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Abstract

A de1nition of connection coe$cients is introduced and techniques of computation are presented. We use semi-implicit
time di4erence scheme to solve Burgers equation by applying the evaluations of connection coe$cients in calculating the
integrals of the variational form. Comparisons of accuracy and robustness of numerical solutions are mentioned in the
examples. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The use of multiresolution techniques and wavelets has become increasingly popular in the devel-
opment of numerical schemes for the solution of partial di4erential equations [1,8,10,11,13,15,16].
The multilevel and approximation properties of the scaling function of the multiresolution analysis
provide computational e$ciency and accuracy of numerical solutions of partial di4erential equations.
In this paper, we shall solve Burgers equation to illustrate this claim. Burgers equation is a useful
model for many physically interesting problems, particularly those of a 9uid-9ow nature, in which
either shocks or viscous dissipation is signi1cant in part of the region [3]. For many combinations of
initial and boundary conditions, an exact solution of Burgers equation is available. Burgers equation
is one of the simplest nonlinear partial di4erential equations for which it is possible to obtain ex-
act solution, it behaves as an elliptic, parabolic or hyperbolic partial di4erential equation. Therefore,
Burgers equation has been used widely as a model equation for testing and comparing computational
techniques.
Numerical techniques for the solution of di4erential equations usually fall into the following

classes: 1nite-di4erence, 1nite element and spectral methods. Sometimes the latter two methods are
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considered as subsets of the method of weighted residuals. Galerkin method is one of the method of
weighted residual. In this paper we use semi-implicit time di4erencing scheme which is to combine
Galerkin method and 1nite-di4erence method in solving PDEs. This was 1rst mentioned in [8,10].
Here we use di4erent techniques to calculate the integrals in the variational form of the given
equation. Our method in computing the integrals is based on the evaluation of appropriate connection
coe$cients. It gives us an e$cient way to do the computation. To convert a di4erential equation
into a system of algebraic equations, we use an interpolation formula to approximate the coe$cient
functions of the given di4erential equation.
We organize our paper as follows. In Section 2, we review coi9et interpolation formula and its

approximation theorem. Section 3 provides de1nition and theory of connection coe$cients which
di4ers from that considered in [9]. As mentioned in [9], the calculation of connection coe$cients
consists of two parts. First, the connection coe$cients are shown to satisfy a set of homogeneous
equations that are derived from repeated use of the re1nement equation. This procedure gives rise to
an algebraic eigenvalue problem. In fact, the connection coe$cients are not uniquely determined by
this algebraic constraint. We need additional constraints which are inhomogeneous equations. These
are derived from moment conditions. Our approach will not only handle the boundary conditions
of the PDEs naturally but also provide a robust computational technique. In Section 4, we use
semi-implicit time di4erencing scheme to solve several Burgers equations by using the interpolation
formula of Section 2 and connection coe$cients introduced in Section 3. It turns out that our methods
provide a robust and accurate alternative to conventional methods.

2. Interpolations

We recall a generalized convergence theorem in R2 which is also true in Rn. A similar interpolation
formula using multi-scaling functions has been considered in [12]. In fact, there is a close relationship
between accuracy of scaling function and approximation order of scaling function interpolation [12].
Let �;  ∈C1 be, respectively, the scaling and wavelet function of the orthonormal multiresolution

analysis with compact support [4,5,14]. Construction of wavelet functions can start from the building
of scaling function, �(x), and a set of related coe$cients, {ak}k ∈ Z , which satisfy the two-scale
relation or re5nement equation,

�(x)=
∑
k

ak�(2x − k):

The wavelet function is

 (x)=
∑
k

bk�(2x − k);

where bk =(−1)ka−k+1. Let c and {M‘} denote the moments of � as follows:

c :=
∫

x�(x) dx=
1
2

N2∑
k =N1

kak ; (2.1)

the 1rst moment of the scaling function �(x), and

Ml :=
∫

xl�(x) dx; l=1; 2; : : : ; L− 1: (2.2)
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Where the scaling function � and wavelet  are of compact support [N1; N2], and {aN1 ; : : : ; aN2}
satis1es

