# V ertex O perator A Igebras and A ssociative A Igebras 

Chongying Dong*<br>Department of Mathematics, University of California, Santa Cruz, California 95064<br>E-mail: dona@ cats.ucsc.edu

metadata, citation and similar papers at core.ac.uk

Department of Mathematical Sciences, Rutgers University, Camden, New Jersey 08102 E-mail: hli@crab.rutgers.edu

# Geoffrey M ason ${ }^{\ddagger}$ 

Department of Mathematics, University of California, Santa Cruz, California 95064
E-mail: gem@ cats.ucsc.edu
Communicated by Walter Feit
R eceived J anuary 16, 1997

Let $V$ be a vertex operator algebra. We construct a sequence of associative algebras $A_{n}(V)(n=0,1,2, \ldots)$ such that $A_{n}(V)$ is a quotient of $A_{n+1}(V)$ and a pair of functors between the category of $A_{n}(V)$-modules which are not $A_{n-1}(V)$ modules and the category of admissible $V$-modules. These functors exhibit a bijection between the simple modules in each category. We also show that $V$ is rational if and only if all $A_{n}(V)$ are finite-dimensional semisimple algebras. © 1998 A cademic Press

[^0]
## 1. INTRODUCTION

For a vertex operator algebra $V$ Zhu constructed an associative algebra $A(V)[\mathrm{Z}]$ such that there is a one-to-one correspondence between irreducible admissible $V$-modules and irreducible $A(V)$-modules. In the case that $V$ is rational the admissible $V$-module category and $A(V)$-module category are in fact equivalent. But if $V$ is not rational, $A(V)$ does not carry enough information for the representation of $V$.

In this paper we construct a sequence of associative algebras $A_{n}(V)$ ( $n=0,1,2, \ldots$ ) such that $A_{0}(V)=A(V)$ and $A_{n}(V)$ is an epimorphic image of $A_{n+1}(V)$. A s in [Z], we use $A_{n}(V)$ to study representation theory of $V$. Let $M=\oplus_{k \geq 0} M(k)$ be an admissible $V$-module as defined in [DLM ] with $M(0) \neq 0$. Then each $M(k)$ for $k \leq n$ is an $A_{n}(V)$-module. In some sense, $A_{n}(V)$ takes care of the first $n+1$ homogeneous subspaces of $M$ while $A(V)$ concerns the top level $M(0)$. The results of the present paper are modeled on the results in [DLM] and the methods are also similar. H owever, the situation for constructing admissible $V$-modules from $A_{n}(V)$-modules turns out to be very complicated. As in [L2, DLM] we extensively use the Lie algebra

$$
\hat{V}=V \otimes \mathbb{C}\left[t, t^{-1}\right] /\left(L(-1) \otimes 1+1 \otimes \frac{d}{d t}\right)\left(V \otimes \mathbb{C}\left[t, t^{-1}\right]\right)
$$

to construct admissible $V$-modules from $A_{n}(V)$-modules.
It should be pointed out that the $\left\{A_{n}(V)\right\}$ in fact form an inverse system. So it is natural to consider the inverse $\operatorname{limit} \lim A_{n}(V)$ and its representations. This problem will be addressed in a separate paper.

One of the important motivations for constructing $A_{n}(V)$ is to study induced modules from a subalgebra to $V$ as initiated in [DL]. Induced module theory is very important in the representation theory of classical objects such as groups, rings, Lie algebras. The theory of $A_{n}(V)$ developed in this paper will definitely play a role in the study of induced modules for vertex operator algebras. In order to see this, we consider a subalgebra $U$ of $V$ and a $U$-submodule $W$ of $M$ which is an admissible $V$-module. In general, the top level of $W$ is not necessarily a subspace of the top level of $M$. In other words, an $A(U)$-module can be a subspace of an $A_{n}(V)$ module for some $n>0$. One can now see how the $A_{n}(V)$ enter the picture of studying the induced module for the pair ( $U, V$ ) along this line.

This paper is organized as follows: In Section 2 we introduce the algebra $A_{n}(V)$ which is a quotient of $V$ modulo a subspace $O_{n}(V)$ consisting of $u{ }_{n} v$ (see Section 2 for the definition) and $L(-1) u+L(0) u$ for $u, v \in V$. In the case $n=0,(L(-1)+L(0)) u$ can be expressed as $\omega \circ_{0} u$. But in general it is not clear if one can write $(L(-1)+L(0)) u$ as a linear
combination of $v \circ_{n} w$ 's. On the other hand, the weight zero component of the vertex operator $Y((L(-1)+L(0)) u, z)$ is zero on any weak $V$-module. So we have to put $(L(-1)+L(0)) V$ artificially in $O_{n}(V)$ for general $n$. We also show in this section how the identity map on $V$ induces an epimorphism of algebras from $A_{n+1}(V)$ to $A_{n}(V)$. In Section 3, we construct a functor $\Omega_{n}$ from the category of weak $V$-modules to the category of $A_{n}(V)$-modules such that if $M=\oplus_{k \geq 0} M(k)$ is an admissible $V$-module then $\oplus_{k=0}^{n} M(k)$ with $M(0) \neq 0$ is contained in $\Omega_{n}(M)$ and each $M(k)$ for $k \leq n$ is an $A_{n}(V)$-submodule. In particular, if $M$ is irreducible then $\oplus_{k=0}^{n} M(k)=\Omega_{n}(M)$ and each $M(k)$ is an irreducible $A_{n}(V)$-module.

Section 4 is the core of this paper. In this section we construct a functor $L_{n}$ from the category of $A_{n}(V)$-modules which cannot factor through $A_{n-1}(V)$ to the category of admissible $V$-modules. For any such $A_{n}(V)$ module $U$ we first construct a universal admissible $V$-module $\bar{M}_{n}(U)$ which is somehow a "generalized V erma module." The $L_{n}(V)$ is then a suitable quotient of $\bar{M}_{n}(U)$; the proof of this result is technically the most difficult part of this paper. We also show that $\Omega_{n}\left(L_{n}(U)\right) / \Omega_{n-1}\left(L_{n}(U)\right)$ is isomorphic to $U$ as $A_{n}(V)$-modules. Moreover, $V$ is rational if and only if the $A_{n}(V)$ are finite-dimensional semisimple algebras for all $n$. Section 5 deals with several combinatorial identities used in previous sections.

We assume that the reader is familiar with the basic knowledge on vertex operator algebras as presented in [B, FHL, FLM ]. We also refer the reader to [DLM] for the definitions of weak modules, admissible modules, and (ordinary) modules.

## 2. THE ASSOCIATIVE ALGEBRA $A_{n}(V)$

Let $V=(V, Y, \mathbf{1}, \omega)$ be a vertex operator algebra. We will construct an associative algebra $A_{n}(V)$ for any nonnegative integer $n$ generalizing the Zhu's algebra $A(V)$ which is our $A_{0}(V)$.

Let $O_{n}(V)$ be the linear span of all $u{ }^{\circ} v$ and $L(-1) u+L(0) u$ where for homogeneous $u \in V$ and $v \in V$,

$$
\begin{equation*}
u \circ_{n} v=\operatorname{Res}_{z} Y(u, z) v \frac{(1+z)^{\mathrm{wt} u+n}}{z^{2 n+2}} . \tag{2.1}
\end{equation*}
$$

Define the linear space $A_{n}(V)$ to be the quotient $V / O_{n}(V)$.
We also define a second product $*_{n}$ on $V$ for $u$ and $v$ as above:

$$
\begin{equation*}
u *_{n} v=\sum_{m=0}^{n}(-1)^{m}\binom{m+n}{n} \operatorname{Res}_{z} Y(u, z) \frac{(1+z)^{\mathrm{wt} u+n}}{z^{n+m+1}} v . \tag{2.2}
\end{equation*}
$$

Extend linearly to obtain a bilinear product on $V$ which coincides with that of Z hu [Z] if $n=0$. We denote the product (2.2) by $*$ in this case. N ote that (2.2) may be written in the form

$$
\begin{equation*}
u *_{n} v=\sum_{m=0}^{n} \sum_{i=0}^{\infty}(-1)^{m}\binom{m+n}{n}\binom{\mathrm{wt} u+n}{i} u_{i-m-n-1} v . \tag{2.3}
\end{equation*}
$$

The following lemma generalizes $L$ emmas 2.1.2 and 2.1.3 of [ $Z$ ].
Lemma 2.1. (i) Assume that $u \in V$ is homogeneous, $v \in V$, and $m \geq$ $k \geq 0$. Then

$$
\operatorname{Res}_{z} Y(u, z) v \frac{(1+z)^{\mathrm{w} t u+n+k}}{z^{2 n+2+m}} \in O_{n}(V) .
$$

(ii) Assume that $v$ is also homogeneous. Then

$$
u *_{n} v-\sum_{m=0}^{n}\binom{m+n}{n}(-1)^{n} \operatorname{Res}_{z} Y(v, z) u \frac{(1+z)^{\mathrm{wt} v+m-1}}{z^{1+m+n}} \in O_{n}(V)
$$

and
(iii) $u *_{n} v-v *_{n} u-\operatorname{Res}_{z} Y(u, z) v(1+z)^{\mathrm{wt} u-1} \in O_{n}(V)$.

Proof. The proof of (i) is similar to that of Lemma 2.1.2 of [Z]. As in [Z] we use $L(-1) u+L(0) u \in O_{n}(V)$ to derive the formula

$$
Y(u, z) v \equiv(1+z)^{-\mathrm{wt} u-\mathrm{wt} v} Y\left(v, \frac{-z}{1+z}\right) u \quad \bmod O_{n}(V) .
$$

Thus we have

$$
\begin{aligned}
& u *_{n} v=\sum_{m=0}^{n}(-1)^{m}\binom{n+m}{n} \operatorname{Res}_{z} Y(u, z) v \frac{(1+z)^{\mathrm{wt} u+n}}{z^{m+n+1}} \\
& \equiv \sum_{m=0}^{n}(-1)^{m}\binom{n+m}{n} \operatorname{Res}_{z} Y\left(v, \frac{-z}{1+z}\right) u \frac{(1+z)^{-\mathrm{wt} v+n}}{z^{m+n+1}} \\
& \bmod O_{n}(V) \\
&=\sum_{m=0}^{n}(-1)^{n}\binom{n+m}{n} \operatorname{Res}_{z} Y(v, z) u \frac{(1+z)^{\mathrm{wt} v+m-1}}{z^{m+n+1}}
\end{aligned}
$$

and (ii) is proved.
$U$ sing (ii) we have

$$
\begin{aligned}
u *_{n} v-v *_{n} u \equiv & \operatorname{Res}_{z} Y(u, z) v(1+z)^{\mathrm{wt} u-1} \\
& \times\left(\sum_{m=0}^{n}\binom{m+n}{n} \frac{(-1)^{m}(1+z)^{n+1}-(-1)^{n}(1+z)^{m}}{z^{n+m+1}}\right)
\end{aligned}
$$

By Proposition 5.2 in the A ppendix we know that

$$
\sum_{m=0}^{n}\binom{m+n}{n} \frac{(-1)^{m}(1+z)^{n+1}-(-1)^{n}(1+z)^{m}}{z^{n+m+1}}=1
$$

