JOURNAL OF ALGEBRA 206, 67—96 (1998)
ARTICLE NO. JA987425

Vertex Operator Algebras and Associative Algebras
Chongying Dong*

Department of Mathematics, University of California, Santa Cruz, California 95064
E-mail: dong@cats.ucsc.edu

metadata, citation and similar papers at core.ac.uk

Department of Mathematical Sciences, Rutgers University, Camden, New Jersey 08102
E-mail: hli@crab.rutgers.edu

and

Geoffrey Mason*

Department of Mathematics, University of California, Santa Cruz, California 95064
E-mail: gem@cats.ucsc.edu

Communicated by Walter Feit

Received January 16, 1997

Let V' be a vertex operator algebra. We construct a sequence of associative
algebras A4,(V) (n =0,1,2,...) such that 4,()) is a quotient of 4, ,,(FV) and a
pair of functors between the category of A,(J")-modules which are not A4, _,(V)-
modules and the category of admissible }’-modules. These functors exhibit a
bijection between the simple modules in each category. We also show that 1 is

rational if and only if all A,()) are finite-dimensional semisimple algebras.
© 1998 Academic Press

* Partially supported by NSF Grant DMS-9303374 and a research grant from the Commit-
tee on Research, UC Santa Cruz.

f Partially supported by NSF Grant DMS-9616630.

¥ Partially supported by NSF Grant DMS-9401272 and a research grant from the Commit-
tee on Research, UC Santa Cruz.

67

0021-8693 /98 $25.00

Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82711365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

68 DONG, LI, AND MASON

1. INTRODUCTION

For a vertex operator algebra IV Zhu constructed an associative algebra
A(V) [Z] such that there is a one-to-one correspondence between irre-
ducible admissible 7-modules and irreducible A(17")-modules. In the case
that 77 is rational the admissible ¥-module category and A(})-module
category are in fact equivalent. But if 77 is not rational, 4(}") does not
carry enough information for the representation of V.

In this paper we construct a sequence of associative algebras A4,(})
(n=0,1,2,...) such that 4,()V) = A(V) and A4,(}) is an epimorphic
image of A4, (V). Asin [Z], we use A4,(}) to study representation theory
of V. Let M = &, ,M(k) be an admissible V-module as defined in
[DLM] with M(0) # 0. Then each M(k) for k < n isan A,(V)-module. In
some sense, A,(V) takes care of the first n + 1 homogeneous subspaces
of M while A(1) concerns the top level M(0). The results of the present
paper are modeled on the results in [DLM] and the methods are also
similar. However, the situation for constructing admissible I’-modules from
A,(V)-modules turns out to be very complicated. As in [L2, DLM] we
extensively use the Lie algebra

~ d
V=veClt,t *]/|L(-1)®1+1® 7 (Ve Cltt'])

to construct admissible 1-modules from A, (})-modules.
It should be pointed out that the {A4,(})} in fact form an inverse system.
So it is natural to consider the inverse limit limA4,(}) and its representa-

tions. This problem will be addressed in a sep(z;rate paper.

One of the important motivations for constructing A4,(V) is to study
induced modules from a subalgebra to 77 as initiated in [DL]. Induced
module theory is very important in the representation theory of classical
objects such as groups, rings, Lie algebras. The theory of A4,(}") developed
in this paper will definitely play a role in the study of induced modules for
vertex operator algebras. In order to see this, we consider a subalgebra U
of IV and a U-submodule W of M which is an admissible ”-module. In
general, the top level of W is not necessarily a subspace of the top level
of M. In other words, an A(U)-module can be a subspace of an A4,(V)-
module for some n > 0. One can now see how the A,(}) enter the picture
of studying the induced module for the pair (U, V') along this line.

This paper is organized as follows: In Section 2 we introduce the algebra
A, (V) which is a quotient of ¥V modulo a subspace O,(V') consisting of
u°,v (see Section 2 for the definition) and L(—1u + L(0)u for u,v € V.
In the case n = 0,(L(—1) + L(0)u can be expressed as w °,u. But in
general it is not clear if one can write (L(—1) + L(0))u as a linear
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combination of v ¢, w’s. On the other hand, the weight zero component of
the vertex operator Y((L(—1) + L(0))u, z) is zero on any weak ’-module.
So we have to put (L(—1) + L)V artificially in O,(V) for general n. We
also show in this section how the identity map on V' induces an epimor-
phism of algebras from A4, (V) to A,(}V). In Section 3, we construct a
functor ), from the category of weak J}~-modules to the category of
A,(V)-modules such that if M = &, , M(k) is an admissible 1’-module
then &;_, M(k) with M(0) # 0 is contained in Q,(M) and each M(k) for
k <n is an A,(V)-submodule. In particular, if M is irreducible then
& _,M(k) = Q,(M) and each M(k) is an irreducible 4,(7)-module.

Section 4 is the core of this paper. In this section we construct a functor
L, from the category of A, (V)-modules which cannot factor through
A, _,(VV) to the category of admissible V-modules. For any such A, (V)-
module U we first construct a universal admissible -module M, (U) which
is somehow a ‘“‘generalized Verma module.” The L, (V) is then a suitable
guotient of 1\7[,,(U); the proof of this result is technically the most difficult
part of this paper. We also show that Q,(L,(U))/Q,_,(L,(U)) is isomor-
phic to U as A,(})-modules. Moreover, V' is rational if and only if the
A,(V) are finite-dimensional semisimple algebras for all . Section 5 deals
with several combinatorial identities used in previous sections.

We assume that the reader is familiar with the basic knowledge on
vertex operator algebras as presented in [B, FHL, FLM]. We also refer the
reader to [DLM] for the definitions of weak modules, admissible modules,
and (ordinary) modules.

2. THE ASSOCIATIVE ALGEBRA A4,(V)

Let V= (V,Y,1, ) be a vertex operator algebra. We will construct an
associative algebra A4,(1") for any nonnegative integer n generalizing the
Zhu's algebra A(V) which is our A,(V).