N2∑
k =N1

ak =2;

N2∑
k =N1

akak+2‘=2�0‘; ‘∈Z;

N2∑
k =N1

(−1)kkmak =0; m=0; 1; : : : ; L− 1:

Theorem 2.1 (Lin and Zhou [13]). (Here we state a special case of [13]; namely; c=0:) Assume
the function f∈Ck( M�); where � is a bounded open set in R2; k¿L¿2. Let; for j∈Z;

fj(x; y) :=
1
2 j

∑
(p;q)∈�

f
(

p
2 j

;
q
2 j

)
�j

p(x)�
j
q (y) (x; y)∈�; (2.3)

where the index set

�= {(p; q)|(supp(�j
p)⊗ supp(�j

q )) ∩ � �= ∅}: (2.4)

�j
k (x)= 2

j
2�(2 jx − k); (2.5)

 j
k (x)= 2

j
2  (2 jx − k): (2.6)

In addition the 1rst moment vanishes, i.e.,∫
x�(x) dx=0: (2.7)

Then

‖f − fj‖L2(�)6C‖f(L)‖∞
(
1
2 j

)L

; (2.8)

‖f − fj‖H 1(�)6C‖f(L)‖∞
(
1
2 j

)L−1
; (2.9)

where C is a constant depending only on L and diameter of �.

‖f(L)‖∞ := max
(x;y)∈�; m= 0;1;:::;L

∣∣∣∣ @Lf
@xm@yL−m

(x; y)
∣∣∣∣ : (2.10)

Daubechies wavelets of order 3 and coi9ets satisfy the conditions in Theorem 2.1. We will use
the interpolation formula (2.3) in Section 4.
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3. Connection coe�cients

In this section we introduce the de1nition of connection coe$cients on the interval (0; 1) which
enhance the precision and speed of the computation for the solutions of linear and nonlinear di4er-
ential equations. In Section 4 we will use these connection coe$cients and the interpolation formula
(2.3) to solve nonlinear partial di4erential equations — Burgers equations.

3.1. The connection coe9cients on (0, 1)

De�nition 3.1. Let � be a scaling function with a 1nite support as described in Section 2. For j¿0,

�j= {p|supp(�j
p) ∩ (0; 1) �= ∅}: (3.1)

For p;m; k ∈�j, we de1ne the connection coe$cients on (0; 1) at level j as

�j
p;m :=

∫ 2 j

0
�(x − p)�(x − m) dx; (3.2)

�j
p;m :=

∫ 2 j

0
�′(x − p)�′(x − m) dx; (3.3)

�j
p;m;k :=

∫ 2 j

0
�′(x − p)�(x − m)�(x − k) dx: (3.4)

3.2. Properties of the connection coe9cients

The basic properties are

�j
p;m=�j

m;p; (3.5)

�j
p;m=�j

m;p; (3.6)

�j
p;m;k = �j

p;k;m; (3.7)

�j
p;m;k + �j

m;k;p + �j
k;p;m=�(x − p)�(x − m)�(x − k)|2 j

0 : (3.8)

For �(x) we have the dilation equation

�(x)=
∑
k

ak�(2x − k): (3.9)

So for �′(x) we have

�′(x)=
∑
k

2ak�′(2x − k): (3.10)

Use these equations we derive the following relations between the connection coe$cients at two
consecutive levels:

�j
p;m =

∫ 2 j

0
�(x − p)�(x − m) dx
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=
∑
i;‘

aia‘

∫ 2 j

0
�(2x − 2p− i)�(2x − 2m− ‘) dx

=
1
2

∑
i;‘

aia‘

∫ 2 j+1

0
�(x − 2p− i)�(x − 2m− ‘) dx

=
1
2

∑
i;‘

aia‘�
j+1
2p+i;2m+‘ (3.11)

and

�j+1
p;m =

∫ 2 j+1

0
�(x − p)�(x − m) dx

=
∫ 2 j

0
�(x − p)�(x − m) dx +

∫ 2 j+1

2 j
�(x − p)�(x − m) dx

= �j
p;m + �j

p−2 j ;m−2 j : (3.12)