The proof is complete.
Lemma 2.2. $O_{n}(V)$ is a 2 sided ideal of $V$ under $*_{n}$.
Proof. First we show that $(L(-1) u+L(0) u) *_{n} v \in O_{n}(V)$ for any homogeneous $u \in V$. From the definition we see that

$$
\begin{aligned}
&(L(-1) u) *_{n} v \\
&= \sum_{m=0}^{n}\binom{m+n}{n}(-1)^{m} \operatorname{Res}_{z} Y(L(-1) u, z) \frac{(1+z)^{\mathrm{wt} u+n+1}}{z^{n+m+1}} v \\
&= \sum_{m=0}^{n}\binom{m+n}{n}(-1)^{m} \operatorname{Res}_{z}\left(\frac{d}{d z} Y(u, z)\right) v \frac{(1+z)^{\mathrm{wt} u+n+1}}{z^{n+m+1}} \\
&= \sum_{m=0}^{n}\binom{m+n}{n}(-1)^{m+1} \operatorname{Res}_{z} Y(u, z) v \\
& \times\left(\frac{(-n-m-1)(1+z)^{\mathrm{wt} t u+n+1}}{z^{n+m+2}}+\frac{z(\mathrm{wt} u+n+1)(1+z)^{\mathrm{wt} u+n}}{z^{n+m+2}}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& (L(-1) u+\mathrm{wt} u u){ }_{n} v \\
& \quad=\sum_{m=0}^{n}\binom{m+n}{n}(-1)^{m} \operatorname{Res}_{z} Y(u, z) v(1+z)^{\mathrm{wt} u+n} \frac{m z+n+m+1}{z^{n+m+2}} .
\end{aligned}
$$

It is straightforward to show that

$$
\begin{aligned}
& \sum_{m=0}^{n}\binom{m+n}{n}(-1)^{m} \frac{m z+n+m+1}{z^{n+m+2}} \\
& \quad=\sum_{m=0}^{n}\binom{m+n}{n}(-1)^{m} \frac{m z}{z^{n+m+2}}+\sum_{m=0}^{n}\binom{m+n+1}{n}(-1)^{m} \frac{m+1}{z^{n+m+2}} \\
& \quad=(-1)^{n}\binom{2 n+1}{n} \frac{2 n+1}{z^{2 n+2}} .
\end{aligned}
$$

It is clear now that $(L(-1) u+L(0) u) *_{n} v \in O_{n}(V)$.

Second, we show that $u *_{n}(L(-1) v+L(0) v) \in O_{n}(V)$. U sing the result that $(L(-1) v+L(0) v){ }_{n} v \in O_{n}(V)$ and Lemma 2.1(iii) we have

$$
\begin{aligned}
u *_{n} & (L(-1) v+L(0) v) \\
& \equiv-\operatorname{Res}_{z}\left(Y(L(-1) v, z) u(1+z)^{\mathrm{wt} v}+Y(L(0) v, z) u(1+z)^{\mathrm{wtv}-1}\right) \\
& \bmod O_{n}(V) \\
& =\operatorname{Res}_{z}\left(Y(v, z) u \frac{d}{d z}(1+z)^{\mathrm{wt} v}-Y(L(0), v, z) u(1+z)^{\mathrm{wt} v-1}\right) \\
& =0 .
\end{aligned}
$$

Third, a similar argument as in [Z] using Lemma 2.1(i) shows that $u *_{n}\left(v \circ_{n} w\right) \in O_{n}(V)$ for $u, v, w \in V$.

Finally, use $u *_{n}\left(v \circ_{n} w\right) \in O_{n}(V)$ and Lemma 2.1(iii) to obtain

$$
\begin{aligned}
& \left(v \circ_{n} w\right) *_{n} u \\
& \quad \equiv-\operatorname{Res}_{z_{1}} \operatorname{Res}_{z_{2}} Y\left(u, z_{1}\right) Y\left(v, z_{2}\right) w \frac{\left(1+z_{1}\right)^{\mathrm{wt} u-1}\left(1+z_{2}\right)^{\mathrm{wt} v+n}}{z_{2}^{2 n+2}} \\
& \equiv-\operatorname{Res}_{z_{2}} \operatorname{Res}_{z_{1}-z_{2}} Y\left(Y\left(u, z_{1}-z_{2}\right) v, z_{2}\right) w \frac{\left(1+z_{1}\right)^{\mathrm{wt} u-1}\left(1+z_{2}\right)^{\mathrm{wt} v+n}}{z_{2}^{2 n+2}} \\
& =-\sum_{i \geq 0}\binom{\mathrm{wt} u-1}{i} \operatorname{Res}_{z_{2}} Y\left(u_{i} v, z_{2}\right) w \frac{\left(1+z_{2}\right)^{\mathrm{wt} u+\mathrm{wt} v+n-1-i}}{z_{2}^{2 n+2}}
\end{aligned}
$$

which belongs to $O_{n}(V)$ as wt $u_{i} v=$ wt $u+$ wt $v-i-1$. This completes the proof.

0 ur first main result is the following.
Theorem 2.3. (i) The product $*_{n}$ induces the structure of an associative algebra on $A_{n}(V)$ with identity $1+O_{n}(V)$.
(ii) The linear map

$$
\phi: v \mapsto e^{L(1)}(-1)^{L(0)} v
$$

induces an anti-isomorphism $A_{n}(V) \rightarrow A_{n}(V)$.
(iii) $\omega+O_{n}(V)$ is a central element of $A_{n}(V)$.

Proof. For (i) we only need to prove that $A_{n}(V)$ is associative. Let $u, v, w \in V$ be homogeneous. Then

$$
\begin{aligned}
&\left(u *_{n} v\right) *_{n} w \\
&= \sum_{m_{1}=0}^{n} \sum_{i \geq 0}(-1)^{m_{1}}\binom{m_{1}+n}{n}\binom{\mathrm{wt} u+n}{i}\left(u_{-m_{1}-n-1+i} v\right) *_{n} w \\
&= \sum_{m_{1}, m_{2}=0}^{n} \sum_{i \geq 0}(-1)^{m_{1}+m_{2}}\binom{m_{1}+n}{n}\binom{m_{2}+n}{n}\binom{\mathrm{wt} u+n}{i} \\
& \times \operatorname{Res}_{z_{2}} Y\left(u_{-m_{1}-n-1+i} v, z_{2}\right) w \frac{\left(1+z_{2}\right)^{\mathrm{wt} u+\mathrm{wt} v+2 n+m 1-i}}{z_{2}^{1+m_{2}+n}} \\
&= \sum_{m_{1}, m_{2}=0}^{n}(-1)^{m_{1}+m_{2}}\binom{m_{1}+n}{n}\binom{m_{2}+n}{n} \mathrm{ReS}_{z_{2}} \mathrm{ReS}_{z_{1}-z_{2}} \\
& \times Y\left(Y\left(u, z_{1}-z_{2}\right) v, z_{2}\right) w \frac{\left(1+z_{1}\right)^{\mathrm{wt} u+n}\left(1+z_{2}\right)^{\mathrm{wt} v+n+m_{1}}}{\left(z_{1}-z_{2}\right)^{m_{1}+n+1} z_{2}^{1+m_{2}+n}} \\
&= \sum_{m_{1}, m_{2}=0}^{n}(-1)^{m_{1}+m_{2}}\binom{m_{1}+n}{n}\binom{m_{2}+n}{n}
\end{aligned}
$$

$$
\times \mathrm{Res}_{z_{1}} \mathrm{Res}_{z_{2}} Y\left(u, z_{1}\right) Y\left(v, z_{2}\right) w \frac{\left(1+z_{1}\right)^{\mathrm{wt} u+n}\left(1+z_{2}\right)^{\mathrm{wt} v+n+m_{1}}}{\left(z_{1}-z_{2}\right)^{m_{1}+n+1} z_{2}^{1+m_{2}+n}}
$$

$$
-\sum_{m_{1}, m_{2}=0}^{n}(-1)^{m_{1}+m_{2}}\binom{m_{1}+n}{n}\binom{m_{2}+n}{n}
$$

$$
\times \mathrm{Res}_{z_{2}} \operatorname{Res}_{z_{1}} Y\left(v, z_{2}\right) Y\left(u, z_{1}\right) w \frac{\left(1+z_{1}\right)^{\mathrm{wt} u+n}\left(1+z_{2}\right)^{\mathrm{wt} v+n+m_{1}}}{\left(z_{1}-z_{2}\right)^{m_{1}+n+1} z_{2}^{1+m_{2}+n}}
$$

$$
=\sum_{m_{1}, m_{2}=0}^{n} \sum_{i \geq 0}(-1)^{m_{1}+m_{2}}\binom{m_{1}+n}{n}\binom{m_{2}+n}{n}\binom{-m_{1}-n-1}{i}(-1)^{i}
$$

$$
\times \mathrm{Res}_{z_{1}} \mathrm{Res}_{z_{2}} Y\left(u, z_{1}\right) Y\left(v, z_{2}\right) w \frac{\left(1+z_{1}\right)^{\mathrm{wt} u+n}\left(1+z_{2}\right)^{\mathrm{wt} v+n+m_{1}}}{z_{1}^{m_{1}+n+1+i} z_{2}^{1+m_{2}+n-i}}
$$

$$
-\sum_{m_{1}, m_{2}=0}^{n} \sum_{i \geq 0}(-1)^{m_{2}+n+1+i}\binom{m_{1}+n}{n}\binom{m_{2}+n}{n}\binom{-m_{1}-n-1}{i}
$$

$$
\times \mathrm{Res}_{z_{2}} \operatorname{Res}_{z_{1}} Y\left(v, z_{2}\right) Y\left(u, z_{1}\right) w \frac{\left(1+z_{1}\right)^{\mathrm{wt} u+n}\left(1+z_{2}\right)^{\mathrm{wt} v+n+m_{1}}}{z_{1}^{m_{1}+n+1-i} z_{2}^{2+m_{1}+m_{2}+2 n+i}} .
$$

From Lemma 2.1 we know that

$$
\operatorname{Res}_{z_{2}} \operatorname{Res}_{z_{1}} Y\left(v, z_{2}\right) Y\left(u, z_{1}\right) w \frac{\left(1+z_{1}\right)^{\mathrm{wt} u+n}\left(1+z_{2}\right)^{\mathrm{wt} v+n+m_{1}}}{z_{1}^{m_{1}+n+1-i} z_{2}^{2+m_{1}+m_{2}+2 n+i}}
$$

lies in $O_{n}(V)$. Also if $i>n-m_{1}$

$$
\operatorname{Res}_{z_{1}} \operatorname{Res}_{z_{2}} Y\left(u, z_{1}\right) Y\left(v, z_{2}\right) w \frac{\left(1+z_{1}\right)^{\mathrm{wt} u+n}\left(1+z_{2}\right)^{\mathrm{wt} v+n+m_{1}}}{z_{1}^{m_{1}+n+1+i} z_{2}^{1+m_{2}+n-i}}
$$

is in $O_{n}(V)$. Thus

$$
\begin{aligned}
\left(u *_{n} v\right) *_{n} w \equiv & u *_{n}\left(v *_{n} w\right)+\sum_{m_{1}, m_{2}=0}^{n}(-1)^{m_{1}+m_{2}}\binom{m_{1}+n}{n}\binom{m_{2}+n}{n} \\
& \times \operatorname{Res}_{z_{1}} \operatorname{Res}_{z_{2}} Y\left(u, z_{1}\right) Y\left(v, z_{2}\right) \frac{\left(1+z_{1}\right)^{\mathrm{wt} t u+n}\left(1+z_{2}\right)^{\mathrm{wt} t+n}}{z_{1}^{m_{1}+n+1} z_{2}^{1+m_{2}+n}} \\
& \times\left(\begin{array}{l}
\left.\sum_{i=0}^{n-m_{1}} \sum_{j \geq 0}\binom{-m_{1}-n-1}{i}\binom{m_{1}}{j}(-1)^{i} \frac{z_{2}^{i+j}}{z_{1}^{i}}-1\right) .
\end{array} .\right.
\end{aligned}
$$

From Proposition 5.3 in the A ppendix we know that

$$
\begin{aligned}
& \sum_{m_{1}=0}^{n}(-1)^{m_{1}}\binom{m_{1}+n}{n} \\
& \quad\left(\sum_{i=0}^{n-m_{1}} \sum_{j \geq 0}\binom{-m_{1}-n-1}{i}\binom{m_{1}}{j}(-1)^{i} \frac{z_{2}^{i+j}}{z_{1}^{i+m_{1}}}-\frac{1}{z_{1}^{m_{1}}}\right)=0 .
\end{aligned}
$$

This implies that the product $*_{n}$ of $A_{n}(V)$ is associative.
The proof of (ii) is similar to that of (ii) of Theorem 2.4 of [DLM]. We refer the reader to [DLM] for detail.