Let O,(V) be the linear span of all u-,v and L(—1u + L(0)u where
for homogeneous u € Vand v € V,

(1 + Z)Wtqun

uo,v =ResY(u,z)v———F5—. (2.1)
z

Define the linear space A4,(}) to be the quotient IV/0, (V).
We also define a second product *, on V' for u and v as above:

n

( + )Wtu+n

Uu*,v= Z (—1)m(m;n)RESZY(u,Z)WU. (22)
m=0
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Extend linearly to obtain a bilinear product on IV which coincides with that
of Zhu [Z] if n = 0. We denote the product (2.2) by = in this case. Note
that (2.2) may be written in the form

n =]
m + wtu +n
weo= XX (=0 (M) (M e (29)
m=01i=0
The following lemma generalizes Lemmas 2.1.2 and 2.1.3 of [Z].
LEMMA 2.1. (i) Assume that u € V is homogeneous, v € V, and m >
k > 0. Then

(1 + Z)Wtu+n+k

Res,Y(u, z)v TES € 0,(V).
z
(ii) Assume that v is also homogeneous. Then
n . 1 +z wto+m —1
wr,o = (M) (1) ResZY(U,z)u(Zl% € 0,(V)

m=0
and
(i) u*,0 —v*,u — Res,Y(u, 2ol + )"t e 0,(V).

Proof. The proof of (i) is similar to that of Lemma 2.1.2 of [Z]. As in
[Z] we use L(—Du + L(O)u € O,(V) to derive the formula

1+z2

Y(u,z)v=(1+ z)_Wt“_Wt”Y(U, )u mod O,(V).

Thus we have

n " 1 +z wtu +n
ux, 0=y (—1) (” -;m)ReSZY(u,Z)U—( z’”?”l
m=0
n —z (1 +Z)7Wtz:+n
— _n\"ln+m
= mgo( 1) ( " )ResZY(v, 1+Z)u T
mod O,(V)
n 1 +Z)WtL'+mfl
_ "(n+ (
= ZO(—l) (” nm)ReSzY(wZ)uW
m=

and (ii) is proved.
Using (ii) we have

w0 — v+, u=ResY(u z)v(l+z)""*
n ~1)"(1+2)" = (-1)"(1+2)"
Y
X m;o(mn n) Zn+m+1 )
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By Proposition 5.2 in the Appendix we know that

io(m;n)(_l) 1 +Z);+m_+f_l) a+a"

The proof is complete. ||
LEMMA 2.2. O, (V) is a 2 sided ideal of V under *,,.

Proof. First we show that (L(—1u + L(0)u)*,v € O,(V) for any ho-
mogeneous u € V. From the definition we see that

(L(~1D)u)*,0
)Mu+n+1

(’"+”)( 1)" Res,Y(L(—1)u, z)

Zn+m+l

(1_+Z)Mu+n+l

y (" )= Resz(diZY(u, z))uW

m=0

- i (m;”)(—l)m“ReszY(u,z)v

m=

(—n—m—1)(1+2)"" z(wtu +n + 1)(1 +z)"™ "
+

Zn+m+2 Zn+m+2

X

Thus

(L(—1)u + wtuu) *,v

-y (m’i— ”)(—l)m Res,Y(u, z)v(1 +z)""*"

m=0 z

mz+n+m+1

n+m+2

It is straightforward to show that

n mz+n+m+1
+ m
Z (mn n)(_l) gntm+2

m=0

ol L o LA R [CE

Zn+m+2

(-1) (2n+1)2”+1

22n+2

It is clear now that (L(—Du + L(Ouw)*,v € O, (V).
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Second, we show that u *,(L(—1)v + L(0)v) € O,(V). Using the result
that (L(—Dv + L(O)v)*,v € O,(V) and Lemma 2.1(iii) we have

u*,(L(=1)v + L(0)v)
= —Res.(Y(L(=1)v, 2)u(l +2)" + Y(L(0), 2)u(1 +2)")
mod O,(V)

wto—1

Res, Y(U,z)u%(l +2)" = Y(L(0),v, z)u(l + z)
=0.

Third, a similar argument as in [Z] using Lemma 2.1(i) shows that
u*,(ve,w)e O,W) for u,v,w e V.
Finally, use u*,(ve,w) € O,(}) and Lemma 2.1(iii) to obtain

(ve,w)*,u

(1 + Zl)wtufl(l + Zz)wtz:+n

2n+2

= —Res, Res, Y(u,z)Y(v,z,)w .
2

mod O,(V)

(1 + Zl)wtu—l(l + zz)wtu+n

2n+2
Z3

= —Res, Res, _, Y(Y(u,z, —z,)v,2,)w

wtu+wto+n —1—i
(1+2,)

2n+2
23

wtu — 1
= — Z( : )ReszzY(uiu,zz)w

i=0
which belongs to O, (V) as wtu,v = wtu + wtv — i — 1. This completes
the proof. |
Our first main result is the following.

THEOREM 2.3. (i) The product * , induces the structure of an associa-
tive algebra on A, (V') with identity 1 + O (V).

(ii) The linear map
¢ v - el —l)L(O)U

induces an anti-isomorphism A,(V) — A, (V).
(i) o+ O0(V) is a central element of A,(V).
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Proof. For (i) we only need to prove that A4,(1) is associative. Let
u,v,w € V. _be homogeneous. Then

(1 %,0) %W

D M L L) IS P

m;=01i>0 !

_ ¥ Z(_l)m1+mz(ml +n)(m2 +n)(wtu.+n)

mqy,my=01i>0 n n !

(1 +z )\Altu+wtu+2n+m1—i
2

XReSzZY(M,ml,n,1+iU,22)W l+my+n

23

n

= Y (—1)”’”’”2(’"1 + n)(mzn+ ")Resz2 Res, _

n 2

my, my=0
(1 +Zl)wtu+n(l +ZZ)WtU+n+m1
(Zl _ Zz)m1+”+12%+m2+n
n

_ ¥ (_1)m1+mz(m1 +n)(m2 +n)

my, my=0 n n

XY(Y(u,z, — 2,)v, 2,)w

(1 + Zl)wtu+n(l + ZZ)th+n +my

XRes, Res, Y(u,z)Y(v,z,)w

(Zl _22)m1+n+12%+m2+n
n
B )t m,+n|m,+n
Y (-1 (e

my, my=0

(1 + Zl)wtu+n(1 + ZZ)WtUJrn +my

m1+”+1zl+m2+n
2

_ml—in—l)(_l)i

(1 + Zl)wtu+n(1 + ZZ)WtL!+n +my

my+n+1+i
21

XRes, Res,Y(v,z,)Y(u,z)w
’ ' (21— 2,)

_ ¥ Z(_l)fﬂﬁmz(ml +n)(m2 +n)

g, mp=0i>0 n n

XRes, ResZZY(u,zl)Y(u,zz)w Trm
2

N i Z(_l)m2+n+l+i(ml +n)(m2 +n)