Similarly,

�j+1
p;m =�j

p;m + �j
p−2 j ;m−2 j ; (3.13)

�j+1
p;m;k = �j

p;m;k + �j
p−2 j ;m−2 j ; k−2 j : (3.14)

Relations (3.12)–(3.14) show that the calculations of the connection coe$cients on (0; 1) are
essentially at level 0. These are the key ingredients for the fast algorithm of the calculations of the
connection coe$cients.

3.3. Exact calculations of the connection coe9cients

From the dilation equation (3.9) we have

�j
p;m =

∫ 2 j

0
�(x − p)�(x − m) dx

=
∫ 2 j

0

∑
i

ai�(2x − 2p− i)
∑
‘

a‘

∫ 2 j

0
�(2x − 2m− ‘) dx

=
1
2

∑
i;‘

aia‘

∫ 2 j+1

0
�(x − 2p− i)�(x − 2m− ‘) dx

=
1
2

∑
i;‘

aia‘

{∫ 2 j

0
�(x − 2p− i)�(x − 2m− ‘) dx

+
∫ 2 j+1

2 j
�(x − 2p− i)�(x − 2m− ‘) dx

}
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=
1
2

∑
i;‘

aia‘

{
�j
2p+i;2m+‘ +

∫ 2 j

0
�(x + 2 j − 2p− i)�(x + 2 j − 2m− ‘) dx

}

=
1
2

∑
i;‘

aia‘{�j
2p+i;2m+‘ + �j

2p+i−2 j ;2m+‘−2 j}: (3.15)

Similarly by (3.3), (3.4) and (3.10) we have

�j
p;m=2

∑
i;‘

aia‘{�j
2p+i;2m+‘ + �j

2p+i−2 j ;2m+‘−2 j}; (3.16)

�j
p;m;k =

∑
i;‘; t

aia‘at{�j
2p+i;2m+‘;2k+t + �j

2p+i−2 j ;2m+‘−2 j ;2k+t−2 j}: (3.17)

Each of these is a system of linear homogeneous equations. To determine the unique solution, we
need to create some linearly independent inhomogeneous equations using the moment equations,

xi=
∑
p

(c + p)i�(x − p); i=0; 1; : : : ; L− 1; (3.18)

where c is de1ned in (2.1).
For example, to evaluate {�j

p;m}, we use
ixi−1 =

∑
p

(c + p)i�′(x − p); i=1; : : : ; L− 1; (3.19)

to obtain∫ 2 j

0
i2x2i−2 dx=

∑
p;m

(c + p)i(c + m)i
∫ 2 j

0
�′(x − p)�′(x − m) dx (3.20)

or

i2

2i − 12
2(2i−1) j=

∑
p;m

(c + p)i (c + m)i�j
p;m; i=1; : : : ; L− 1: (3.21)

In this way, we can have more equations which will give rise to the solution of unknowns. In
general, it is an open problem, namely, how many independent inhomogeneous equations are needed
to 1nd the unique solution and the problem of whether a solution exists. For the cases of Daubechies
wavelet of order 3 and coi9ets of order 4, we are able to 1nd {�j

p;m}; {�j
p;m} and {�j

p;m;k}. In these
cases there is a unique solution. The dimension of the solution space of (3.15) is 1 and the dimension
of each of the solution spaces of (3.16) and (3.17) is 2.
For the case of higher derivatives and more terms, we have the following results. We now use

the following shorthand for di4erentiation of a function:

�di
m :=

ddi�m(x)
dxdi

: (3.22)

De1ne 2-term connection coe$cients as follows:

�j;d1d2
lm :=

∫ 2 j

0
�d1

l (x)�
d2
m (x) dx: (3.23)

Let us assume that � is d-times di4erentiable. Substitute (3.9) into (3.23) and simplify it, we have
the following scaling equations.
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Theorem 3.2.