Note that $1 *_{n} u=u$ for any $u \in V$ and that

$$
u *_{n} 1-1 *_{n} u \equiv \operatorname{Res}_{z} Y(u, z) 1(1+z)^{\mathrm{wt} u-1}=0 .
$$

This shows that $1+O_{n}(V)$ is the identity of $A_{n}(V)$. A gain by Lemma 2.1(iii),

$$
\omega *_{n} u-u *_{n} \omega=\operatorname{Res}_{z} Y(\omega, z) u(1+z)=L(-1) u+L(0) u \in O_{n}(V) .
$$

So (iii) is proved.

Proposition 2.4. The identity map on $V$ induces an onto algebra homomorphism from $A_{n}(V)$ to $A_{n-1}(V)$.
Proof. First by Lemma 2.1(i), $O_{n}(V) \subset O_{n-1}(V)$. It remains to show that $u *_{n} v \equiv u *_{n-1} v \bmod O_{n-1}(V)$. Let $u$ be homogeneous. Then

$$
\begin{aligned}
u *_{n} v= & \sum_{m=0}^{n}\binom{m+n}{n}(-1)^{m} \operatorname{Res}_{z} Y(u, z) v \frac{(1+z)^{\mathrm{wt} u+n-1}}{z^{n+m}} \\
& +\sum_{m=0}^{n}\binom{m+n}{n}(-1)^{m} \operatorname{Res}_{z} Y(u, z) v \frac{(1+z)^{\mathrm{Wt} u+n-1}}{z^{n+m+1}} \\
\equiv & \sum_{m=0}^{n-1}\binom{m+n}{n}(-1)^{m} \operatorname{Res}_{z} Y(u, z) v \frac{(1+z)^{\mathrm{wt} u+n-1}}{z^{n+m}} \\
& +\sum_{m=0}^{n-2}\binom{m+n}{n}(-1)^{m} \operatorname{Res}_{z} Y(u, z) \frac{(1+z)^{\mathrm{wt} u+n-1}}{z^{n+m+1}} \\
= & \operatorname{Res}_{z} Y(u, z) v \frac{(1+z)^{\mathrm{wt} u+n-1}}{z^{n}}+\sum_{m=1}^{n-1} \operatorname{Res}_{z} Y(u, z) v \frac{(1+z)^{\mathrm{wt} u+n-1}}{z^{n+m}} \\
& \cdot\left((-1)^{m}\binom{m+n}{n}+(-1)^{m+1}(m+n-1)\right) \\
= & u *_{n-1} v,
\end{aligned}
$$

as desired.
From Proposition 2.4 we in fact have an inverse system $\left\{A_{n}(V)\right\}$. D enote by $I(V)$ the inverse limit $\lim A_{n}(V)$. Then

$$
\begin{equation*}
I(V)=\left\{a=\left(a_{n}+O_{n}(V)\right) \in \prod_{n=0}^{\infty} A_{n}(V) \mid a_{n}-a_{n-1} \in O_{n-1}(v)\right\} . \tag{2.4}
\end{equation*}
$$

D efine $i$ : $V \rightarrow I(V)$ such that $i(v)=\left(v+O_{n}(V)\right)$ for $v \in V$. Then $V /$ ker $i$ is linearly isomorphic to a subspace of $I(V)$. It is easy to see that $i(V)$ is not closed under the product. But one can introduce a suitable topology on $I(V)$ so that $i(V)$ is a dense subspace of $I(V)$ under the topology. A n interesting problem is to determine the kernel of $i$. From the definition of $O_{n}(V)$ we see immediately that $(L(-1)+L(0)) V$ is contained in the kernel. It will be proved in Section 3 that if $v \in O_{n}(V)$ then $a_{\text {wt } a-1}=0$ on
$\oplus_{k=0}^{n} M(n)$ for any admissible $V$-module $\oplus_{k=0}^{\infty} M(k)$. Thus $a \in$ ker $i$ if and only if $a_{\text {wta-1 }}=0$ on any admissible $V$-module. It is proved in [DLMM] that if $V$ is a simple vertex operator algebra satisfying $V_{k}=0$ for all $k<0$, and $V_{0}=\mathbb{C} 1$ then the subspace of $V$ consisting of vectors $v$ whose component operators $v_{\text {wt } u-1}$ are 0 on $V$ is essentially $(L(0)+L(-1)) V$. We suspect that if $V$ is a rational vertex operator algebra then the kernel of $i$ is exactly $(L(0)+L(-1)) V$.

## 3. THE FUNCTOR $\Omega_{n}$

Consider the quotient space

$$
\begin{equation*}
\hat{V}=\mathbb{C}\left[t, t^{-}\right] \otimes V / D \mathbb{C}\left[t, t^{-}\right] \otimes V \tag{3.1}
\end{equation*}
$$

where $D=\frac{d}{d t} \otimes 1+1 \otimes L(-1)$. Denote by $v(m)$ the image of $v \otimes t^{m}$ in $\hat{V}$ for $v \in V$ and $m \in \mathbb{Z}$. Then $\hat{V}$ is $\mathbb{Z}$-graded by defining the degree of $v(m)$ to be wt $v-m-1$ if $_{\hat{V}} v$ is homogeneous. D enote the homogeneous subspace of degree $m$ by $\hat{V}(m)$. The space $\hat{V}$ is, in fact, a $\mathbb{Z}$-graded Lie algebra with bracket

$$
\begin{equation*}
[a(p), b(q)]=\sum_{i=0}^{\infty}\binom{p}{i}\left(a_{i} b\right)(p+q-i) \tag{3.2}
\end{equation*}
$$

(see [L2, DLM ]). In particular, $\hat{V}(0)$ is a Lie subalgebra. By Lemma 2.1(iii) we have

Proposition 3.1. Regarded $A_{n}(V)$ as a Lie algebra, the map $v(\mathrm{wt} v-1)$ $\mapsto v+O_{n}(V)$ is a well-defined onto Lie algebra homomorphism from $\hat{V}(0)$ to $A_{n}(V)$.

By Lemmas 5.1 and 5.2 of [DLM], any weak $V$-module $M$ is a module for $\hat{V}$ under the map $a(m) \mapsto a_{m}$ and a weak $V$-module which carries a $\mathbb{Z}_{+}$-grading is an admissible $V$-module if, and only if, $M$ is a $\mathbb{Z}_{+}$-graded module for the graded Lie algebra $\hat{V}$.

For a module $W$ for the Lie algebra $\hat{V}$ and a nonnegative $m$ we let $\Omega_{m}(W)$ denote the space of " $m$ th lowest weight vectors," that is,

$$
\begin{equation*}
\Omega_{m}(W)=\{u \in W \mid \hat{V}(-k) u=0 \text { if } k>m\} . \tag{3.3}
\end{equation*}
$$

Then $\Omega_{m}(W)$ is a module for the Lie algebra $\hat{V}(0)$.
Theorem 3.2. Suppose that $M$ is a weak $V$-module. Then there is a representation of the associative algebra $A_{n}(V)$ on $\Omega_{n}(M)$ induced by the map $a \mapsto o(a)=a_{\text {wta-1 }}$ for homogeneous $a \in V$.

Proof. We need to show that $o(a)=0$ for all $a \in O_{n}(V)$ and $o\left(u *_{n} v\right)$ $=o(u) o(v)$ for $u, v \in V$. U sing $Y(L(-1) u, z)=\frac{d}{d z} Y(u, z)$ we immediately see that $o(L(-1) u+L(0) u)=0$. From the proof of Lemma 2.1 we know that $(L(-1) u+L(0) u) *_{n} v=(-1)^{n}\binom{2 n}{n}(2 n+1) u{ }_{n} v$. It suffices to show that $o\left(u *_{n} v\right)=o(u) o(v)$.

Let $u, v$ be homogeneous and $0 \leq k \leq n$. Note that $v_{\mathrm{wt} v+p}=u_{\mathrm{wtu}+p}=0$ on $\Omega_{n}(M)$ if $p \geq n$. We assert that the following identity holds on $\Omega_{n}(M)$,

$$
\begin{align*}
\sum_{m=0}^{k} & (-1)^{m}(2 n+m-k) o\left(\operatorname{Res}_{z} Y(u, z) v \frac{(1+z)^{\mathrm{wt} u+n}}{z^{2 n+1-k+m}}\right) \\
& =u_{\mathrm{wt} u-n+k-1} v_{\mathrm{wt} v+n-k-1} \tag{3.4}
\end{align*}
$$

which reduces to $o\left(u *_{n} v\right)=o(u) o(v)$ if $k=n$. The proof of (3.4) is a straightforward computation involving the Jacobi identity on modules in terms of residues.

On $\Omega_{n}(M)$ we have

$$
\begin{aligned}
& \sum_{m=0}^{k}(-1)^{m}\binom{2 n+m-k}{m} o\left(\mathrm{Res}_{z} Y(u, z) v \frac{(1+z)^{\mathrm{wt} u+n}}{z^{2 n+1-k+m}}\right) \\
& =\sum_{m=0}^{k} \sum_{i \geq 0}(-1)^{m}\binom{2 n+m-k}{m}\binom{\mathrm{wt} u+n}{i} o\left(u_{i-2 n-1-m+k} v\right) \\
& =\sum_{m=0}^{k} \sum_{i \geq 0}(-1)^{m}\left(\begin{array}{c}
2 n+\underset{m}{m}-k
\end{array}\right)\binom{\mathrm{wt} u+n}{i} \\
& \times\left(u_{i-2 n-1-m+k} v\right)_{\mathrm{wt} u+\mathrm{wt} v-i+2 n+m-1-k} \\
& =\sum_{m=0}^{n} \sum_{i \geq 0}(-1)^{m}\binom{2 n+m-k}{m}\binom{\mathrm{wt} u+n}{i} \\
& \times \mathrm{Res}_{z_{2}} \mathrm{Res}_{z_{1}-z_{2}} Y\left(Y\left(u, z_{1}-z_{2}\right) v, z_{2}\right) \\
& \times\left(z_{1}-z_{2}\right)^{i-2 n-m-1+k} z_{2}^{\mathrm{wt} u+\mathrm{wt} v-i+2 n+m-1-k} \\
& =\sum_{m=0}^{k}(-1)^{m}\binom{2 n+m-k}{m} \mathrm{ReS}_{z_{2}} \mathrm{ReS}_{z_{1}-z_{2}} \\
& \times Y\left(Y\left(u, z_{1}-z_{2}\right) v, z_{2}\right) \frac{z_{1}^{\mathrm{wt} u+n} z_{2}^{\mathrm{wt} v+n+m-1-k}}{\left(z_{1}-z_{2}\right)^{2 n+m+1-k}} \\
& =\sum_{m=0}^{k}(-1)^{m}\binom{2 n+m-k}{m} \mathrm{Res}_{z_{1}} \mathrm{Res}_{z_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \times Y\left(u, z_{1}\right) Y\left(v, z_{2}\right) \frac{z_{1}^{\mathrm{W} t u+n} z_{2}^{\mathrm{Wt} v+n+m_{-1-k}}}{\left(z_{1}-z_{2}\right)^{2 n+m+1-k}} \\
& -\sum_{m=0}^{k}(-1)^{m}\binom{2 n+m}{m} \operatorname{Res}_{z_{2}} \operatorname{Res}_{z_{1}} \\
& \times Y\left(v, z_{2}\right) Y\left(u, z_{1}\right) \frac{z_{1}^{\mathrm{Wt} u+n} z_{2}^{\mathrm{wt} v+n+m-1-k}}{\left(z_{1}-z_{2}\right)^{2 n+m+1-k}} \\
& =\sum_{m=0}^{k} \sum_{i=0}^{k-m}(-1)^{m+i}\binom{2 n+m-k}{m}\binom{-m-2 n-1+k}{i} \\
& \times u_{\mathrm{wt} u-n-m-1+k-i} v_{\mathrm{wt} v+n+m-1-k+i} \\
& =\sum_{m=0}^{k} \sum_{i=m}^{k}\binom{2 n+m-k}{m}\binom{-m-2 n-1+k}{i-m}(-1)^{i} \\
& \times u_{\mathrm{wt} u-n+k-i-1} v_{\mathrm{wt} v+n-k-1+i} \\
& =\sum_{i=0}^{k} \sum_{m=0}^{i}\binom{2 n+m-k}{m}\binom{-m-2 n-1+k}{i-m}(-1)^{i} \\
& \times u_{\text {wtu-n }+k-i-1} v_{\text {wt } v+n-k-1+i} \\
& =u_{\mathrm{wt} u-n+k-1} v_{\mathrm{wt} v+n-k-1} \\
& +\sum_{i=1}^{k} \sum_{m=0}^{i}\binom{2 n+m-k}{m}\binom{-m-2 n-1+k}{i-m}(-1)^{i} \\
& \times u_{\mathrm{wt} u-n+k-i-1} v_{\mathrm{wt} t+n-k-1+i} .
\end{aligned}
$$