My, my=0i>0 n n

-m; —n—1
i
(1 +Zl)wtu+n(1 +Zz)wtv+n+m1

mytn+l—i2+m;+my+2n+i
21 22

XRes, Res,Y(v,z,)Y(u,z)w
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From Lemma 2.1 we know that

(1 + Zl)\AItLt+n(1 + Zz)wtz;+n +my

mytn+l—i_2+m;+m,+2n+i
21 23

Res, Res,Y(v,z,)Y(u,z;)w

z

liesin O,(V). Also if i >n — m,

(1 + Zl)vvtu+n(1 + Zz)wtv+n +my

mitn+l+i l+my,+n—i
21 23

Res, Res, Y(u,z,)Y(v,z,)w

isin O,(V). Thus

n

(wego)rgw = wn(ongw) £ X (="M E (e )
my, my=0

(1 +Zl)wtu+n(1 +Zz)wtz:+n
XRes, Res, Y(u,z,)Y(v,z,)

my+n+1
21

B R W

i=0 j>0

1+my+n
22

X

From Proposition 5.3 in the Appendix we know that
n

_\ymifmy+n
E (-pym(m )

my=0
Tt -my —n—1)\[m i 1
Z Z . . (_1) i+my - my = 0
/=0 j>0 Y 1

i l 2

This implies that the product #, of A,(}/) is associative.

The proof of (ii) is similar to that of (ii) of Theorem 2.4 of [DLM]. We
refer the reader to [DLM] for detail.

Note that 1+, u = u for any u € V' and that

wtu —1

u*,1— 1%, u=ResY(u,z)1(1+2z) =0.

This shows that 1 + O,(V) is the identity of A4,(}). Again by Lemma
2.1Gii),

wx,u—u*,0=Res,Y(w,z)u(l+z)=L(—Du+L(0)uecO,V).

So (iii) is proved. 1
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PrRoPOSITION 2.4. The identity map on V induces an onto algebra homo-
morphism from A,(V) to A,,_ (V).

Proof.  First by Lemma 2.1(), 0,(V) c O,_,(V). It remains to show
that u+,0 =u=,_ v mod O,_,(JV). Let u be homogeneous. Then

(1 + Z)vvtu+n—1

n+m
z

wep= Y (m,j”)(—l)’" Res,Y(u, )0

m=0

n 1+Z)Wtu+n—1
m+n m (

+ ZO( N )(—1) Res,Y(u,z)v e

m=

n—1 (l+Z)Wtu+n—1
_ + m

=Y (mn ”)(—1) Res,Y(u, z)v T
m=0

n—2 " (1+Z)Wtu+n71
+ Z (m;:'fl)(_l) ReSZY(u,Z)W
m=0
mod O,_ (V)
( )Wtu+n71 n—1 ( Z)Wtqunfl

Res,Y(u, z)v e S

+ ) Res.Y(u,z)v
m=1

((_1)m(m’—1|—n) + (_1)m+1(m +,111 — 1))

as desired.

From Proposition 2.4 we in fact have an inverse system {A4,(}/)}. Denote
by 1(V) the inverse limit lim A4,(V). Then

1) = { = (0, + 0,V) € TTAMla, —a, < o“(u)}.
(2.4)

Define i: V' — I(V) such that i(v) = (v + O,(V)) for v € V. Then V' /ker i
is linearly isomorphic to a subspace of I(V). It is easy to see that i(}) is
not closed under the product. But one can introduce a suitable topology on
I(V) so that i(}) is a dense subspace of I(77) under the topology. An
interesting problem is to determine the kernel of i. From the definition of
0, (V) we see immediately that (L(—1) + L(0))V is contained in the
kernel. It will be proved in Section 3 that if v € O,(V) then a,,,_, = 0 on
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& _, M(n) for any admissible ’-module &;_, M(k). Thus a < ker i if and
only if a,,,_, = 0 on any admissible V-module. It is proved in [DLMM]
that if V7 is a simple vertex operator algebra satisfying 1, = 0 for all
k <0, and V;, = C1 then the subspace of }” consisting of vectors v whose
component operators v,,,_, are 0 on V' is essentially (L(0) + L(—1)V.
We suspect that if 77 is a rational vertex operator algebra then the kernel
of i is exactly (L(0) + L(—1)V.

3. THE FUNCTOR (,
Consider the quotient space
V=C[t,t 1o V/DC[t,t7 ]V, (3.1)

where D = § ® 1 + 1 ® L(—1). Denote by v(m) the image of v ® ™ in
V for veV and m € Z. Then V' is Z-graded by defining the degree of
v(m) to be wt v —m — 1 if_v is homogeneous. Denote the homogeneous
subspace of degree m by V(m). The space V is, in fact, a Z-graded Lie
algebra with bracket

la(p). (@] = X (7))o +a -1 (32)

(see [L2, DLM])). In particular, I7(0) is a Lie subalgebra. By Lemma 2.1(iii)
we have

PROPOSITION 3.1.  Regarded A,(V') as a Lie algebra, the map v(wt v — 1)
— v + O,(V) is a well-defined onto Lie algebra homomorphism from V(0) to
A, (V).

By Lemmas 5.1 and 5.2 of [DLM], any weak V-module M is a module
for V' under the map a(m) — a,, and a weak V-module which carries a
Z ,-grading is an admissible }-module if, and only if, M is a Z ,-graded
module for the graded Lie algebra V. R

For a module W for the Lie algebra IV and a nonnegative m we let
Q,, (W) denote the space of “mth lowest weight vectors,” that is,

Q, (W) ={ueWlV(-k)u=0if k> m). (3.3)

Then Q, (W) is a module for the Lie algebra 7(0).

THEOREM 3.2. Suppose that M is a weak V-module. Then there is a
representation of the associative algebra A,(V) on Q,(M) induced by the
map a — o(a) = a,,,_, for homogeneous a € V.
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Proof.  We need to show that o(a) = 0 for all a € O,(VV) and o(u *,0v)
= o(uw)o(v) for u,v € V. Using Y(L(—Du, z) = LY(u, z) we immediately
see that o(L(—1u + L(0)u) = 0. From the proof of Lemma 2.1 we know
that (L(—Du + LOOu)*,v = (—=1)"(3")2n + Du-,v. It suffices to show
that o(u *,v) = o(w)o(v).

Let u, v be homogeneous and 0 < k < n. Note that v, = Uy, =0
on Q,(M) if p > n. We assert that the following identity holds on Q,(M),

(1 + )Wtu+n )

2n+1 k+m

k
2:: (—1)m(2n +’Zl _k) (Res Y(u,z)v

= Untu—n+k—1Vwto+n—k—-1 (34)

which reduces to o(u *,v) = o(u)o(v) if k =n. The proof of (3.4) is a
straightforward computation involving the Jacobi identity on modules in
terms of residues.