A�d1d2 =
1
2d−1

�d1d2 (3.24)

where d :=d1 + d2 and

Al;m;p;q := ap−2laq−2m + ap−2l+2 j ; q−2m+2 j :

Let Bc1c2 =�c1−1
l (x)�c2

m (x)|2
j

0 ; we then have,

�c1c2 =
c1∑
0

(−1)iBc1−i; c2+i + (−1)c1�0; d: (3.25)

This implies the following statement.

Theorem 3.3. The space spanned by {�d1d2 |d1 + d2 =d} is of dimension 1.

We next consider moment equations which can be used to uniquely determine the solution of �.
Let K be the largest k such that xk can be expressed as a locally 1nite series of translations of

the scaling functions. Namely, for 06k6K ,

xk =
∑

cl�l(x); (3.26)

where the coe$cients are

cl=Mk
l =

∫ ∞

−∞
xk�l(x) dx: (3.27)

Di4erentiate (3.26) k times, we obtain

k! =
∑

i

M k
i �

k
i (x): (3.28)

Further di4erentiation gives rise to

0=
∑

i

M k
i �

j
i (x); j ¿ k: (3.29)

Multiplying both sides of the above 2 equations by �d1
m (x) and integrating over (0; 2

j), we have

Theorem 3.4.

∑
l

Mk
l �

j;d1d2
lm =


 k!

∫ 2 j

0
�d1

m (x) dx for k =d2;

0 for k ¡d2:
(3.30)

Similarly, multiplying both sides of the equations (3.28) amd (3.29) by �d1
l (x) and integrating

over (0; 2 j), we have

Theorem 3.5.

∑
m

Mk
m�

j;d1d2
lm =


 k!

∫ 2 j

0
�d2

l (x) dx for k =d1;

0 for k ¡d1:
(3.31)
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Table 1
The coe$cients for coi9ets of order 4

n an

−4 0.011587596739
−3 −0.029320137980
−2 −0.047639590310
−1 0.273021046535
0 0.574682393857
1 0.294867193696
2 −0.054085607092
3 −0.042026480461
4 0.016744410163
5 0.003967883613
6 −0.001289203356
7 −0.000509505399

In a similar fashion, depending on the need in solving di4erential equations or other applications,
one can derive 3 or more terms connection coe$cients.

4. Burgers equation

In this section we use the connection coe$cients (3.2)–(3.4) and the interpolation formula (2.3)
to solve Burgers equations. We use j=6 and scaling functions are coi9ets of order 4 (see Table 1)
in the following three problems.

4.1. The 5rst problem

We consider the following initial-boundary value problem:

@u
@t
+ u

@u
@x

− 1
Re

@2u
@x2

= 0; (4.1)

where Re is the Reynolds number. The solution will be sought in the region −16x61 for t¿0.
Initial and boundary conditions are taken to be

u0(x)= u(x; 0)=
{
1 if − 16x60;
0 if 0¡x61; (4.2)

u(−1; t)= 1; u(1; t)= 0: (4.3)

We apply the following semi-implicit scheme in the time direction

u0 = u0; (4.4)

uk+1 − uk

Qt
+ uk @u

k+1

@x
= )

@2uk+1

@x2
on (0; 1); k¿0; (4.5)

uk+1(−1)=0; uk+1(1)= 1; (4.6)
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where uk(x) := u(x; kQt), )=1=Re and the time discretization step Qt=10−3. At each time step
(4.4)–(4.6) provides a boundary value problem for an elliptic ordinary di4erential equation about
uk+1.
To solve (4.4)–(4.6), let w= uk+1, then we have

− w′′ +
1
)
ukw′ +

1
)Qt

w=
1

)Qt
uk ; (4.7)

w(−1)=0; w(1)= 1: (4.8)