It is enough to show that for $i=1, \ldots, k$.

$$
\sum_{m=0}^{i}\binom{2 n+m-k}{m}\binom{-m-2 n-1+k}{i-m}=0,
$$

which follows from an easy calculation:

$$
\begin{aligned}
\sum_{m=0}^{i} & \binom{2 n+m}{m}\binom{-m-2 n-1+k}{i-m} \\
& =\sum_{m=0}^{i}(-1)^{i-m}\binom{2 n+m-k}{m}\binom{2 n+i-k}{i-m} \\
& =\sum_{m=0}^{i}(-1)^{i-m}\binom{2 n+i-k}{2 n-k}\binom{i}{m} \\
& =0 .
\end{aligned}
$$

This completes the proof.

Remark 3.3. For homogeneous $u, v \in V$ and $j \in \mathbb{Z}$ we set $o_{j}(u)=$ $u_{\text {wt } u-1-j}$ and extend to all $u \in V$ by linearity. Then $o_{0}(u)=o(u)$. U sing associativity of the vertex operators

$$
\left(z_{0}+z_{2}\right)^{\mathrm{Wt} u+n} Y\left(u, z_{0}+z_{2}\right) Y\left(v, z_{2}\right)=\left(z_{2}+z_{0}\right)^{\mathrm{W} t u+n} Y\left(Y\left(u, z_{0}\right) v, z_{2}\right)
$$

on $\Omega_{n}(M)$ we have that for $i \geq j$ with $i+j \geq 0$ these exists a unique $w_{u, v}^{i, j} \in V$ such that $o_{i}(u) o_{j}(v)=o_{i+j}\left(w_{u, v}^{i, j}\right)$ on $\Omega_{n}(M)$. In fact one can write $w_{u, v}^{i, j}$ explicitly in terms of $u$ and $v$. But for our later purpose it is enough to know the explicit expression of $w_{u, v}^{i,-i}(i \geq 0)$ which is given by

$$
w_{u, v}^{i,-i}=\sum_{m=0}^{n-i}(-1)^{m}(n+m+i) \operatorname{Res}_{z} Y(u, z) v \frac{(1+z)^{\mathrm{wt} t u+n}}{z^{n+1+i+m}}
$$

in the proof of Theorem 3.2.
It is clear that $\Omega_{n}$ is a covariant functor from the category of weak $V$-modules to the category of $A_{n}(V)$-modules. To be more precise, if $f$ : $M \rightarrow N$ is a morphism in the first category we define $\Omega_{n}(f)$ to be the restriction of $f$ to $\Omega_{n}(M)$. Then $f$ induces a morphism of $V$-modules $M \rightarrow N$ by Lemma 5.1 of [DLM]. Moreover $\Omega_{n}(f)$ maps $\Omega_{n}(M)$ to $\Omega_{n}(N)$. Now Theorem 3.2 implies that $\Omega_{n}(f)$ is a morphism of $A_{n}(V)$ modules.

Let $M$ be such a module. A s long as $M \neq 0$, then some $M(m) \neq 0$, and it is no loss to shift the grading so that in fact $M(0) \neq 0$. If $M=0$, let $M(0)=0$. With these conventions we prove

Proposition 3.4. Suppose that $M$ is an admissible V-module. Then the following hold
(i) $\Omega_{n}(M) \supset \oplus_{i=0}^{n} M(i)$. If $M$ is simple then $\Omega_{n}(M)=\oplus_{i=0}^{n} M(i)$.
(ii) Each $M(p)$ is an $\hat{V}(0)$-module and $M(p)$ and $M(q)$ are inequivalent if $p \neq q$ and both $M(p)$ and $M(q)$ are nonzero. If $M$ is simple then each $M(p)$ is an irreducible $V(0)$-module.
(iii) Assume that $M$ is simple. Then each $M(i)$ for $i=0, \ldots, n$ is a simple $A_{n}(V)$-module and $M(i)$ and $M(j)$ are inequivalent $A_{n}(V)$-modules.

Proof. An easy argument shows that $\Omega_{n}(M)$ is a graded subspace of $M$. That is,

$$
\begin{equation*}
\Omega_{n}(M)=\bigoplus_{i \geq 0} \Omega_{n}(M) \cap M(i) \tag{3.5}
\end{equation*}
$$

Set $\Omega_{n}(i)=\Omega_{n}(M) \cap M(i)$. It is clear that $M(i) \subset \Omega_{n}(M)$ if $i \leq n$. In order to prove (i) we must show that $\Omega_{n}(i)=0$ if $i>n$.

By Proposition 2.4 of [DM ] or Lemma 6.1.1 of [L 2], $M=\operatorname{span}\left\{u_{n} w \mid u \in\right.$ $V, n \in \mathbb{Z}\}$ where $w$ is any nonzero vector in $M$. If $\Omega_{n}(i) \neq 0$ for some $i>n$ we can take $0 \neq w \in \Omega_{n}(i)$. Since $u_{\text {wt } u+p} w=0$ for all $p \geq n$ we see that $M=\operatorname{span}\left\{u_{\mathrm{wt} t+p} w \mid u \in V, p \in \mathbb{Z}, p<n\right\}$. This implies that $M(0)=0$, a contradiction.
It is clear that (iii) follows from (ii). For (ii), note that $M=\hat{V} w=$ $\oplus_{p \in \mathbb{Z}} \hat{V}(p) w$. Thus if $0 \neq w \in M(i)$ then $V(p) w=M(i+p)$. In particular, $V(0) w=M(i)$, as required. It was pointed out in [Z] that $L(0)$ is semisimple on $M$ and $M(k)=\{w \in M \mid L(0) w=(h+k) w\}$ for some fixed $h$. The inequivalence follows from the fact that $L(0)$ has different eigenvalues on $M(p)$ and $M(q)$.

## 4. THE FUNCTOR $L_{n}$

We show in this section that there is a universal way to construct an admissible $V$-module from an $A_{n}(V)$-module which cannot factor through $A_{n-1}$. (If it can factor through $A_{n-1}(V)$ we can consider the same procedure for $A_{n-1}(V)$.) Moreover a certain quotient of the universal object is an admissible $V$-module $L_{n}(U)$ and $L_{n}$ defines a functor which is a right inverse to the functor $\Omega_{n} / \Omega_{n-1}$, where $\Omega_{n} / \Omega_{n-1}$ is the quotient functor $M \mapsto \Omega_{n}(M) / \Omega_{n-1}(M)$.

Fix an $A_{n}(V)$-module $U$ which cannot factor through $A_{n-1}(V)$. Then it is a module for $A_{n}(V)_{\text {Lie }}$ in an obvious way. By Proposition 3.1 we can lift $U$ to a module for the Lie algebra $\hat{V}(0)$, and then to one for $P_{n}=$ $\oplus_{p>n} V(-p) \oplus V(0)$ by letting $V(-p)$ act trivially. Define

$$
\begin{equation*}
M_{n}(U)=\operatorname{lnd}_{P_{n}}^{\hat{V}}(U)=U(\hat{V}) \otimes_{U\left(P_{n}\right)} U . \tag{4.1}
\end{equation*}
$$

If we give $U$ degree $n$, the $\mathbb{Z}$-gradation of $\hat{V}$ lifts to $M_{n}(U)$ which thus becomes a $\mathbb{Z}$-graded module for $\hat{V}$. It is easy to see that $M_{n}(U)(i)=$ $U(V)_{i-n} U$.

We define for $v \in V$,

$$
\begin{equation*}
Y_{M_{n}(U)}(v, z)=\sum_{m \in \mathbb{Z}} v(m) z^{-m-1} . \tag{4.2}
\end{equation*}
$$

A s in [DLM ], $Y_{M(U)}(v, z)$ satisfies all conditions of a weak $V$-module except the associativity which does not hold on $M_{n}(U)$ in general. We have to divide out by the desired relations.

Let $W$ be the subspace of $M_{n}(U)$ spanned linearly by the coefficients of

$$
\begin{equation*}
\left(z_{0}+z_{2}\right)^{\mathrm{W} t a+n} Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u-\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+n} Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u \tag{4.3}
\end{equation*}
$$

for any homogeneous $a \in V, b \in V, u \in U$. Set

$$
\begin{equation*}
\bar{M}_{n}(U)=M_{n}(U) / U(\hat{V}) W \tag{4.4}
\end{equation*}
$$

Theorem 4.1. The space $\bar{M}_{n}(U)=\sum_{m \geq 0} \bar{M}_{n}(U)(m)$ is an admissible $V$-module with $\bar{M}_{n}(U)(0) \neq 0, \bar{M}_{n}(U)(n)=U$ and with the following universal property: for any weak $V$-module $M$ and any $A_{n}(V)$-morphism $\phi: U \rightarrow$ $\Omega_{n}(M)$, there is a unique morphism $\bar{\phi}: \bar{M}_{n}(U) \rightarrow M$ of weak $V$-modules which extends $\phi$.

Proof. By Proposition 6.1 of $[\mathrm{DLM}]_{R}$ we know that $\bar{M}_{n}(U)$ is a $\mathbb{Z}$-graded weak $V$-module generated by $U+U(V) W$. By Proposition 2.4 of [DM] or Lemma 6.1.1 of [L2], $\bar{M}_{n}(U)$ is spanned by

$$
\left\{a_{n}(U+U(\hat{V}) W) \mid a \in V, n \in \mathbb{Z}\right\} .
$$

Thus $\bar{M}_{n}(U)(m)=\hat{V}(m-n)(U+U(\hat{V}) W)$ for all $m \in \mathbb{Z}$. In particular, $\bar{M}_{n}(U)(m)=0$ if $m<0$ and $\bar{M}_{n}(U)(n)=A_{n}(V)(U+U(\hat{V}) W)$ which is a quotient module of $U$. A proof that $\bar{M}_{n}(U)(0) \neq 0$ and $\bar{M}_{n}(U)(n)=U$ will be given after Proposition 4.7. The universal property of $\bar{M}_{n}(U)$ follows from its construction.