On Q,(M) we have

k
g( 1) (2n+m k) Res,Y(u, z)v

2n+1 k+m

(1 + 7 )Wtu+n )

l

§= § (Zn +r;1n_k)(Wtu'+ n)o(ui—Zn—lferkU)

= Z:: Z(_l)m(Zn +nT —k)(wtu_+n)

l

><(ui72n717m+kv)wtu+wtvfi+2n+mfl*k
wtu + n
ZZZ( 1) (2n+m k)( i )
m=01i>0

XRes, Res, __ Y(Y(u,z, —z,)v,2,)

_ i=2n—m—=1+k _wtu+wto—i+2n+m—1—k
><(Zl ;) 22

z1-2,

- Z( 1) (2"+m k)Res Res

Wtu+n wto+n+m—1—k
22

XY(Y(u,z, — 2z,)v, z,)

2n+m+1—-k
(21— 22)

k
_ N 2n+m—k
= §: (-1 ( )Resleesz2
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Wtu+nzzwt1;+n+m,1,k

XY(u,z,)Y(v, z,)

( )
Zf|. 2’2

- E( 1) (2”+m k)Res Res,

Wtu+n wto+n+m—1-k

)
XY(v,z,)Y(u, z;) (z, - )2n+m+lfk
1
koK +i[2n + k m-—2n—1+k
_ _ m+i n m — — - —
- L e ( m )( i )

><MWtu n—m-1+k—iOwto+n+m—1—k+i
_ Z Z(Zn—i—m k)(—m—.Zn—1+k)(_l)i
I —m
m=0i=m
Xuvvt14—n+k—i—1Uth+n—k—l+i
k i
- 2n+m—k\[—-m—2n—1+k\|, .\
=L X (2 m k) mman Lk )
i=0m=0
><M\I\ftufnJrkfif1UWtU+n7k71+i
Upty—n+k—1Pwto+n—k-1
k i
2n+m—k\(—-m—2n—-1+ky|, .\
* Z D ( m )( I—m )( 1)
i=1m=0
qutu7n+k7iflthu+n7k71+i'
It is enough to show that for i = 1,..., k.
5 (2n+m—k)(—m—.2n—1+k) o

m —
=0 l m

which follows from an easy calculation:

i (Zn +nT—k)(—m —.Zn—l+k)

m=0 I —m
- Zl_:( 1) m(2n+rz1 k)(an-i-_lm—k)
- et
— 0.

This completes the proof. |
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Remark 3.3. For homogeneous u,v € V and j € Z we set o(u) =
Uy, —1-; and extend to all u € V' by linearity. Then oy(u) = o(u). Using
associativity of the vertex operators

(2o +22)Wtu+ny(”vzo +2,)Y(v,z,) = (z, + Zo)Wt“nY(Y(”’Zo)Usz)

on Q (M) we have that for i > with i +j > 0 these exists a unique

wyl €V such that o (u)o,(v) = o, (w;)]) on Q,(M). In fact one can
wrlte wid explicitly in terms of u and v. But for our later purpose it is
enough to know the explicit expression of w, . * (i > 0) which is given by

(1 + Z)Wtu+n

n+l+it+m
z

Wil = Z( 1) ("+m+1)ReSY(u z)v

in the proof of Theorem 3.2.

It is clear that , is a covariant functor from the category of weak
V-modules to the category of A4,())-modules. To be more precise, if f:
M — N is a morphism in the first category we define ,(f) to be the
restriction of f to Q,(M). Then f induces a morphism of I’-modules
M — N by Lemma 5.1 of [DLM]. Moreover Q (f) maps Q,(M) to
Q,(N). Now Theorem 3.2 implies that Q,(f) is a morphism of A, (V)-
modules.

Let M be such a module. As long as M # 0, then some M(m) # 0, and
it is no loss to shift the grading so that in fact M(0) # 0. If M =0, let
M(0) = 0. With these conventions we prove

ProposITION 3.4.  Suppose that M is an admissible V-module. Then the
following hold
N Q,(M) > &, MG). If M is simple then Q,(M) = &, M(J).
(i) Each M(p) is an V(0)-module and M(p) and M(q) are inequiva-
lent if p # q and both M(p) and M(q) are nonzero. If M is simple then each
M(p) is an irreducible V(0)-module.

(iii)  Assume that M is simple. Then each M(i) for i =0,...,n is a
simple A,(V )-module and M(i) and M(j) are inequivalent A,(V )-modules.

Proof. An easy argument shows that Q,(M) is a graded subspace of
M. That is,

Q,(M)=®,_ Q,(M)nM(®i). (3.5)

Set Q,() = Q, (M) N M3G). It is clear that M(i) c Q, (M) if i <n. In
order to prove (i) we must show that Q,(i) = 0 if i > n.
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By Proposition 2.4 of [DM] or Lemma 6.1.1 of [L2], M = span{u,w|u €
V, n € Z} where w is any nonzero vector in M. If Q,(i) # 0 for some
i > n we can take 0 # w € Q,(i). Since u,,,w = 0 for all p > n we see
that M = span{u,,,, ,wlu € V, p € Z, p < n}. This implies that M(0) = 0,
a contradiction. ~

It is_clear that (iii) follows from (ii). For (ii), note that M = w =
®, <, V(pw. Thus if 0 # w € M(i) then (p)w = M(i + p). In particular,
V(0w = M(), as required. It was pointed out in [Z] that L(0) is semisim-
ple on M and M(k) = {w € M|L(O)w = (h + k)w} for some fixed 4. The
inequivalence follows from the fact that L(0) has different eigenvalues on
M(p) and M(q). 1

4. THE FUNCTOR L,

We show in this section that there is a universal way to construct an
admissible J-module from an A,(V)-module which cannot factor through
A,_,. (If it can factor through A4, _,(VV) we can consider the same
procedure for A4,_,(}7).) Moreover a certain quotient of the universal
object is an admissible ’-module L,(U) and L, defines a functor which is
a right inverse to the functor Q,/Q,_,, where Q,/Q,_, is the quotient
functor M —» Q (M)/Q,,_(M).