We convert the above equation to its variational form and approach the problem by reducing the
Dirichlet condition to Neumann condition and use interpolation formula to approximate the coe$cient
function.
To do this, we consider the following setting:

a(u; v)=
∫ 1

0
(u′v′ + gu′v+ cuv) dx; (4.9)

L(v)= 〈f; v〉; for every v∈H 1
0 (0; 1)× R; (4.10)

where g(x)= (1=))uk(x); c=1=)Qt, f= cuk .
By completing square and choosing suitable constants, one can check the V -ellipticity of the

bilinear form a(u; v). This implies the existence and uniqueness of the solution at each stage in
solving the above equation [7].
De1ne u0; u1; u2 as the solution of the following variational problem in H 1(0; 1)× R; respectively,

u0 ∈H 1(0; 1);

a(u0; v)=L(v) for all v∈H 1(0; 1); (4.11)

u1 ∈H 1(0; 1);

a(u1; v)= v(0) for all v∈H 1(0; 1); (4.12)

u2 ∈H 1(0; 1);

a(u2; v)= v(1) for all v∈H 1(0; 1): (4.13)

To the original boundary value problem, we associate the following problem:

a(u; v)=L(v) + /1v(0) + /2v(1) for every v∈H 1(0; 1); u(0)= 1; u(1)= 0: (4.14)

The function u in the above equation necessarily satis1es

u= u0 + /1u1 + /2u2; (4.15)

which implies that /1, /2 satis1es{
u1(0)/1 + u2(0)/2 = 1− u0(0)
u1(1)/1 + u2(1)/2 = − u0(1):

(4.16)
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Table 2
Solutions of Burgers equation (4.1)–(4.3)

x Approx. ua Exact ue Approx. uw

−1.0 1.0000 1.0000 1.0000
−0.9 0.9956 1.0000 1.0000
−0.8 1.0456 1.0000 1.0000
−0.7 1.0672 1.0000 1.0000
−0.6 1.0402 1.0000 1.0000
−0.5 0.9831 1.0000 1.0000
−0.4 0.9303 1.0000 1.0000
−0.3 0.9128 1.0000 1.0000
−0.2 0.9444 1.0000 1.0000
−0.1 1.0159 1.0000 1.0000
0 1.0963 1.0000 1.0000
0.1 1.1411 1.0000 1.0000
0.2 1.1057 1.0000 1.0000
0.3 0.9613 0.9998 0.9995
0.4 0.7099 0.9714 0.9723
0.5 0.3933 0.1861 0.2034
0.6 0.0905 0.0015 0.0004
0.7 −0.1017 0.0000 0.0000
0.8 −0.1154 0.0000 0.0000
0.9 0.0091 0.0000 0.0000
1.0 0.0000 0.0000 0.0000

‖ua − ue‖rms = 0:1049 ‖uw − ue‖rms = 0:0377

The solutions of the Neumann problems (4.11)–(4.13) will give rise to the solution of the associated
problem (4.14).
The exact solution of Eqs. (4.1)–(4.3) is

ue =

∫∞
−∞ [(x − 0)=t] exp{−0:5ReF} d0∫∞

−∞ exp{−0:5ReF} d0
; (4.17)

where

F(0; x; t)=
∫ 0

0
u0(0′) d0′ +

0:5(x − 0)2

t
: (4.18)

In [6] the traditional Galerkin method is used to solve this problem for various Reynolds number
Re. Here we solve it for Re=100 at t=0:92. The approximate solution is denoted by uw. We list
the results in Table 2, and compare them with the traditional Galerkin method solution ua and exact
solution ue. We also compute the discrete rms error which is de1ned by