In the following we let $U^{*}=\operatorname{Hom}_{\mathbb{C}}(U, \mathbb{C})$ and let $U_{s}$ be the subspace of $M_{n}(U)(n)$ spanned by "length" $s$ vectors

$$
o_{p_{1}}\left(a_{1}\right) \cdots o_{p_{s}}\left(a_{s}\right) U,
$$

where $p_{1} \geq \cdots \geq p_{s}, p_{1}+\cdots p_{s}=0, p_{i} \neq 0, p_{s} \geq-n$, and $a_{i} \in V$. Then by the PBW theorem $M_{n}(U)(n)=\sum_{s \geq 0} U_{s}$ with $U_{0}=U$ and $U_{s} \cap U_{t}=0$ if $s \neq t$. R ecall R emark 3.3. We extend $U^{*}$ to $M_{n}(U)(n)$ inductively so that

$$
\begin{equation*}
\left\langle u^{\prime}, o_{p_{1}}\left(a_{1}\right) \cdots o_{p_{s}}\left(a_{s}\right) u\right\rangle=\left\langle u^{\prime}, o_{p_{1}+p_{2}}\left(w_{a_{1}, a_{2}}^{p_{1}, p_{2}}\right) o_{p_{3}}\left(a_{3}\right) \cdots o_{p_{s}}\left(a_{s}\right) u\right), \tag{4.5}
\end{equation*}
$$

where $o_{j}(a)=a(\mathrm{wt} a-1-j)$ for homogeneous $a \in V$. We further extend $U^{*}$ to $M_{n}(U)$ by letting $U^{*}$ annihilate $\oplus_{i \neq n} M(U)(i)$.

Set

$$
J=\left\{v \in M_{n}(U) \mid\left\langle u^{\prime}, x v\right\rangle=0 \text { for all } u^{\prime} \in U^{*}, \text { all } x \in U(\hat{V})\right\} .
$$

We can now state the second main result of this section.
Theorem 4.2. The space $L_{n}(U)=M_{n}(U) / J$ is an admissible $V$-module satisfying $L_{n}(U)(0) \neq 0$ and $\Omega_{n} / \Omega_{n-1}\left(L_{n}(U)\right) \cong U$. Moreover $L_{n}$ defines a functor from the category of $A_{n}(V)$-modules which cannot factor through $A_{n-1}(V)$ to the category of admissible $V$-modules such that $\Omega_{n} / \Omega_{n-1} \circ L_{n}$ is naturally equivalent to the identity.

The main point in the proof of the theorem is to show that $U(\hat{V}) W \subset J$. The next three results are devoted to this goal.

Proposition 4.3. The following hold for all homogeneous $a \in V, b \in$ $V, u^{\prime} \in U^{*}, u \in U, j \in \mathbb{Z}_{+}$,

$$
\begin{gather*}
\left\langle u^{\prime},\left(z_{0}+z_{2}\right)^{\mathrm{wt} a+n+j} Y_{M_{n}(U)}\left(a, z_{0}+z_{2}\right) Y_{M_{n}(U)}\left(b, z_{2}\right) u\right\rangle \\
=\left\langle u^{\prime},\left(z_{2}+z_{0}\right)^{\mathrm{wta} a+n+j} Y_{M_{n}(U)}\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle . \tag{4.6}
\end{gather*}
$$

In the following we simply write $Y$ for $Y_{M_{n}(U)}$, which should cause no confusion. The following is the key lemma.
Lemma 4.4. For any $i, j \in \mathbb{Z}_{+}$,

$$
\begin{aligned}
& \operatorname{Res}_{z_{0}} z_{0}^{-1+i}\left(z_{0}+z_{2}\right)^{\mathrm{Wt} a+n+j}\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
& \quad=\operatorname{Res}_{z_{0}} z_{0}^{-1+i}\left(z_{2}+z_{0}\right)^{\mathrm{Wt} a+n+j}\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle .
\end{aligned}
$$

Proof. Since $j \geq 0$ then $a($ wt $a+n+j)$ lies in $\oplus_{p>n} \hat{V}(-p)$ and hence annihilates $u$. Then for all $i \in \mathbb{Z}_{+}$we get

$$
\begin{equation*}
\operatorname{Res}_{z_{1}}\left(z_{1}-z_{2}\right)^{i} z_{1}^{w \operatorname{ta+n+j}} Y\left(b, z_{2}\right) Y\left(a, z_{1}\right) u=0 \tag{4.7}
\end{equation*}
$$

$N$ ote that (3.2) is equivalent to

$$
\begin{equation*}
\left[Y\left(a, z_{1}\right), Y\left(b, z_{2}\right)\right]=\operatorname{Res}_{z_{0}} z_{2}^{-1} \delta\left(\frac{z_{1}-z_{0}}{z_{2}}\right) Y\left(Y\left(u, z_{0}\right) v, z_{2}\right) \tag{4.8}
\end{equation*}
$$

U sing (4.7) and (4.8) we obtain

$$
\begin{align*}
& \operatorname{Res}_{z_{0}} z_{0}^{i}\left(z_{0}+z_{2}\right)^{\mathrm{wta+n+j}} Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u \\
& =\operatorname{Res}_{z_{1}}\left(z_{1}-z_{2}\right)^{i} z_{1}^{\text {wta } a+n+j} Y\left(a, z_{1}\right) Y\left(b, z_{2}\right) u \\
& =\operatorname{Res}_{z_{1}}\left(z_{1}-z_{2}\right)^{i} z_{1}^{\text {wta+n+j}} Y\left(a, z_{1}\right) Y\left(b, z_{2}\right) u \\
& -\operatorname{Res}_{z_{1}}\left(z_{1}-z_{2}\right)^{i} z_{1}^{\operatorname{wta} a n+j} Y\left(b, z_{2}\right) Y\left(a, z_{1}\right) u \\
& =\operatorname{Res}_{z_{1}}\left(z_{1}-z_{2}\right)^{i} z_{1}^{\text {wta } a+n+j}\left[Y\left(a, z_{1}\right), Y\left(b, z_{2}\right)\right] u \\
& =\operatorname{Res}_{z_{0}} \operatorname{Res}_{z_{1}}\left(z_{1}-z_{2}\right)^{i} z_{1}^{\mathrm{wta}+n+j} z_{2}^{-1} \delta\left(\frac{z_{1}-z_{0}}{z_{2}}\right) Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u \\
& =\operatorname{Res}_{z_{0}} \operatorname{Res}_{z_{1}} z_{0}^{i} z_{1}^{\text {wta } a+n+j} z_{1}^{-1} \delta\left(\frac{z_{2}+z_{0}}{z_{1}}\right) Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u \\
& =\text { Res }_{z_{0}} z_{0}^{i}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+n+j} Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u \text {. } \tag{4.9}
\end{align*}
$$

Thus Lemma 4.4 holds if $i \geq 1$, and we may now assume $i=0$. Next us (4.9) to calculate that
$\operatorname{Res}_{z_{0}} z_{0}^{-1}\left(z_{0}+z_{2}\right)^{\mathrm{wt} a+n+j}\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle$

$$
\begin{align*}
= & \sum_{k=0}^{\infty}\binom{j}{k} \operatorname{Res}_{z_{0}} z_{0}^{k-1} z_{2}^{j-k}\left(z_{0}+z_{2}\right)^{\mathrm{Wt} a+n}\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
= & \sum_{k=1}^{\infty}\binom{j}{k} \operatorname{Res}_{z_{0}} z_{0}^{k-1} z_{2}^{j-k}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+n}\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle \\
& +\operatorname{Res}_{z_{0}} z_{0}^{-1} z_{2}^{j}\left(z_{2}+z_{0}\right)^{\mathrm{Wt} a+n}\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle . \tag{4.10}
\end{align*}
$$

It reduces to show that

$$
\begin{array}{r}
\operatorname{Res}_{z_{0}} z_{0}^{-1}\left(z_{2}+z_{0}\right)^{\mathrm{Wt} a+n}\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
\left.\quad=\operatorname{Res}_{z_{0}} z_{0}^{-1}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+n}\left\langle u^{\prime}, Y\left(a, z_{0}\right) u, z_{2}\right) u\right\rangle . \tag{4.12}
\end{array}
$$

Since $\left\langle u^{\prime}, M_{n}(U)(m)\right\rangle=0$ if $m \neq n$, we see that

$$
\begin{aligned}
\operatorname{Res}_{z_{0}} & z_{0}^{-1}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+n} z_{2}^{\mathrm{wt} b-n}\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle \\
& =\left\langle u^{\prime}, \sum_{k \in \mathbb{Z}_{+}}\binom{\mathrm{wt} a+n}{k}\left(a_{k-1} b\right)\left(\mathrm{wt}\left(a_{k-1} b\right)-1\right) u\right\rangle \\
& =\left\langle u^{\prime}, \sum_{k \in \mathbb{Z}_{+}}\binom{\mathrm{wt} a+n}{k} o\left(a_{k-1} b\right) u\right\rangle \\
& =\left\langle u^{\prime}, o\left(\operatorname{Res}_{z} Y(a, z) b \frac{(1+z)^{\mathrm{wt} a+n}}{z}\right) u\right\rangle .
\end{aligned}
$$

On the other hand, note that $b($ wt $b-1+p) u=0$ if $p>n$. So

$$
\begin{align*}
& \operatorname{Res}_{z_{0}} z_{0}^{-1}\left(z_{0}+z_{2}\right)^{\mathrm{wt} t a+n} z_{2}^{\mathrm{wt} b-n}\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
&=\left\langle u^{\prime}, \sum_{i \in \mathbb{Z}_{+}} a(\mathrm{wt} a-2-i+n) \sum_{m \geq-n} b(\mathrm{wt} b-1-m) z_{2}^{-n+i+m} u\right\rangle  \tag{4.13}\\
&=\left\langle u^{\prime}, \sum_{i=0}^{n} a(\mathrm{wt} a-1-i) b(\mathrm{wt} b-1+i) u\right\rangle  \tag{4.14}\\
&+\left\langle u^{\prime}, \sum_{i=1}^{n} a(\mathrm{wt} a-1+i) b(\mathrm{wt} b-1-i) u\right\rangle . \tag{4.15}
\end{align*}
$$

Note that the $A_{n}(V)$-module structure on $U$ is equivalent to

$$
o(a) o(b) u=a(\mathrm{wt} a-1) b(\mathrm{wt} b-1) u
$$

$$
=\sum_{m=0}^{n}(-1)^{m}\binom{m+n}{n} o\left(\operatorname{Res}_{z} Y(a, z) b \frac{(1+z)^{\mathrm{wt} a+n}}{z^{m+n+1}}\right) u .
$$

By (4.5) with $s=2, a_{1}=a, a_{2}=b, p_{1}=k=-p_{2}(k>0)$ we see that

$$
\begin{align*}
\left\langle u^{\prime},\right. & \left.o_{k}(a) o_{-k}(b) u\right\rangle \\
& =\left\langle u^{\prime}, a(\text { wt } a-1-k) b(\text { wt } b-1+k) u\right\rangle \\
& =\left\langle u^{\prime}, \sum_{m=0}^{n-k}(-1)^{m}\binom{m+n}{m} o\left(\operatorname{Res}_{z} Y(a, z) b \frac{(1+z)^{\mathrm{wta+n}}}{z^{m+n+1+k}}\right) u\right\rangle . \tag{4.16}
\end{align*}
$$