Fix an A4,(})-module U which cannot factor through A4, _,(V). Then it
is a module for 4,(V),,, in an obvious way. By Proposition 3.1 we can lift
U to a module for the Lie algebra 1(0), and then to one for P, =
®,. ,V(—p) ® V(0) by letting 1'(—p) act trivially. Define

M,(U) = Ind},(U) = U(V) &y, U. (4.1)

If we give U degree n, the Z-gradation of V lifts to M, (U) which thus
becomes a Z-graded module for V. It is easy to see that M, (U)(i) =
uiv),_,U.

We define for v € V,

Vwl:2) = T o(mz " (4.2)

As in [DLM], Yy, (v, 2) satisfies all conditions of a weak }-module except
the associativity which does not hold on M,(U) in general. We have to
divide out by the desired relations.

Let W be the subspace of M, (U) spanned linearly by the coefficients of

(2o +2,)"™ "V (a, 2o+ 2,)Y(b, z,)u — (2, + 20)" 7"Y(Y(a, z5) b, z,)u
(4.3)
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for any homogeneous a € V,b € VV,u € U. Set
M,(U) = M,(U)/U(V)W. (4.4)

THEOREM 4.1. The space M, (U) = ¥, . M, (UXm) is an admissible
V-module with M,(U)0) # 0, M, (U)n) = U and with the following univer-
sal property: for any weak V-module M and any A,(V )-morphism ¢. U —

Q, (M), there is a unique morphism ¢: M, (U) > M of weak V-modules
which extends ¢.

Proof. By Proposition 6.1 of [DLM], we know that M (U) is a Z-graded
weak V-module generated by U + U(V)W. By Proposition 2.4 of [DM] or
Lemma 6.1.1 of [L2], M (U) is spanned by

{a,(U+U@W)lacV,nez)

Thus M, (UXm) = V(m — (U + UW)W) for all m € Z. In particular,
M, (U)(m) =0if m<0and M, WUXn) =A,V)U + U(V)W) which is a
quotient module of U. A proof that M (U)(O) #0and M LU)n) = U will
be given after Proposition 4.7. The unlversal property of M (U) follows
from its construction. |

In the following we let U* = Hom (U, C) and let U, be the subspace of
M, (U)(n) spanned by “length” s vectors

o,(ar) - o0,(a,)U,

where p, = - =p, p;+ - p,=0,p;,#0, p, = —n,and a, € V. Then
by the PBW theorem M, (U)n) =X,.,U, with Uy=Uand U, N U, =0
if s # ¢. Recall Remark 3.3. We extend U* to M, (U X(n) inductively so that

<u”0p1(al) ’ p(a )u> - <L£ 0p1+p2( a1 az ) p3(a3) ps(as)u)’
(4.5)

where o,(a) = a(wta — 1 — j) for homogeneous a € V. We further ex-
tend U* to M,(U) by letting U* annihilate &, M(U)().
Set

J={veM,U)Ku' xw) =0forall u’ € U*,all x € U(V)}.

We can now state the second main result of this section.

THEOREM 4.2.  The space L, (U) = M (U)/J is an admissible V-module
satisfying L,(UX0) # 0 and Q,/Q,_(L,(U)) = U. Moreover L, defines a
functor from the category of A,(V)-modules which cannot factor through
A, _ (V) to the category of admissible V-modules such that Q,/Q,_,° L, is
naturally equivalent to the identity.
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The main point in the proof of the theorem is to show that U W cJ.
The next three results are devoted to this goal.

PropPosITION 4.3. The following hold for all homogeneous a € V, b €
ViueU*uelUjeZ,,

Wta+n+j
o ]YM,,(U)(alZO +22)YM,,(U)(b722)u>

Wta+n+jY

wan(Y(a,20)b, z)u).  (4.6)

u',(zy + z;)
=<u',(z, + zp)
In the following we simply write Y for Y, ;, which should cause no

confusion. The following is the key lemma.

LEmMMA 4.4. Foranyi,jE€ Z,,
Res, z5 " "(zy + 2) " Y (a, zp + 2,)Y (b, z,)u)
= Res, 251" (z, + 20)" ! Y (Y (a, 20) b, 2, )u).

Proof.  Since j > 0 then a(wta + n + j) lies in eBp>nI7(—p) and hence
annihilates u. Then for all i € Z, we get

Res,(z; — 2,) 28 " Y(b, z,)Y(a, z;)u = 0. (4.7)
Note that (3.2) is equivalent to

Z1 — 2o

[Y(a,z,),Y(b,z,)] = ReSZOZzlﬁ( )Y(Y(u,zo)u,zz). (4.8)

2
Using (4.7) and (4.8) we obtain

Res, z4(z, + )" Y (a, 2y + 2,)Y(b, z,)u
= Res,(z, — 2,) 2ty (a, 2,)Y(b, z,)u
= Res, (2, — 2,) 2" " Y (a, 2,) Y (b, z,)u

— Res, (2, — 2,) 28" Y (b, 2,)Y(a, z,)u

Res.(z; — Zz)izftﬁnﬂ[y(a! 2,),Y(b, z,)]u

21 — 2o

z

Res, Res,(z; — zz)iz{““"ﬂzz_lb‘( )Y(Y(a, 29)b, z,)u

2

Zy +ZO

= Res,_ Reszlzézl""t‘”"”zl%( )Y(Y(a, z0)b, z,)u

= Res, z5(z, + 2o)"" " Y (Y(a, 29)b, z,)u. (4.9)
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Thus Lemma 4.4 holds if i > 1, and we may now assume i = 0.
Next us (4.9) to calculate that

Res, z5'(z, + )" Y (a, z + 2,) Y (b, zp)u)

Y (]]C)Reszl)zé‘_lz{k(zo +2,)" U Y (a, 2y +2,) Y (b, z,)u)
k=0

Y (;{)Res%zé‘lzék(zz +20)" ' Y (Y (a, 20) b, 2, )u)
k=1

+Res. z5'2)(z, + 20)" U Y(a, 2o + 2,)Y(b, z,)uy.  (4.10)
It reduces to show that
Res, z5*(z; + 2)" T u' Y (a, 2y + 2,)Y(b, z,)u) (4.11)
= ResZOZO’l(z2 +2,)" ™ u! Y (a, zo)u, z)uy.  (4.12)
Since {u’, M, (U)(m)) = 0 if m # n, we see that
Res, z5'(z, + z)" T 2y (u Y (Y (a, 20) b, z,)u)

= <u', b (Wt ak+ n)(akflb)(Wt(ak—lb) - 1)”>

kez,

=<u’, y (Wtak+ n)o(aklb)u>

kez,

= <u’,0(ReSZY(a,z)b(1+ZZ—)H)u>.