‖ua − ue‖rms =
[
∑L

l= 1(ua − ue)2l ]
1=2

L1=2
: (4.19)
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Table 3
Numerical solutions of Burgers equation (4.20)–(4.22)

x t=0:00 t=0:13 t=0:25

−1.000 0.0000 0.0000 0.0000
−0.900 0.3090 0.2226 0.1736
−0.800 0.5878 0.4369 0.3441
−0.700 0.8090 0.6338 0.5082
−0.600 0.9511 0.8024 0.6616
−0.500 1.0000 0.9285 0.7984
−0.400 0.9511 0.9926 0.9099
−0.300 0.8090 0.9665 0.9806
−0.200 0.5878 0.8106 0.9779
−0.100 0.3090 0.4828 0.8063
0.000 0.0000 0.0000 −0.0019
0.100 −0.3090 −0.4828 −0.8068
0.200 −0.5878 −0.8106 −0.9780
0.300 −0.8090 −0.9665 −0.9806
0.400 −0.9511 −0.9926 −0.9099
0.500 −1.0000 −0.9285 −0.7984
0.600 −0.9511 −0.8024 −0.6616
0.700 −0.8090 −0.6338 −0.5082
0.800 −0.5878 −0.4369 −0.3441
0.900 −0.3090 −0.2226 −0.1736
1.000 0.0000 0.0000 0.0000

4.2. The second problem

We consider the following Burgers equation:

@u
@t
+ u

@u
@x
= )

@2u
@x2

(4.20)

for t ¿ 0; 0¡x¡ 1 with the initial condition

u(x; 0)= − sin(�x); (4.21)

and boundary equations

u(1; t)= u(−1; t)= 0 (4.22)

whose analytic solution is known [2]. Here )=10−2=�. We use the same method as problem 1 and
list the results in Tables 3 and 4.
One of the special features of our methods is the multilevel iterations algorithms which provide

more e$cient calculations. As we compare our results of problem 1 with [6] and problem 2 with
[15], our method is relatively more robust and accurate. The above two problems are Dirichlet
boundary value problems. We next consider mixed boundary conditions.
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Table 4
Exact solution of Burgers equation (4.20)–(4.22)

x t=0:00 t=0:13 t=0:25

−1.00 0.0000 0.0000 0.0000
−0.90 0.3090 0.2226 0.1736
−0.80 0.5878 0.4369 0.3441
−0.70 0.8090 0.6338 0.5082
−0.60 0.9511 0.8024 0.6616
−0.50 1.0000 0.9286 0.7985
−0.40 0.9511 0.9927 0.9100
−0.30 0.8090 0.9656 0.9808
−0.20 0.5878 0.8103 0.9777
−0.10 0.3090 0.4829 0.8073
0.00 0.0000 0.0000 0.0000
0.10 −0.3090 −0.4829 −0.8073
0.20 −0.5878 −0.8103 −0.9777
0.30 −0.8090 −0.9656 −0.9808
0.40 −0.9511 −0.9927 −0.9100
0.50 −1.0000 −0.9286 −0.7985
0.60 −0.9511 −0.8024 −0.6616
0.70 −0.8090 −0.6338 −0.5082
0.80 −0.5878 −0.4369 −0.3441
0.90 −0.3090 −0.2226 −0.1736
1.00 0.0000 0.0000 0.0000

4.3. The third problem

We consider the following mixed initial boundary-value problem

@u
@t

− u
@u
@x
= )

@2u
@x2

(4.23)

for t ¿ 0; 0¡x¡ 1 with the initial condition

u(x; 0)= u0(x) (4.24)

and boundary equations
@u(0; t)

@x
=0; u(1; t)= 1; (4.25)

where )=2 × 10−3 and u0(x)= e−8(1−x). We apply the following semi-implicit scheme in the time
direction

u0 = u0; (4.26)

uk+1 − uk

Qt
− uk @u

k+1

@x
= )

@2uk+1

@x2
on (0; 1); k¿0; (4.27)

@uk+1(0)
@x

=0; uk+1(1)= 1; (4.28)
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where uk(x) := u(x; kQt) and the time discretization step Qt=10−3. At each time step (4.26)–(4.28)
provides a mixed boundary-value problem for an elliptic ordinary di4erential equation about uk+1.
To solve (4.26)–(4.28), let w= uk+1, then we have