Thus

$$
\begin{aligned}
& \left\langle u^{\prime}, \sum_{k=0}^{n} a(\text { wt } a-1-k) b(\mathrm{wt} b-1+k) u\right\rangle \\
& \quad=\left\langle u^{\prime}, \sum_{k=0}^{n} \sum_{m=0}^{n-k}(-1)^{m}\left(\begin{array}{c}
m+n \\
m
\end{array}+k\right) o\left(\mathrm{Res}_{z} Y(a, z) b \frac{(1+z)^{\mathrm{wt} a+n}}{z^{m+n+1+k}}\right) u\right\rangle .
\end{aligned}
$$

U se Lie algebra bracket (3.2) to get

$$
\begin{aligned}
& a(\mathrm{wt} a-1+k) b(\mathrm{wt} b-1-k) \\
& \quad=\quad b(\mathrm{wt} b-1-k) a(\mathrm{wt} a-1+k) \\
& \quad+\sum_{i \geq 0}\binom{\mathrm{wt} a-1+k}{i}\left(a_{i} b\right)(\mathrm{wt} a+\mathrm{wt} b-2-i) .
\end{aligned}
$$

By (4.16),

$$
\begin{aligned}
& \left\langle u^{\prime}, b(\text { wt } b-1-k) a(\text { wt } a-1+k) u\right\rangle \\
& \quad=\left\langle\sum_{m=0}^{n-k}(-1)^{m}\binom{m+n}{m} o\left(\operatorname{Res}_{z} Y(b, z) a \frac{(1+z)^{\mathrm{wtb+n}}}{z^{m+n+1+k}}\right) u\right\rangle .
\end{aligned}
$$

A proof similar to that of Lemma 2.1(ii) shows that

$$
\begin{aligned}
& \left.\sum_{m=0}^{n-k}(-1)^{m}\binom{m+n}{m}+k\right) \operatorname{Res}_{z} Y(b, z) a \frac{(1+z)^{\mathrm{wt} b+n}}{z^{m+n+1+k}} \\
& -\sum_{m=0}^{n-k}\binom{m+n+k}{m}(-1)^{n+k} \operatorname{Res}_{z} Y(a, z) b \frac{(1+z)^{\mathrm{wt} a+m+k-1}}{z^{1+m+n+k}} \in O_{n}(V)
\end{aligned}
$$

We now have

$$
\begin{aligned}
\left\langle u^{\prime},\right. & \left.\sum_{k=1}^{n} a(\text { wt } a-1+k) b(\mathrm{wt} b-1-k) u\right\rangle \\
= & \sum_{k=1}^{n} \sum_{m=0}^{n-k}\binom{m+n+k}{m}(-1)^{n+k} \\
& \times\left\langle u^{\prime}, o\left(\mathrm{Res}_{z} Y(a, z) b \frac{(1+z)^{\mathrm{wt} a+m+k-1}}{z^{1+m+n+k}}\right) u\right\rangle \\
& +\sum_{k=1}^{n} \sum_{i \geq 0}\binom{\text { wt } a-1+k}{i}\left\langle u^{\prime},\left(a_{i} b\right)(\mathrm{wt} a+\mathrm{wt} b-2-i) u\right\rangle \\
= & \sum_{k=1}^{n} \sum_{m=0}^{n-k}\binom{m+n+k}{m}(-1)^{n+k} \\
& \times\left\langle u^{\prime}, o\left(\mathrm{Res}_{z} Y(a, z) b \frac{(1+z)^{\mathrm{wt} a+m+k-1}}{z^{1+m+n+k}}\right) u\right\rangle \\
& +\sum_{k=1}^{n}\left\langle u^{\prime}, o\left(\mathrm{Res}_{z} Y(a, z) b(1+z)^{\mathrm{wt} a-1+k}\right) u\right\rangle
\end{aligned}
$$

So it is enough to show the identity

$$
\begin{aligned}
& \sum_{k=0}^{n} \sum_{m=0}^{n-k}(-1)^{m}(m+n+k) \frac{(1+z)^{\mathrm{wt} a+n}}{z^{m+n+1+k}} \\
& \quad+\sum_{k=1}^{n} \sum_{m=0}^{n-k}\binom{m+n+k}{m}(-1)^{n+k} \frac{(1+z)^{\mathrm{wt} a+m+k-1}}{z^{1+m+n+k}} \\
& \quad+\sum_{k=1}^{n}(1+z)^{\mathrm{wt} a-1+k} \\
& \quad=\frac{(1+z)^{\mathrm{wt} a+n}}{z}
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
& \sum_{k=0}^{n} \sum_{m=0}^{n-k}(-1)^{m}\binom{m+n+k}{m} \frac{(1+z)^{n}}{z^{m+n+k}} \\
& \quad+\sum_{k=1}^{n} \sum_{m=0}^{n-k}\binom{m+n+k}{m}(-1)^{n+k} \frac{(1+z)^{m+k-1}}{z^{m+n+k}} \\
& \quad=1
\end{aligned}
$$

This identity is proved in Proposition 5.1 in the A ppendix.

Proposition 4.3 is a consequence of the next lemma.
Lemma 4.5. For all $m \in \mathbb{Z}$ we have

$$
\begin{aligned}
& \operatorname{Res}_{z_{0}} z_{0}^{m}\left(z_{0}+z_{2}\right)^{\mathrm{wt} a+m+\mathrm{j}}\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
& \quad=\operatorname{Res}_{z_{0}} z_{0}^{m}\left(z_{2}+z_{0}\right)^{\mathrm{wta} a+m+j}\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle .
\end{aligned}
$$

Proof. This is true for $m \geq-1$ by Lemma 4.4. Let us write $m=-k+i$ with $i \in \mathbb{Z}_{+}$and proceed by induction $k$. Induction yields

$$
\begin{aligned}
& \operatorname{Res}_{z_{0}} z_{0}^{-k}\left(z_{0}+z_{2}\right)^{\mathrm{wt} a+m+j}\left\langle u^{\prime}, Y\left(L(-1) a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
& \quad=\operatorname{Res}_{z_{0}} z_{0}^{-k}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+m+j}\left\langle u^{\prime}, Y\left(Y\left(L(-1) a, z_{0}\right) b, z_{2}\right) u\right\rangle .
\end{aligned}
$$

$U$ sing the residue property $\operatorname{Res}_{z} f^{\prime}(z) g(z)+\operatorname{Res}_{z} f(z) g^{\prime}(z)=0$ and the $L(-1)$-derivation property $Y(L(-1) a, z)=\frac{d}{d z} Y(a, z)$ we have

$$
\begin{aligned}
\operatorname{Res}_{z_{0}} z_{0}^{-k} & \left(z_{0}+z_{2}\right)^{\mathrm{wt} a+1+m+j}\left\langle u^{\prime}, Y\left(L(-1) a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
= & -\operatorname{Res}_{z_{0}}\left(\frac{\partial}{\partial z_{0}} z_{0}^{-k}\left(z_{0}+z_{2}\right)^{\mathrm{wt} a+1+m+j}\right)\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
= & \operatorname{Res}_{z_{0}} k z_{0}^{-k-1}\left(z_{0}+z_{2}\right)^{\mathrm{wt} a+1+m+j}\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
& -\operatorname{Res}_{z_{0}}(\mathrm{wt} a+1+m+j) z_{0}^{-k}\left(z_{0}+z_{2}\right)^{\mathrm{wt} a+m+j} \\
& \times\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
= & \operatorname{Res}_{z_{0}} k z_{0}^{-k-1} z_{2}\left(z_{0}+z_{2}\right)^{\mathrm{wt} a+m+j}\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
& +\operatorname{Res}_{z_{0}} k z_{0}^{-k}\left(z_{0}+z_{2}\right)^{\mathrm{wt} a+m+j}\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
& -\operatorname{Res}_{z_{0}}\left(\mathrm{wt}^{\mathrm{wt}}+1+m+j\right) z_{0}^{-k}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+m+j} \\
& \quad \times\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle \\
= & \operatorname{Res}_{z_{0}} k z_{0}^{-k-1} z_{2}\left(z_{0}+z_{2}\right)^{\mathrm{wta} a+m+j}\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
& +\operatorname{Res}_{z_{0}} k z_{0}^{-k}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+m+j}\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle \\
& -\operatorname{Res}_{z_{0}}(\mathrm{wt} a+1+m+j) z_{0}^{-k}\left(z_{2}+z_{0}\right)^{\mathrm{wta} a+m+j} \\
& \quad \times\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle,
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{Res}_{z_{0}} z_{0}^{-k}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+1+m+j}\left\langle u^{\prime}, Y\left(Y\left(L(-1) a, z_{0}\right) b, z_{2}\right) u\right\rangle \\
&=-\operatorname{Res}_{z_{0}}\left(\frac{\partial}{\partial z_{0}} z_{0}^{-k}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+1+m+j}\right)\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle \\
&=\left.\mathrm{Res}_{z_{0}} k z_{0}^{-k-1}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+1+m+j}\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right)\right\rangle u\right\rangle \\
&-\operatorname{Res}_{z_{0}}(\text { wt } a+1+m+j) z_{0}^{-k}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+m+j} \\
& \times\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle \\
&=\mathrm{Res}_{z_{0}} k z_{2} z_{0}^{-k-1}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+m+j}\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle \\
&+\mathrm{Res}_{z_{0}} k z_{0}^{-k}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+m+j}\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle \\
&-\operatorname{Res}_{z_{0}}(\mathrm{wt} a+1+m+j) z_{0}^{-k}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+m+j} \\
& \times\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle .
\end{aligned}
$$

This yields the identity

$$
\begin{aligned}
& \mathrm{Res}_{z_{0}} z_{0}^{-k-1}\left(z_{0}+z_{2}\right)^{\mathrm{wt} a+m+j}\left\langle u^{\prime}, Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
& \quad=\mathrm{Res}_{z_{0}} z_{0}^{-k-1}\left(z_{2}+z_{0}\right)^{\mathrm{wt} a+m+j}\left\langle u^{\prime}, Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle
\end{aligned}
$$

and the lemma is proved.
L et us now introduce an arbitrary $\mathbb{Z}$-graded $\hat{V}$-module $M=\oplus_{m \in \mathbb{Z}} M(m)$. A s before we extend $M(n)^{*}$ to $M$ by letting it annihilate $M(m)$ for $m \neq n$. The proof of Proposition of 6.1 of [DLM] with $\left\langle u^{\prime}, \cdot\right\rangle$ suitably inserted gives:

Proposition 4.6. Let $U$ be a subspace of $M(n)$ and $U^{\prime}$ a subspace of $M(n)^{\prime}$ such that
(i) $M=U(\hat{V}) U$.
(ii) For $a \in V$ and $u \in U$ there is $k \in \mathbb{Z}$ such that

$$
\begin{align*}
& \left\langle u^{\prime},\left(z_{0}+z_{2}\right)^{k+n} Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
& \quad=\left\langle u^{\prime},\left(z_{2}+z_{0}\right)^{k+n} Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle \tag{4.17}
\end{align*}
$$

for any $b \in V, u^{\prime} \in U^{\prime}$. Then in fact (4.17) holds for any $u \in M$.