On the other hand, note that b(wtb — 1 + p)u = 0 if p > n. So
2’ Y(a, zg + 2,)Y(b, z,)u)

Res, z5'(z, + z,)" "

=<u’, Y awta—2—-i+n) Y b(Wtb—l—m)22"+"+mu>

i€z, m>-—n

-
o

(4.13)

:;M=

a(Wta — 1 —i)b(wth — 1+ i)u > (4.14)

Fﬂ:

a(wta — 1 +i)b(wth — 1~ z)u> (4.15)

1
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Note that the A4,(}")-module structure on U is equivalent to
o(a)o(b)u = a(wta — 1)b(wtb — 1)u
n 1+ Z)Wtu+n
m(m + (

= ZO(—l) (mn ") (Res Y(a, Z)bw)”
By (4.5) with s = 2, a; = a, a, = b, p, = k = —p, (k > 0) we see that
(u',op(a)o_ (b)uy

=(u';a(wta —1—k)b(wtb — 1+ k)u)

< Z( 1) (m+n+k) (ReszY(a,z)b%)u>-

(4.16)

<u’, i a(Wta — 1 —k)b(wth — 1+ k)u>
k=0

_— n Tk (1 + Z)wta+n
kz Z( 1) ( ) RESZY(a,Z)bW u .
0m=0
Use Lie algebra bracket (3.2) to get
a(wta — 1+ k)b(wtb —1—k)
=bwtb —1—k)a(wta —1+k)
+ Z (Wta -1+ k)

; (a;b)(Wta +wtb — 2 —1i).
i>0
By (4.16),

u',b(wtbh — 1 —k)a(wta — 1+ k)u)
n—k ( Z)Wth+n
< Y (-1 (m o +k) (Res Y (b, Z)am)u>-
A proof similar to that of Lemma 2.1(ii) shows that

( Z)Wtb+n

m+n+1+k

n—k
Y (-1) (m +n +k)Res Y(b,z)a
m=0

n—k

-y (m tn +k)(—l)'”k Res,Y(a,z)b

( )WtaerJrkfl

e0,(V).

m Zl+m+n+k

m=0
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We now have

<u’, i a(wta — 1+ k)b(wth —1— k)u>

( + )Wta+m+k71

><<u’,o(ReszY(a,z)b u>

f (Wta—1+k)<u (a.b)(Wta + Wth — 2 — i)u)
=1i>0

Zl+m+n+k

+

l

i (m +n+ k)( 1)k

k 1m=0

><<u O(Res Y(a, z)b( I M )u>

Zl+m+n+k

+ Z (u’,o(ResZY(a,z)b(l +z)Wta71+k)u>.
k=1

So it is enough to show the identity
(1 + Z)V\/ta+n

Z Z( 1) (m+”+k)m

k=0 m=0 z

n n—k l+z)wta+m+kfl
tnk wi (
I e O
k=1m=0 z

n
+ Z (1 +Z)wta—1+k

k=1
(1+Z)Wta+n
= . ,
or equivalently,
(1+z)n
1 (m+n+k)
kEO mzo( ) Zm+n+k
m+k—1
u —+ +k n+k (1+ )
+kZl Zo(m i )( T

=1.
This identity is proved in Proposition 5.1 in the Appendix. i
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Proposition 4.3 is a consequence of the next lemma.

LEMMA 4.5. For all m € Z we have
Res, z5'(zy + 2,)" U Y (a, 2 + 2,) Y (b, z,)u)
= Res, zy'(z, + 2)" ! Y (Y (a, 20) b, 2, )u).

Proof. Thisistrue for m > —1by Lemmad4.4. Letuswritem = —k + i
with i € Z_, and proceed by induction k. Induction yields

Res, z,(z, + )" Y (L(=1)a, 2o + 2,)Y (b, 2,)u)

= Res, z,%(z, + z)" " Y(Y(L(=1)a, 20)b, z,)u).

Using the residue property Res, f'(2)g(z) + Res,f(z)g’(z) = 0 and the
L(—1)-derivation property Y(L(—1)a, z) = £Y(a, z) we have

Res, z,*(z, + z)" T Y (L(—1)a, 2o + 2,)Y (b, 2,)u)

J .
—Res, (9—20’"(20 +z2,) "N Y (a, 20 + 2,) Y (b, z,)u)
2o

Res, kzy " 1(zo + 2,) " Y (a, 2 + 2,) Y (b, zp)u)
—Res, (Wta + 1+ m + )z, (z, + 7,
X u',Y(a,zy+2,)Y(b, zy)u)
= Res, kz,“'z,(z, + 2,)" U Y (@, zp + 2,) Y (b, z,)u)
+ Res, kzy*(z, + 2,)" U Y (a, 2 + 2,) Y (b, z,)u)
wta +m +j

—Res,(Wta +1+m +)z05(z, + z4)

X (u',Y(Y(a,zy)b, z,)u)

Res, kzy*~'z,(z, + 2,)" U Y (a, zg + 2,)Y(b, z,)u)
+ Res, kzy*(z, + 2)" T Y (Y (@, 20) b, z,)u)
wta +m +j

—Res,(Wta +1+m +)z0%(z, + 20)

X (u',Y(Y(a,zy)b, z,)u),
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and
Res, z,%(z, + z)" T Y(Y(L(—1)a, 20)b, 2, )u)

Jd )
— —Res,_ zr—zgk(zz-rzb)m“*l*m*” (u',Y(Y(a,zo)b, z,)u)
20

I?esZOlc.zak_l(.z2 + zo)Wt”Herﬂ(u’,Y(Y(a, 20)b, z,)yu)
—Res, (Wta +1+m +j)z5"(z, + zg)M
X (u',Y(Y(a,zy)b, z,)u)
= Res, kz,zo“ 1z, + 20)" T u! Y (Y (4, 20) b, 2,)u)
+ Res, kzo¥(z, + 20)" " u! Y(Y(a, 29)b, 2, )u)
Wta+m+j

— Res,(Wwta + 1+ m +)z05(z, + 24)

X u',Y(Y(a,zy)b, z,)u).

This yields the identity

Res, z,“ (2, + )" Y (a, zg + 2,)Y(b, z,)u)

= Res, z," (2, + 2)"™ ! Y (Y (a, 24)b, 2, )u),

and the lemma is proved. |

Let us now introduce an arbitrary Z-graded V-module M = 8, c 7 M(m).
As before we extend M(n)* to M by letting it annihilate M(m) for m # n.
The proof of Proposition of 6.1 of [DLM] with <{u’,- ) suitably inserted
gives:

PROPOSITION 4.6. Let U be a subspace of M(n) and U’ a subspace of
M(n)' such that

(i) M=UW)U.
(ii) Fora € Vandu € U there is k € Z such that

u',(zo + zz)H"Y(a, zo +2,)Y(b, z,)u)
=, (2, + 7)Y (Y(a, 20)b, z,)u) (4.17)

forany b € V,u' € U'. Then in fact (4.17) holds for any u € M.