− w′′ − 1
)
ukw′ +

1
)Qt

w=
1

)Qt
uk ; (4.29)

w′(0)= 0; w(1)= 1: (4.30)

In order to reduce the Dirichlet condition to Neumann condition, we consider the following setting:

a(u; v)=
∫ 1

0
(u′v′ + gu′v+ cuv) dx; (4.31)

L(v)= 〈f; v〉 for every v∈H 1
0 (0; 1)× R; (4.32)

where g(x)= (1=))uk(x); c=1=)Qt, f= cuk .
Let u0; u1 satisfy the following variational problem in H 1(0; 1)× R, respectively,

u0 ∈H 1(0; 1);

a(u0; v)=L(v) for all v∈H 1(0; 1); (4.33)

u1 ∈H 1(0; 1);

a(u1; v)= v(1) for all v∈H 1(0; 1): (4.34)

Corresponding to the original mixed boundary value problem, we have the following associated
problem:

a(u; v)=L(v) + /1v(1) for every v∈H 1(0; 1);

u(1)= 1: (4.35)

The function u in the above equation necessarily satis1es

u= u0 + /1u1; (4.36)

which implies that /1 satis1es

u(1)= u0(1) + /1u1(1)= 1: (4.37)

Hence,

/1 =
1− u0(1)
u1(1)

: (4.38)

The solutions of the Neumann problems (4.33), (4.34) will give rise to the solution of the associated
problem (4.35). Fig. 1 shows the solution at times 0, 0.03 and 0.18, illustrating the development of
a quasi shock starting at t=0:03 and fully developed at t=0:18.
In this paper we have been exploring the wavelet interpolation based approximations for the

numerical solutions of nonlinear problems. For this class of problems, we have seen wavelets compare
favorably with traditional methods. Our method seems to be promising for higher-dimensional cases.
We plan to solve Navier–Stokes equations along these lines.



76 E.B. Lin, X. Zhou / Journal of Computational and Applied Mathematics 135 (2001) 63–78

Fig. 1. The solution of Burgers equation (4.23)–(4.25) at t=0 (◦), t=0:3 (×), t=0:18 (−).

Appendix

In this appendix we will discuss the convergence and error analysis of the methods used in
Section 4. More generally, we consider the following boundary value problems in terms of variational
formulation.
Find u∈V such that

a(u; v)=L(v) for every v∈V: (A.1)

In (A.1), V, a(.,.), L are as follows:
(1) V is a Hilbert Space with scalar product (.,.) and associated norm ‖:‖.
(2) a :V × V →R is a bilinear form, continuous and V-elliptic over V × V
(3) L : →R is linear and continuous.
If properties (1)–(3) hold it follows from the Lax–Milgram Theorem that (A.1) has a unique

solution.
In fact, applying the Riesz Representation Theorem, there exists A∈ Isom(V; V ∗), uniquely de1ned,

such that

a(v; w)= 〈Av; w〉 for every v; w∈V: (A.2)
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And hence,

|a(v; w)|6‖A‖‖v‖‖w‖ for every v; w∈V: (A.3)

Consider a family {Vn}n of closed subspaces of V and V1⊂V2⊂ · · ·Vn−1⊂Vn · · · : In Vn it is quite
natural to approximate the problem (A.1) by the following setting.
Find un ∈Vn such that

a(un; v)=L(v) for every v∈Vn: (A.4)

Problem (A.4) has a unique solution by the Lax–Milgram Theorem. On the other hand, we have
the following approximation property:

‖un − u‖6‖A‖‖A−1‖‖v− u‖ for every v∈Vn: (A.5)

If the bilinear form a(:; :) is symmetric then the above inequality will give rise to

‖un − u‖6[‖A‖‖A−1‖]1=2‖v− u‖ for every v∈Vn: (A.6)

Therefore, we have the following convergence result,

lim
n→∞ ‖un − u‖=0; (A.7)

provided,

lim
n→∞ (inf‖v− u‖: v∈Vn)= 0: (A.8)
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