Proposition 4.7. Let $M$ be as in Proposition 4.6. Then for any $x \in$ $U(\hat{V}), a \in V, u \in M$, there is an integer $k$ such that

$$
\begin{align*}
& \left\langle u^{\prime},\left(z_{0}+z_{2}\right)^{k+n} x \cdot Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
& \quad=\left\langle u^{\prime},\left(z_{2}+z_{0}\right)^{k+n} x \cdot Y\left(Y\left(a, z_{0}\right) b, z_{2}\right) u\right\rangle \tag{4.18}
\end{align*}
$$

for any $b \in V, u^{\prime} \in U^{\prime}$.
Proof. Let $L$ be the subspace of $U(\hat{V})$ consisting of those $x$ for which (4.18) holds. Let $x \in L$, let $c$ be any homogeneous element of $V$, and let $m \in \mathbb{Z}$. Then from (4.8) we have

$$
\begin{align*}
& \left\langle u^{\prime}, x c(m) Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle\left(z_{0}+z_{2}\right)^{k+n} \\
& =\sum_{i=0}^{\infty}\binom{m}{i}\left(z_{0}+z_{2}\right)^{k+n+m-i}\left\langle u^{\prime}, x Y\left(c(i) a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) u\right\rangle \\
& \quad+\sum_{i=0}^{\infty}\binom{m}{i} z_{2}^{m-i}\left(z_{0}+z_{2}\right)^{k+n}\left\langle u^{\prime}, x Y\left(a, z_{0}+z_{2}\right) Y\left(c(i) b, z_{2}\right) u\right\rangle \\
& \quad+\left(z_{0}+z_{2}\right)^{k+n}\left\langle u^{\prime}, x Y\left(a, z_{0}+z_{2}\right) Y\left(b, z_{2}\right) c(m) u\right\rangle \tag{4.19}
\end{align*}
$$

The same method that was used in the proof of Proposition 4.6 shows that $x c(m) \in L$. Since $U(\hat{V})$ is generated by all such $c(n)$ 's, and since (4.18) holds for $x=1$ by Proposition 4.6, we conclude that $L=U(\hat{V})$, as desired.

We can now finish the proof of Theorems 4.1 and Theorem 4.2. We can take $M=\bar{M}_{n}(U)$ in Proposition 4.7, as we may since $\bar{M}_{n}(U)$ certainly satisfies the conditions placed on $M$ prior to Proposition 4.6 and in Proposition 4.6. Then from the definition of $W$ (4.3) and Propositions 4.3, 4.6, and 4.7 we conclude that $U(\hat{V}) W \subset J$. It is clear that $L(U)$ is a quotient of $\bar{M}_{n}(U)$ and hence an admissible $V$-module. N ote that $J \cap U=$ 0 . So $L(U)(n)$ contains $U$ as an $A_{n}(V)$-submodule. This shows that $\bar{M}_{n}(U)(n) \cong U$ as $A_{n}(V)$-modules. If $\bar{M}_{n}(U)(0)=0$ then $U$ will be an $A_{n-1}(V)$-module, contradicting the assumption on $U$. This finishes the proof of Theorem 4.1. Theorem 4.2 is now obvious.

At this point we have a pair of functors $\Omega_{n}, L_{n}$ defined on appropriate module categories. It is clear that $\Omega_{n} / \Omega_{n-1}{ }^{\circ} L_{n}$ is equivalent to the identity.
Lemma 4.8. Suppose that $U$ is a simple $A_{n}(V)$-module. Then $L_{n}(U)$ is a simple admissible $V$-module.
Proof. If $0 \neq W \subset L_{n}(U)$ is an admissible submodule then, by the definition of $L_{n}(U)$, we have $W(n)=W \cap L_{n}(U)(n) \neq 0$. As $W(n)$ is an
$A_{n}(V)$-submodule of $U=L_{n}(U)(n)$ by Theorem 3.2 then $U=W(n)$, whence $W \supset U(\hat{V}) W(n)=U(V) U=L_{n}(U)$.

Theorem 4.9. $L_{n}$ and $\Omega_{n} / O_{n-1}$ are equivalences when restricted to the full subcategories of completely reducible $A_{n}(V)$-modules whose irreducible components cannot factor through $A_{n-1}(V)$ and completely reducible admissible $V$-modules, respectively. In particular, $L_{n}$ and $\Omega_{n} / \Omega_{n-1}$ induce mutually inverse bijections on the isomorphism classes of simple objects in the category of $A_{n}(V)$-modules which cannot factor through $A_{n-1}(V)$ and admissible $V$-modules, respectively.

Proof. We have $\Omega_{n} / O_{n-1}(L(U)) \cong U$ for any $A_{n}(V)$-module by Theorem 4.2.

If $M$ is a completely reducible admissible $V$-module we must show $L_{n}\left(\Omega_{n} / \Omega_{n-1}(M)\right) \cong M$. For this we may take $M$ simple, whence $\Omega_{n} / \Omega_{n-1}(M)$ is simple by Proposition 3.4(ii) and then $L_{n}\left(\Omega_{n} / \Omega_{n-1}(M)\right)$ is simple by Lemma 4.8. Since both $M$ and $L_{n}\left(\Omega_{n} / \Omega_{n-1}(M)\right)$ are simple quotients of the universal object $\bar{M}_{n}\left(\Omega_{n} / \Omega_{n-1}(M)\right)$ then they are isomorphic by Theorems 4.1 and 4.2 .
The following theorem is a generalization of Theorem 8.1 of [DLM].
Theorem 4.10. Suppose that $V$ is a rational vertex operator algebra. Then the following hold:
(a) $A_{n}(V)$ is a finite-dimensional, semisimple associative algebra.
(b) The functors $L_{n}, \Omega_{n} / O_{n-1}$ are mutually inverse categorical equivalences between the category of $A_{n}(V)$-modules whose irreducible components cannot factor through $A_{n-1}(V)$ and the category of admissible $V$-modules.
(c) The functors $L_{n}, \Omega_{n} / \Omega_{n-1}$ induce mutually inverse categorical equivalences between the category of finite-dimensional $A_{n}(V)$-modules whose irreducible components cannot factor through $A_{n-1}(V)$ and the category of ordinary V-modules.

Proof. Part (b) follows from Theorem 4.9 and (a). Since $V$ is rational any irreducible admissible $V$-module is an ordinary module by Theorem 8.1 of [D LM ]. Now (c) follows from (b). It remains to prove (i).

Let $W$ be an $A_{n}(V)$-module. Set $U=W \oplus V(n)$. Then $U$ is an $A_{n}(V)$ module which cannot factor through $A_{n-1}(V)$. Now $L_{n}(U)$ is admissible and hence a direct sum of irreducible ordinary $V$-modules. Thus $\Omega_{n}\left(L_{n}(U)\right) / \Omega_{n-1}\left(L_{n}(U)\right) \simeq U$ is a direct sum of finite-dimensional irreducible $A_{n}(V)$-modules and so is $W$.

It is believed that if $A(V)=A_{0}(V)$ is semisimple then $V$ is rational. We cannot solve this problem completely in this paper. But we have some partial results which are applications of $A_{n}(V)$-theory.

Theorem 4.11. If all $A_{n}(V)$ are finite-dimensional semisimple algebras then $V$ is rational.

Proof. Since $A(V)$ is semisimple $V$ has only finitely many irreducible admissible modules which are necessarily ordinary $V$-modules. For any $\lambda \in \mathbb{C}$ let $\mathscr{M}_{\lambda}$ be the set of irreducible admissible modules whose weights are congruent to $\lambda$ module $\mathbb{Z}$. Then for each $W \in \mathscr{M}_{\lambda}$ we have $W=$ $\oplus_{n \in \mathbb{Z}_{+}} W_{\lambda+n_{W}+n}=\oplus_{n \in \mathbb{Z}_{+}} W(n)$ where $n_{W} \in \mathbb{Z}$ and $W_{\lambda+n_{W}+n}=W(n)$. Since $L(-1): W(n) \rightarrow W(n+1)$ is injective if $n$ is large (see [L1]) there exists an $m_{\lambda} \in \mathbb{N}$ such that the weight space $W_{\lambda+m} \neq 0$ for any $W \in \mathscr{W}_{\lambda}$ and $m \geq m_{\lambda}$.

Consider any admissible module $M$ whose weights are in $\lambda+Z$ and whose homogeneous subspace $M_{\lambda+m}$ with some $m \geq m_{\lambda}$ is 0 . Let $U$ be an irreducible $A(V)$-submodule of $M(0)$. Then $L_{0}(U)=L(U)$ is an irreducible $V$-module such that $L(U)(0)=U$ and $L(U)_{\lambda+m}=0$. Thus $L(U)$ $=0$ and $U=0$. This implies that $M=0$.

Now take an admissible module $M=\oplus_{k \in \mathbb{Z}_{+}} M(k)$. Then $M(0)$ is a direct sum of simple $A(V)$-modules as $A(V)$ is semisimple. Let $U$ be an $A(V)$-submodule of $M(0)$ isomorphic to $W(0)=W_{\lambda+n_{W}}$ for some $W \in \mathscr{M}_{\lambda}$. We assert that the submodule $N$ of $M$ generated by $U$ is irreducible and necessarily isomorphic to $W$. First note that $N$ has an irreducible quotient isomorphic to $W$. Take $n \in \mathbb{N}$ such that $n+n_{W} \geq m_{\lambda}$. Observe that $\bar{M}_{n}(W(n)) / \bar{J}=L_{n}(W(n))$ is isomorphic to $W$ where $\bar{J}$ is a maximal submodule of $\bar{M}_{n}(W(n))$ such that $\bar{J} \cap W(n)=0$. Since $\bar{J}_{\lambda+n_{W}+n}=0$ we see that $\bar{J}=0$ and $\bar{M}_{n}(W(n))=L_{n}(W(n)) \simeq W$. Write $N(n)$ as a direct sum of $W(n)$ and another $A_{n}(V)$-submodule $N(n)^{\prime}$ of $N(n)$ as $A_{n}(V)$ is semisimple. Clearly the submodule of $N(n)$ generated by $W(n)$ is isomorphic to $W$. This shows that $N$ must be isomorphic to $W_{h}$ as claimed.
It is obvious now that the submodule $U(V) M(0)$ generated by $M(0)$ is completely reducible. Using the semisimplicity of $A_{1}(V)$ we can decompose $M(1)$ into a direct sum of $A_{1}\left(V_{\hat{V}}\right)$-modules $(U(V) M(0))(1) \oplus M(1)^{\prime}$. The same argument shows that $U(V) M(1)^{\prime}$ is a completely reducible submodule of $M$. Continuing in this way proves that $M$ is completely reducible.

Remark 4.12. From the proof of Theorem 4.11, we see, in fact, that we can weaken the assumption in Theorem 4.11. Namely we only need to assume that $A_{n}(V)$ is semisimple if $n$ is large.

## 5. APPENDIX

In this appendix we prove several combinatorial identities which are used in the previous sections.

