u , { ̇}u and { }u are acceleration,
velocity, and displacement vectors, respectively; external load ef-
fects { _ }Lself weight , { }Ltraffic and { }Lwind are self-weight of bridge,
traffic load incurred by moving vehicles, and aerodynamic load
incurred by wind, respectively. Load effects are stochastic due to
random variations in space and time. Turkstra load combination
(add up the peak values) [32] and Ferry Borges–Castanheta load
combination (time-scale) [33] are two applicable strategies to
model the uncertainty combination of load.

For small or medium scale bridges, traffic load ({ }Ltraffic ), which
is determined by the traffic velocity, density, and vehicle weight,
dominates the external load effects. For large-scale long span
bridges like suspension bridges and cable-stayed bridges, wind
load ({ }Lwind ) dominates the external loads. { _ }Lself weight is defined
by the following equation:

{ } = [ ( )]{ *} ( )ωL q Q k u e 2wind
i t

where ρ=q v1
2

2 is dynamic pressure; ρ is air mass density; v is
wind velocity; ω=k B v/ where B is the width of girder of bridge;
and Q(k) is aerodynamic force matrix. The dynamic behavior of
bridges caused by extreme weather or environmental conditions is
not considered in this work.

Fig. 4 shows the features to be used to measure bridges' life-
expectancy. Structural dynamics features include bridges' struc-
tural configuration (e.g., mass, damping and stiffness matrices),
and cyclic external load-effect/structural response (derived from
in-house sensors or National Transit Database). The weather in-
formation can be derived from NOAA's National Climatic Data
Center. The accessory bridges' information such as the age of
bridges, maintenance policy, and construction budgets can be
found in the National Bridge Inventory database. Particularly, the
Nationwide Bridge Sufficiency rating provides training data
(https://www.fhwa.dot.gov/bridge/).

As shown in Table 2, the National Bridge Inventory Database
uses a series of general features, which includes material and
structural types, climatic conditions, highway functional classes,
traffic loading, precipitation, and past preservation history (where
the data is available) etc., to specify the life-expectancy of bridges.
Only five features are presented here. As a measurement of the
bridge life-expectancy, the sufficiency rating scales from 100%
(entirely sufficient bridge) to 0% (deficient bridge).

5.2. Estimation of the life-expectancy of nationwide bridges using
the deep learning method

The goal of nationwide bridge survey is to identify those target
bridges that are in risk of short service life. Most of the previous
work about the estimation of the bridge life expectancy adopted
supervised machine learning methods [34–36] such as linear and

https://www.fhwa.dot.gov/bridge/


Fig. 4. Classification of features involved in nationwide bridges survey.
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nonlinear regression, Markov Chain, Support Vector Machine
(SVM), etc. This work emphatically investigates a deep learning
algorithm [37].

Fig. 5 shows a flowchart of the deep learning enabled nation-
wide bridge survey. Compared with many other classifiers, a deep
learning algorithm has the following advantages: (1) less or no
human supervision is needed; (2) some uninterpretable while
constructive features (or intermediate representations) can be
directly derived from raw data; (3) less training data is required
(this advantage is very important in the addressed project because
the archived real world sensory data for highly deficient bridges is
limited); (4) the mid layers of the deep networks can be re-pur-
posed from one application to another, and this advantage is the
motivation for using a hybrid deep learning method (HDL) which
arises by merging multiple different deep learning algorithms to
handle heterogeneous raw input data.