88 DONG, LI, AND MASON

PrRoPOSITION 4.7.  Let M be as in Proposition 4.6. Then for any x €
UV),a € V,u € M, there is an integer k such that

(u' (2o +2,) " "x - Y(a,zy + 2,)Y(b, z,)u)
= (', (2, +20) " x- Y(Y(a,20)b, z,)u) (4.18)
foranyb € V,u' € U'.

Proof. Let L be the subspace of u(y) consisting of those x for which
(4.18) holds. Let x € L, let ¢ be any homogeneous element of 7/, and let
m € Z. Then from (4.8) we have

(u', xe(m)Y(a, zy + 2,)Y(b, z,)ud(zy + 2,)* "

- Z (’7)(20 + zz)k+"+m7i<u’,xY(c(i)a, zo + 2,)Y(b, z,)u)

+ i (n.i)zg’“’.(zo +2,) U xY (a, 2o + 2,)Y(c(i)b, z,)u)

+(zo +2,) ! xY (a, 2y + 2,)Y (b, z,)c(m)u). (4.19)

The same method that was used in the proof of Proposition 4.6 shows that
xc(m) € L. Since U(V) is generated by all such c(n)’s, and since (4.18)
holds for x = 1 by Proposition 4.6, we conclude that L. = U()), as desired.
|

We can now finish the proof of Theorems 4.1 and Theorem 4.2. We can
take M = M, (U) in Proposition 4.7, as we may since M, (U) certainly
satisfies the conditions placed on M prior to Proposition 4.6 and in
Proposition 4.6. Then from the definition of W (4.3) and Propositions 4.3,
4.6, and 4.7 we conclude that U(V)W cJ. It is clear that L(U) is a
quotient of M (U) and hence an admissible ’-module. Note that J N U =
0. So L(UXn) contains U as an A,(})-submodule. This shows that
M (UXn) =U as A,(V)-modules. If M (UX0) =0 then U will be an
A, _(V)-module, contradicting the assumption on U. This finishes the
proof of Theorem 4.1. Theorem 4.2 is now obvious. |

At this point we have a pair of functors Q,, L, defined on appropriate
module categories. It is clear that Q,/Q, ,° L, is equivalent to the
identity.

LEMMA 4.8.  Suppose that U is a simple A,(V )-module. Then L,(U) is a
simple admissible V-module.

Proof. If 0+ WcL,(U) is an admissible submodule then, by the
definition of L (U), we have W(n) = W N L,(U)Xn) # 0. As W(n) is an
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A,(V)-submodule of U =L, (UXn) by Theorem 3.2 then U = W(n),
whence W o UWV)W(n) = UV)U = L,(U). 1

THEOREM 4.9. L, and Q,/0, _, are equivalences when restricted to the
full subcategories of completely reducible A,(V )-modules whose irreducible
components cannot factor through A, _ (V') and completely reducible admissi-
ble V-modules, respectively. In particular, L, and Q,/Q, _, induce mutually
inverse bijections on the isomorphism classes of simple objects in the category
of A,(V)-modules which cannot factor through A,_,(V) and admissible
V-modules, respectively.

Proof. We have Q,/0,_,(L(U)) = U for any A,(})-module by Theo-
rem 4.2.

If M is a completely reducible admissible 1-module we must show
L(Q,/Q, (M) =M. For this we may take M simple, whence
Q,/Q,_,(M) is simple by Proposition 3.4(ii) and then L, (Q,/Q,_,(M))
is simple by Lemma 4.8. Since both M and L,(Q,/Q,_,(M)) are simple
quotients of the universal object M, (Q,/Q, _,(M)) then they are isomor-
phic by Theorems 4.1 and 4.2. ||

The following theorem is a generalization of Theorem 8.1 of [DLM].

THEOREM 4.10.  Suppose that V' is a rational vertex operator algebra. Then
the following hold.:

@ A,(V) is a finite-dimensional, semisimple associative algebra.

(b)  The functors L,,, Q, /O, _, are mutually inverse categorical equiva-
lences between the category of A,(V )-modules whose irreducible components
cannot factor through A, _ (V') and the category of admissible V-modules.

(¢) The functors L,,Q,/Q,_, induce mutually inverse categorical
equivalences between the category of finite-dimensional A,(V )-modules whose
irreducible components cannot factor through A, (V') and the category of
ordinary V-modules.

Proof. Part (b) follows from Theorem 4.9 and (a). Since V is rational
any irreducible admissible -module is an ordinary module by Theorem
8.1 of [DLM]. Now (c) follows from (b). It remains to prove (i).

Let W be an A4,(V)-module. Set U = W & V(n). Then U is an A,(V)-
module which cannot factor through A, (V). Now L,(U) is admissible
and hence a direct sum of irreducible ordinary F-modules. Thus
Q(LU)N/Q,_(L,U)) =U is a direct sum of finite-dimensional irre-
ducible A4,(}/)-modules and so is W. |

It is believed that if A(V) = A,(V) is semisimple then V' is rational. We
cannot solve this problem completely in this paper. But we have some
partial results which are applications of A,(V)-theory.
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THEOREM 4.11. If all A, (V') are finite-dimensional semisimple algebras
then V is rational.

Proof. Since A(V') is semisimple V' has only finitely many irreducible
admissible modules which are necessarily ordinary F-modules. For any
A € C let .#, be the set of irreducible admissible modules whose weights
are congruent to A module Z. Then for each W e.#, we have W =
Dz Wain,+n = Sez, Wn)where ny, € Zand W, ., ., = W(n). Since
L(—1): W(n) > W(n + 1) is injective if n is large (see [L1]) there exists
an m, € N such that the weight space W,,, # 0 for any W €%, and
mz=m,.

Consider any admissible module M whose weights are in A + Z and
whose homogeneous subspace M, ., with some m > m, is 0. Let U be an
irreducible  A(V')-submodule of M(0). Then L,(U) = L(U) is an irre-
ducible ¥-module such that L(U)X0) = U and L(U),,,, = 0. Thus L(U)
= 0 and U = 0. This implies that M = 0.