For $n \geq 0$ define

$$
\begin{aligned}
A_{n}(z)= & \left.\sum_{k=0}^{n} \sum_{m=0}^{n-k}(-1)^{m}\binom{m+n}{m} k\right) \frac{(1+z)^{n}}{z^{m+n+k}} \\
& +\sum_{k=1}^{n} \sum_{m=0}^{n-k}(m+n+k)(-1)^{n+k} \frac{(1+z)^{m+k-1}}{z^{m+n+k}} .
\end{aligned}
$$

U sing the well-known identity

$$
\sum_{k=0}^{i}(-1)^{k}\binom{n}{k}=(-1)^{i}\binom{n-1}{i}
$$

we can rewrite $A_{n}(z)$ as

$$
\begin{aligned}
A_{n}(z)= & \sum_{k=0}^{n} \sum_{m=0}^{k}(-1)^{m}\binom{n+k}{m} \frac{(1+z)^{n}}{z^{n+k}} \\
& +\sum_{k=1}^{n} \sum_{m=0}^{k-1}\binom{n+k}{m}(-1)^{n+k+m} \frac{(1+z)^{k-1}}{z^{n+k}} \\
= & \sum_{k=0}^{n}(-1)^{k}\binom{n+k-1}{k} \frac{(1+z)^{n}}{z^{n+k}} \\
& -(-1)^{n} \sum_{k=1}^{n}\binom{n+k-1}{k-1} \frac{(1+z)^{k-1}}{z^{n+k}}
\end{aligned}
$$

Proposition 5.1. $\quad A_{n}(z)=1$ for all $n \geq 0$.
Proof. Set

$$
\begin{aligned}
& B_{n}(z)=\sum_{k=0}^{n}(-1)^{k}\binom{n+k-1}{k} \frac{(1+z)^{n}}{z^{n+k}} \\
& C_{n}(z)=\sum_{k=1}^{n}\binom{n+k-1}{k-1} \frac{(1+z)^{k-1}}{z^{n+k}}
\end{aligned}
$$

Then

$$
\begin{aligned}
B_{n}(z)= & \sum_{k=0}^{n-1}(-1)^{k}\left(\binom{n+k-2}{k}+\binom{n+k-2}{k-1}\right) \frac{(1+z)^{n}}{z^{n+k}} \\
& +(-1)^{n}\binom{2 n-1}{n} \frac{(1+z)^{n}}{z^{2 n}} \\
= & \frac{1+z}{z} B_{n-1}(z)+\sum_{k=0}^{n-2}(-1)^{k+1}\binom{n+k-1}{k} \frac{(1+z)^{n}}{z^{n+k+1}} \\
& +(-1)^{n}\binom{2 n-1}{n} \frac{(1+z)^{n}}{z^{2 n}} \\
= & \frac{1+z}{z} B_{n-1}(z)-\frac{1}{z} B_{n}(z)+(-1)^{n-1}\binom{2 n-2}{n-1} \frac{(1+z)^{n}}{z^{2 n}} \\
& +(-1)^{n}\binom{2 n-1}{n} \frac{(1+z)^{n+1}}{z^{2 n+1}} .
\end{aligned}
$$

Solving $B_{n}(z)$ gives

$$
\begin{aligned}
B_{n}(z)= & B_{n-1}(z)+(-1)^{n-1} \frac{(1+z)^{n-1}}{z^{2 n-1}}\binom{2(n-1)}{n-1} \\
& +(-1)^{n} \frac{(1+z)^{n}}{z^{2 n}}\binom{2 n-1}{n}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
C_{n}(z)= & \sum_{k=1}^{n-1}\left(\binom{n+k-2}{k-1}+\binom{n+k-2}{k-2}\right) \frac{(1+z)^{k-1}}{z^{n+k}} \\
& +\binom{2 n-1}{n-1} \frac{(1+z)^{n-1}}{z^{2 n}} \\
= & \frac{1}{z} C_{n-1}(z)+\sum_{k=0}^{n-2}\binom{n+k-1}{k-1} \frac{(1+z)^{k}}{z^{n+k+1}} \\
& +\binom{2 n-1}{n-1} \frac{(1+z)^{n-1}}{z^{2 n}} \\
= & \frac{1}{z} C_{n-1}(z)+\frac{1+z}{z} C_{n}(z)+\binom{2 n-2}{n-1} \frac{(1+z)^{n-1}}{z^{2 n}} \\
& -\binom{2 n-1}{n-1} \frac{(1+z)^{n}}{z^{2 n+1}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
(-1)^{n+1} C_{n}(z)= & (-1)^{n} C_{n-1}(z)+(-1)^{n}\binom{2 n-2}{n-1} \frac{(1+z)^{n-1}}{z^{2 n-1}} \\
& +(-1)^{n-1}\binom{n-1}{n-1} \frac{(1+z)^{n}}{z^{2 n}}
\end{aligned}
$$

Thus

$$
A_{n}(z)=B_{n}(z)+(-1)^{n-1} C_{n}(z)=A_{n-1} .
$$

Note that $A_{0}(z)=1$ and the proposition follows.
For $n \geq 0$ we define

$$
F_{n}(z)=\sum_{m=0}^{n}\binom{m+n}{n} \frac{(-1)^{m}(1+z)^{n+1}-(-1)^{n}(1+z)^{m}}{z^{n+m+1}} .
$$

Proposition 5.2. $\quad F_{n}(z)=1$ for all $n$.
Proof. Set

$$
\begin{aligned}
& D_{n}(z)=\sum_{m=0}^{n}\binom{m+n}{n}(-1)^{m} \frac{(1+z)^{n+1}}{z^{n+m+1}} \\
& E_{n}(z)=\sum_{m=0}^{n}\binom{m+n}{n} \frac{(1+z)^{m}}{z^{n+m+1}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
D_{n}(z)= & B_{n+1}(z)+(-1)^{n}\binom{2 n+1}{n} \frac{(1+z)^{n+1}}{z^{2 n+2}} \\
= & B_{n}(z)+(-1)^{n} \frac{(1+z)^{n}}{z^{2 n+1}}\binom{2 n}{n} \\
& +(-1)^{n+1} \frac{(1+z)^{n+1}}{z^{2 n+2}}\binom{2 n+1}{n+1} \\
& +(-1)^{n}\binom{2 n+1}{n} \frac{(1+z)^{n+1}}{z^{2 n+2}} \\
= & B_{n}(z)+(-1)^{n}\binom{2 n}{n} \frac{(1+z)^{n}}{z^{2 n+1}}
\end{aligned}
$$

and

$$
E_{n}(z)=C_{n}(z)+\binom{2 n}{n} \frac{(1+z)^{n}}{z^{2 n+1}}
$$

Thus

$$
F_{n}(z)=D_{n}(z)+(-1)^{n+1} E_{n}(z)=A_{n}(z)=1,
$$

as required.
For $n \geq 0$ define

$$
\begin{aligned}
a_{n}(w, z)= & \sum_{m=0}^{n}(-1)^{m}\binom{m+n}{n} \\
& \times\left(\sum_{i=0}^{n-m} \sum_{j \geq 0}\binom{-m-n-1}{i}\binom{m}{j}(-1) \frac{w^{i+j}}{z^{i+m}}-\frac{1}{z^{m}}\right) .
\end{aligned}
$$

Note that if $p>0, k>0$ then $(\underset{k}{-p} \underset{k}{2})=(-1)^{k}(\underset{k}{p+k-1})$. We can rewrite $a_{n}(w, z)$ as

## Proposition 5.3. The $a_{n}(w, z)=0$ for all $n \geq 0$.

Proof. Regarding $a_{n}(w, z)$ as a polynomial in $z^{-1}$, the coefficient of $z^{-p}$ in $a_{n}(w, z)(0 \leq p \leq n)$ is equal to (setting $\left.m+i=p\right)$

$$
\begin{aligned}
\sum_{m=0}^{p} & (-1)^{m}\binom{m+n}{n} \sum_{j \geq 0}\binom{n+p}{p-m}\binom{m}{j} w^{p-m+j}-(-1)^{p}\binom{p+n}{n} \\
& =w^{p} \sum_{m=0}^{p}(-1)^{m}\binom{m+n}{n}\binom{n+p}{p-m}(1+1 / w)^{m}-(-1)^{p}\binom{p+n}{n} .
\end{aligned}
$$

So the coefficient of $z^{-p} w^{0}$ in $a_{n}(w, z)$ equals 0 .
If $0 \leq q \leq p-1$, the coefficient of $z^{-p} w^{p-q}$ in $a_{n}(w, z)$ is equal to

$$
c_{n}(p, q)=\sum_{m=0}^{p}(-1)^{m}\binom{m+n}{n}\binom{n+p}{n+m}\binom{m}{q}
$$

which is defined for any $n, p, q \geq 0$. So we must prove that $a_{n}(p, q)=0$ for $1 \leq q+1 \leq p \leq n$. Recall $\binom{l}{k}=\binom{l-1}{k}+\binom{l-1}{k-1}$. Then $c_{n}(p, q)$ is equal to

$$
\begin{aligned}
& \sum_{m=0}^{p}(-1)^{m}\binom{m+n}{n}\left(\binom{n+p-1}{n+m}+\binom{n+p-1}{n+m-1}\right)\binom{m}{q} \\
&=(-1)^{p}\binom{p+n}{n}\binom{p}{q}+\sum_{m=0}^{p-1}(-1)^{m}\binom{m+n}{n}\binom{n+p-1}{n+m-1}\binom{m}{q} \\
&+c_{n}(p-1, q) \\
&= \sum_{m=0}^{p-1}(-1)^{m}\left(\binom{m+n-1}{n-1}+\binom{m+n-1}{n}\right)\binom{n+p-1}{n+m-1}\binom{m}{q} \\
&+(-1)^{p}\binom{p+n}{n}\binom{p}{q}+c_{n}(p-1, q) \\
&= c_{n-1}(p, q)+c_{n}(p-1, q)-(-1)^{p}\binom{p+n-1}{n-1}\binom{p}{q} \\
&+(-1)^{p}\binom{p+n}{n}\binom{p}{q} \\
&-\sum_{m=0}^{p-1}(-1)^{m-1}\binom{m+n-1}{n}\binom{n+p-1}{n+m-1} \\
& \times\left(\binom{m-1}{q}+\binom{m-1}{q-1}\right) \\
&= c_{n-1}(p, q)+c_{n}(p-1, q)+(-1)^{p}\binom{p+n-1}{n}\binom{p}{q} \\
&-\sum_{m-1=0}^{p-2}(-1)^{m-1}\binom{m+n-1}{n}\binom{n+p-1}{n+m-1} \\
& \times\left(\binom{m-1}{q}+\binom{m-1}{q-1}\right) \\
&= c_{n-1}(p, q)-c_{n}(p-1, q-1)+(p, q)-c_{n}(p-1, q-1) .
\end{aligned}
$$

That is,

$$
c_{n}(p, q)=c_{n-1}(p, q)-c_{n}(p-1, q-1) .
$$

so by induction it is enough to show that $c_{0}(p, q)=0$ and $c_{n}(p, 0)=0$ if $p>q$. But this is clear from the definition.

## REFERENCES

[B] R. E. Borcherds, V ertex algebras, K ac-M oody algebras, and the M onster, Proc. Nat. Acad. Sci. U.S. A. 83 (1986), 3068-3071.
[DLM] C. Dong, H. Li, and G. Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), 571-600.
[DLMM] C. Dong, H. Li, G. M ason, and P. Montague, The radical of a vertex operator algebra, in "Proc. of the Conference on the M onster and Lie algebras at The O hio State University, May 1996" (J. Ferrar and K. Harada, Eds.), de Gruyter, Berlin/New Y ork.
[DL] C. Dong and Z. Lin, Induced modules for vertex operator algebras, Comm. Math. Phys. 179 (1996), 157-184.
[DM] C. Dong and G. M ason, On quantum Galois theory, Duke Math. J. 86 (1997), 305-321.
[FHL] I. Frenkel, Y. Huang, and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993).
[FLM] I. Frenkel, J. Lepowsky, and A. Meurman, "V ertex O perator Algebras and the M onster," Pure and A ppl. M ath., V ol. 134, A cademic Press, Boston, 1988.
[L1] H. Li, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra 96 (1994), 279-297.
[L2] H. Li, "Representation Theory and Tensor Product Theory for V ertex Operator A Igebras," Ph.D. thesis, R utgers U niversity, 1994.
[Z] Y. Zhu, M odular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), 237-302.


[^0]:    * Partially supported by NSF G rant DM S-9303374 and a research grant from the Committee on R esearch, UC Santa Cruz.
    ${ }^{\dagger}$ Partially supported by NSF G rant DM S-9616630.
    $\ddagger$ Partially supported by NSF Grant DM S-9401272 and a research grant from the Committee on Research, UC Santa Cruz.