To efficiently and accurately classify the observed bridges, a
hybrid deep-learning (HDL) algorithm is investigated in this work.
HDL is featured with the following techniques: (1) Multiple data
with heterogeneous modalities, such as raw stream sensory data
like audio/video data, images, textual information like operational
data, city-open-data, environment factors, and other hand-de-
signed data is exploited so as to give a panoramic and full-spec-
trum description about targeted bridge's status. (2) HDL is
equipped with different deep-learning algorithms, at least at the
lower levels, to learn the features from multiple input data with
heterogeneous modality. A Deep Convolutional Neural Network
(DCNN) [38] is used to learn from visual media such as video and
images because it demonstrates superior performance (high
Table 2
Sample bridge data from the National Bridge Inventory Database (updated by 2012). (A

Year built Structure Material

1914 Stringer/Multi-beam or Girder Steel
1940 Tee Beam Concrete
1965 Stringer/Multi-beam or Girder Steel
1941 Stringer/Multi-beam or Girder Steel
1975 Tringer/Multi-beam or Girder Wood
1952 Tringer/Multi-beam or Girder Concrete
1984 Culvert Concrete
1940 Stringer/Multi-beam or Girder Steel
1950 Stringer/Multi-beam or Girder Steel
1946 Tee Beam Concrete
1982 Stringer/Multi-beam or Girder Prest. concre
1999 Box Beam or Girders Prest. concre
1993 Culvert Concrete
1988 Culvert Concrete
1970 Culvert Concrete
accuracy and fast training speed) on matrix-oriented feature-
learning. A Recurrent Neural Network (RNN) [39] is also con-
sidered to learn features from streaming data such as acoustic
signals or vibration signals because RNN exhibits dynamic tem-
poral behavior (enabled by the directed cycle inside RNN). A Deep
Boltzmann Machine (DBM) [40] specializing on learning the high-
level features from textual information such as weather condi-
tions, traffic status, and maintenance policy, etc. (3) Deep learning
algorithms always learn the upper-level features from lower ones
[37] and the input data with heterogeneous modality eventually
fuse at the upper layers with somewhat homogeneous modality.
Therefore, the HDL uses a unified deep learning algorithm such as
DBM in the feature-learning of the upper levels.

5.3. Techniques to boost the nationwide bridges survey

To boost the performance of the nationwide bridges survey,
various techniques such as missing data handling, data manage-
ment optimization, and dimensionality reduction, etc. are em-
ployed in this work.

Most of the software packages such as WeibullReg in R or
lifereg in SAS can handle missing data. However if there is a re-
latively large amount of missing data in the input data of statistical
model, some data imputation models are applied in this work.

The proposed project employs discrete Hash-tables to for-
mulate the correlation among data, control the data partitioning to
optimize data placement, and use in-memory technology [36].

The data involved in sensor-oriented structural analysis is al-
ways extremely high-dimensional [41]. As one of our preliminary
DT (ton/day): average daily traffic; SR: Sufficiency Rate).

ADT Status SR

660 Structurally deficient 6.5
210 Structurally deficient 47
170 Structurally deficient 23.6
1320 Structurally deficient 61.3
80 Structurally deficient 29.4
1080 Functionally obsolete 69.8
50 Functionally obsolete 87.5
1530 Functionally obsolete 50.8
650 Functionally obsolete 78.6
4350 Functionally obsolete 43.9

te 1010 Good condition 87.4
te 420 Excellent condition 88

1020 Not applicable 78.8
1670 Not applicable 99.4
990 Not applicable 99.4
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achievements, a rank revealing randomized singular value de-
composition ( )R SVD3 [42] was proposed to reduce the di-
mensionality of the dataset. As a variance of primary component
analysis (PCA), R SVD3 uses local statistical errors to estimate global
approximation error.

The preliminary investigations [43,44] demonstrated that
A-RSVD scales well to extremely big matrices and is efficient with
minimal sacrifices in accuracy due to the following reasons: (1)
R SVD3 is based on statistical sampling, which is also applicable to
incomplete or noisy data. (2) R SVD3 is able to obtain low-accuracy
approximation quickly, which is particularly suitable for many
applications where high-accuracy solutions are not necessary but
fast decision making is. (3) On the other hand, of most importance
R SVD3 is trivially naturally parallelizable.
6. Global structural integrity analysis

The global structural integrity analysis module aims to provide
further structural integrity analysis of the deficient bridges iden-
tified in Section 5. The objectives are itemized as follows: (1) to
apply the big-data and perform quantitative analysis of global
structural integrity of targeted bridges; (2) to provide guidelines
for more intensive and predictive examination of the bridge at the
component level to be carried out at Section 7; and (3) to feed
back to the database with integrity analysis results for future use.