Now take an admissible module M = &,_, M(k). Then M(0) is a
direct sum of simple A(7)-modules as A(V) is semisimple. Let U be an
A(V)-submodule of M(0) isomorphic to W(0) = W, ., for some W €.#,.
We assert that the submodule N of M generated by U is irreducible and
necessarily isomorphic to W. First note that N has an irreducible quotient
isomorphic to W. Take n € N such that n + ny, > m,. Observe that
M (W(n))/] L,(W(n)) is isomorphic to W where J is a maximal sub-
module of M (W(n)) such that J N W(n) = 0. Since JHn +n, = 0 we see
that 7 = 0 and M,(W(n)) = L,(W(n)) = W. Write N(n) as a direct sum of
W(n) and another A, (V)-submodule N(n)' of N(n)as A4,(V) is semisim-
ple. Clearly the submodule of N(n) generated by W(n) is isomorphic to W.
This shows that N must be isomorphic to W, as claimed.

It is obvious now that the submodule U(V/)M(0) generated by M(0) is
completely reducible. Using the semisimplicity of 4,(}J’) we can decom-
pose M(1) into a direct sum of A4,(J/)-modules (UIMO)1) & M)
The same argument shows that U(V)M(1)' is a completely reducible
submodule of M. Continuing in this way proves that M is completely
reducible. 1

Remark 4.12. From the proof of Theorem 4.11, we see, in fact, that we
can weaken the assumption in Theorem 4.11. Namely we only need to
assume that A4,(1) is semisimple if » is large.

5. APPENDIX

In this appendix we prove several combinatorial identities which are
used in the previous sections.
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A= T (pr(mep k)

k=

n n—k
+ Y X (m+n’§+k)(—1)"+kW

0m=0

k=1m=0

Using the well-known identity

Eeo(i) - ol

we can rewrite A, (

4,(2)

ProPosITION 5.1.

Proof.  Set

z) as

(1 +z)"

Zm+n+k

(1 +_Z)m+k—1

(1+2)1

+2X X (”,J,rlk)(—l)HHmT

—(-1)" Z(n+k11

i (_1)k(n+k—1)(1+z)n

n+k

z

|

A,(z) =1 foralln > 0.

(1 +z)

Zn+k

(1+z)

R B L

C(z)= ¥

P k—1

z

z

(n+k—1)(1+z)k_l_

n+k

91
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Then
B,(2) = Z( 1) ((””“2)+(”Zf;2))_(l;jc)n

+(-1) (2”‘1)—(1;f)
1+z = k+1fn - (1"'2)”

- e L0 S
+(-1) (2n—1)(1+f)

N C R YE PR Ok KRas
cmay(on 1) DT

Solving B,(z) gives
B.(2) =B, () + (~1)" 1%(2“"”)

n—1
r-yr S an -y,

Similarly,

C.(2) nil((n+k—2) +(n+k-2))(1+—z)k_1

=1 k—1 k—2 Zn+k

+(2n - 1) (1+2)""

n—1 ZZn

- —Co(2) + kzo(”;fgl)—(jﬁi)f
+(2n_—11) (1 +ZZn)n71
- i Coos(2) + l—C( 2) + (2”_‘12)—(”2;)

_(2n—1)(1+2) '

n—1 Z2n+1
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Thus
_ 1+2)" "
(1" C(2) = (-1)'C, () + (-1 f)L;zjr—
_ 1+z)"
+(_1)n_1(2nn_ 11)(2%)_
Thus

A,(2) =B,(2) + (-1)"'C,(2) =4,
Note that A,(z) = 1 and the proposition follows. [

For n > 0 we define

A (e (D) = (D)L +2)"
Fn(z) - mz_o(mn n) Zn+n1+1
PrRoPOSITION 5.2.  F,(z) = 1 for all n.
Proof. Set
D)= % (i)
m=0
2 n (1+2z)"
E,(2) = Eo(m” H)W'
Then
~ 2 +1 (1+Z)n+l
D,(2) = Bos(2) + (-1 (27 )
L(1+2)"
= 5,(5) + (-0 (o)
n+1 (1 +Z)n+1 2n +1
+(—-1) T( pA )
~ . 2 +1 (1+Z)n+l
G e
2 (1+2)"
= B,(2) + (~1)' (2t
and

(1 +z)

22n+1

E(2) = C,(2) + 2]
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Thus
F(2) =D,(2) + (-1)"E,(2) =4,(2) = 1,

as required. 1

For n > 0 define
_ ; _ 1\l m+n
a w2y = L (-1)"(" ")
m=0

<'s T( Ca (] et Zim)

i

Note that if p >0,k >0 then (77) = (=1D*(»+k-1). We can rewrite
a,(w, z) as

()5

a(w2) = ¥ (-n"(min)

m=0

PrRoPOSITION 5.3. The a,(w, z) =0 forall n > 0.

Proof. Regarding a,(w, z) as a polynomial in z~*, the coefficient of
z77in a,(w, z) (0 < p < n)is equal to (setting m + i = p)

e (g ()
=wpmi_0(—1>m(’";”)(;‘+,’;)<1+1/w) - (-1 (P”)

So the coefficient of z7?w? in a,(w, z) equals 0.
If 0 < g < p — 1, the coefficient of z7?w?~7 in a,(w, z) is equal to

cpa) = X (-o(mn)(nre)(m)
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which is defined for any 7, p, g > 0. So we must prove that a,(p,q) = 0
forl<g+1<p<nRecll()=C3"+ (1) Then c,(p, q)is equal

to

Eeomemfrreat s (a i)
) s (e ()

+e,(p—1.9)

(i)

+ (P (5] e - 1)

n+p-1 (m)
n+m-—1)\4

“ei(ma) +alp -1y - (-7 E ()
+(-1)" P+”( )
- Z( b=
)= (5 2))

¢ia(pPrq) +e(p—1,9) + (_1)p(p o 1)(p)

n+m-—1

n+p—l)

X

n q
-2
_ pz (_1)'"*1(m+n—1) nt+tp-1
T n n+m-—1

X

(o)
¢i-i(Pq) —c,(p—1g-1)+ (_1),,(p o 1)(5)
e LA (L

p—1
n q_l))
=c,_1(p.q) —c,(p—1,9-1).
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That is,

DONG, LI, AND MASON

c(p.q)=c,_«(p.q) —c,(p—1,g—1).

so by induction it is enough to show that ¢,(p,q) = 0 and ¢,(p,0) = 0 if
p > q. But this is clear from the definition. ||

[DLM]

[DLMM]
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