6.1. Rational: big-data and inverse analysis

Assessments of the structural integrity from measured data of
health monitoring systems are typical inverse problems, with re-
sponses of the structure as inputs and the properties (e.g., in-
tegrity) of the structure as outputs. Such an inverse problem is in
general ill-posed in nature [44]. Various regularization techniques
have been developed to overcome the ill-posedness, and it is un-
derstood that the sensitivity from input to output is a critical factor
for any regularization technique to be effective. The use of big-data
has clearly an important advantage as the problem can be made
over-posed with more types of inputs available to choose from,
and hence improves the sensitiveness [44]. Inverse analysis can be
performed using either time-history data [45], and frequency re-
sponse data [46], or combinations of the two [47]. The big-data
from a monitoring system is generally rich in time-history records
of responses, which can be transferred to frequency responses via
standard Fast Fourier Transform (FFT) techniques. For effective
assessment of slender structures like bridges, the global structural
integrity relates well to the lowest natural frequencies or to the
frequency responses in the lower frequency range. Therefore, we
propose to conduct quantitative assessment of the target bridges
by using frequency response data extracted from our big-data
system.

6.2. Proposed major tasks and general procedures

As illustrated by Fig. 6(a), the proposed procedure for quanti-
tative analysis of global structural integrity of the targeted bridges
consists of three major tasks: data query for the response records
of the targeted bridges, computer analysis of the rich record data,
and assessment on the integrity level of the bridge using the data.
In this study, a small number (e.g., 6) of lowest natural frequencies
are chosen to establish global structural integrity indicators of the
characteristics of the bridges.

Data query for the measured global characteristics of the targeted
bridges: To obtain the actual global characteristics of the targeted
bridge, the following analysis is performed. (1) Based on the data
made available for querying in Section 5, bridges under monitoring
are selected for qualitatively integrity assessments. (2) A query is
then made to the database for bridges that have a high possibility
of a short life, and a list of targeted bridges is created, in the order
of urgency. (3) For each targeted bridge, a query is next made for
the major excitation events that may have happened to the bridge.
Such events include earthquake, wind storms, and major traffic
loading at levels closest to the level used in the design of the
bridge. (4) For each targeted bridge and each major event, the
detailed health monitoring data related to the global responses
and behavior is extracted. The data includes the time-history of
accelerometers, vibrometers, and strain gauges installed at various
locations on the bridge. (5) The Fast Fourier Transform (FFT) is
next performed to the time-history data to obtain the frequency
response data ( fiM, if this is not readily available in the database).

http://images.google.com


Fig. 6. Global structural integrity analysis with reference to: (a) theoretical response frequency; and (b) historical measured response frequency.

Fig. 7. Infrastructure for component reliability analysis.

Fig. 8. Modeling and simulation of crack generation and growth: (a) growth of planar crack (X-FEM); (b) deformation of nano-wire (MD); (c)crack generation in concrete
block (smooth particle method).
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Fig. 9. (a) Bridge's components; (b) Bayesian network for bridge.
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(6) Estimate the lowest few fundamental frequencies of the bridge
from the frequency response data.

Computer analysis of the same characteristics of bridges: Next, we
perform computer analysis to numerically predicate the values of
the lowest few fundamental frequencies which consists of the
following detailed procedures. (1) Query for proper the finite
element mesh from the database. Since our purpose is to compute
the lowest fundamental frequencies, a coarse global mesh is suf-
ficient. (2) Query next for the material properties, considering the
aging and erosion effects. (3) Query also for data on the supports
of the bridge, considering the possible movements and con-
solidation of the foundations [48]. (4) Perform the finite element
method (FEM) to obtain the FEM values of the lowest fundamental
frequencies (fiFEM), which provides the upper bounds of the natural
frequencies of the bridge [49]. (5) Perform the Node-based
Smoothed Finite Element Method (NS-FEM) to obtain the NS-FEM
values of the lowest fundamental frequencies ( ( − )f i

NS FEM ), which
provides the lower bounds of the natural frequencies of the bridge
[50]. (6) As a reference, a query may also be made for the lowest
natural frequencies when the bridge was initially designed.

Assessment on the integrity level of the bridges: Finally, we assess
the integrity of the bridge by comparing these lowest fundamental
frequencies obtained from the monitoring data, and FEM and NS-
FEM analyses, as is illustrated in Fig. 6. First, we define the nu-
merical error indicator for the computed natural frequencies:

= − ( )( − )Error f f 3i i
FEM

i
NS FEM

which gives a good indication on how accurate the numerical
value is. Note that the numerical error can be reduced if a finer
mesh is used. Therefore, if the error is too big we can use a fine
mesh to reduce the error gap. In general, the average of both the
FEM and NS-FEM values gives a good approximation [51]

( )= + ( )
( − )f f f /2 4i

N
i
FEM

i
NS FEM

where the superscript N denotes the numerical natural frequency.
The integrity level in terms of the rate of frequency reduction (ILF)
is defined as:

( )= − ( )
( − )ILF f f f/ 5i
N M

i
N

i
M

i
N

where the superscript M denotes the measured natural frequency.
We know that a degradation of a bridge structure may lead to a
reduction of some fundamental frequencies. In addition, we have a
general understanding that the frequency is related to the square-
root of the stiffness of the structure of the bridge. The integrity
level in terms of the rate of stiffness reduction (ILK) indicators is
then defined as:
( )= − ( )
( − )ILK f f f/ 6i
N M

i
N

i
M

i
N

In the end, a criterion (e.g., 10% reduction) can be set to categorize
the bridge into the list of bridges to be further studied in detail in
Section 7.

As illustrated in Fig. 6(b), integrity analysis is made by com-
paring the newly observed response signals with the historical
response signals.
7. Localized critical component reliability analysis

Different from Section 6, this section mainly focuses on the
measurement of structural component deterioration.

7.1. Deep-learning-enabled component reliability analysis

Fig. 7 shows the infrastructure of the component reliability
analysis. Just like the nationwide bridges survey, the deep learning
technique is employed to digest the input data with hetero-
geneous modality so as to obtain the reliability of the structural
components. Component reliability involves two strategies:
structural reliability analysis and observation-oriented method.
The former is derived from the probabilistic evaluation of load-
effect (denoted as S) resistance (denoted as R). The latter is derived
from the direct observation about the component using optical-
electro sensors (e.g., hyper-spectral image cameras and moisture
meters).

Structural reliability is conventionally measured by reliability
index β, which is determined by the limit state function = −Z R S .
Structural component failure occurs whenever <Z 0. If R and S
follow Gaussian distributions, the reliability index is a function of
the mean and standard deviation of Z, namely

β σ σ= = ( ¯ − ¯) ( + )
σ

¯
R S /Z

R S
2 2

Z
. Commonly used numerical methods to

calculate the reliability index include Monte Carlo simulation
(random sampling to artificially simulate a large number of ex-
periments and observe the results), first-order reliability method
(approximating limit-state function with a first-order function),
response surface method (approximating the unknown explicit
limit state functions by a polynomial function), Latin hypercube
simulation, genetic search algorithm, and subset simulation.

The crack density and size inside or outside the structural
component is also an index to evaluate the reliability of the
structural component. A hyper-spectral image processing techni-
que and concrete moisture measurement are commonly used
techniques to probe crack size and density.
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7.2. Probe prolongation strategies via simulating crack initialization
and growth

Fatigue failure is a complex and progressive form of local da-
mage which is significantly influenced by many factors such as
magnitude and frequency of the loads causing the fluctuating
stress, temperature, environment, geometrical complexities, ma-
terial imperfections and discontinuities [52]. Durability of the
bridge structures is mainly dominated by the fatigue behavior of
those critical components of the bridge.

In the proposed work, both time-domain and frequency-do-
main finite-element-based (FEM) [53–55] fatigue analyses are in-
vestigated to measure the life expectancy of the bridge component
under random cyclic external loads. The former is implemented by
formulating the transient solution to the dynamics of the struc-
ture. The latter formulates the random cyclic load and structural
response using Power Spectral Density (PSD) [56]. Numerically,
frequency-domain approaches are more efficient because they do
not need to solve the dynamics equation at each time step.
However, frequency domain approaches are not applicable for an
extremely irregular cyclic load. Both approaches are investigated
in the proposed work.

Crack generation and crack growth give us a more in-depth
understanding about the fatigue behavior of the material. Fig. 8
(a)–(c) shows our preliminary results in crack generation and
growth using extended FEM (X-FEM) [57], molecular dynamics
(MD) [58], and smoothed particle methods [59]. Our future work
will focus on the application of generalized smoothed particle
methods in the modeling and simulation of component fatigue,
based on which a potential life prolongation strategy will be
discussed.
8. Bridge's reliability analysis based on a Bayesian network

The Bayesian network is a probabilistic graphical model that
represents a set of random variables (nodes) and their conditional
dependencies (arcs) via a Directed Acyclic Graph (DAG). As one of
the major contributions of this work, a Bayesian network is em-
ployed to formulate the reliability of the bridge system according
to component reliability examined in the previous section (or
Section 7).

As illustrated in Fig. 9 (a) and (b), the Bayesian network for
bridges has the following features: (1) Each node represents a
structural component and takes a discrete value to describe the
serviceability (e.g. whether or not the component still functions, or
the life expectancy of component, etc.). (2) The topology of the
Bayesian network is determined according to the components
qualitative relationship. Two nodes should be connected directly if
one affects or causes the other, with the arc indicating the direc-
tion of the effect. (3) Once the topology of the Bayesian network is
specified, the inter-component dependency is quantified. As its
creative contribution, the inter-component interactions are jointly
formulated according to mechanical interaction (e.g., pin and
hanger) and statistical correlation (e.g., two pins not directly
related).

It is extremely computationally costly to construct the Bayesian
network of a bridge constituted out of tens of thousands of com-
ponents. Multiple techniques are introduced to reduce the com-
puting complexity. For example, the Bayesian network nodes are
classified into essential and non-essential components, only those
essential ones will be considered in integrity analysis. The inter-
component dependency is either derived from mechanical inter-
action or “inferred causal interactions” (statistical correlation), and
those insignificant inter-component correlations are ignored. In
addition, the sub-system, a self-contained system within a larger
one, is considered to formulate the Bayesian network into a hier-
archy structure.
9. Conclusion and future work

This work proposed a framework to construct a multi-scale
structural bridge health monitoring system based on the Hadoop
Ecosystem (MS-SHM-Hadoop) to monitor and evaluate the servi-
ceability of bridges. MS-SHM-Hadoop is a multi-scale reliability
analysis system, which ranges from a nationwide bridge survey,
global structural integrity analysis, to structural components' re-
liability analysis. As one of its major technical contributions, this
system employs a Bayesian network to formulate the integral
serviceability of a bridge according to component serviceability
and inter-component correlations. Enabled by deep learning and
Hadoop techniques, a full-spectrum, sustainable, and effective
evaluation can be made to cover the 600,000 nationwide bridges.

As our future work, the proposed system will be employed in
monitoring two Tennessee bridges to evaluate the feasibility and
performance of this project. One of the bridges was built with
Accelerated Bridge Construction (ABC), a bridge construction
method that uses innovative planning, design, materials, and
construction methods in a safe and cost-effective manner. The
other was built with a conventional construction method. The
impact of the innovative bridge construction methods on the
bridge performance will also be evaluated since bridge construc-
tion, design, and materials have changed over time, and these
changes may affect bridge performance. For example, the ac-
celerated bridge construction is a new process in bridge con-
struction and may affect bridge's performance [18–20]. A total of
up to 25 nodes will be deployed for each of these two targeted
bridges to demonstrate the integration of cutting-edge wireless
sensors with the big data platform for structural bridge health
monitoring.
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