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Abstract

Odd circuits are minimal 1-blocks over GF(2) and the odd circuit of size 2¢ 4 1 can be represented by
the vectors of Hamming weight 2¢ in a (27 4+ 1)-dimensional vector space over GF(2). This is the tip of an
iceberg. Let f(2t, k, 2) be the maximum number of binary k-dimensional column vectors such that for all s,
1 <5 < 1,10 2s columns sum to the zero vector. If k = 2,k = 3,k = 4, or k > 5 and 21 is sufficiently large
(for example, 2t > pLgy | suffices), then the set of vectors of weight 2¢ in a (f(2¢, k,2) + 2t — 1)-
dimensional vector space over GF(2) is a minimal k-block over GF(2).
© 2005 Elsevier Inc. All rights reserved.
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1. Blocks and the critical problem

Minimal and tangential blocks were first defined in the 1966 paper [8] of Tutte. A k-block M
over GF(g) can be defined as a set of points in projective space PG(n — 1, ¢) such that every
codimension-k subspace in PG(n — 1, ¢) contains at least one point in M. If X is a flatin M, a
tangent of X is a codimension-k subspace U such that

MNnU=X.

A k-block M is minimal if every point has a tangent. It is tangential if every flat of rank not
exceeding n — k has a tangent. Blocks can also be defined using the critical problem of Crapo and
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Rota [1]. The critical problem approach shows that the properties of being a k-block, a minimal
k-block, or a tangential k-block depend only on the linear matroid defined by the set M.

The graph-theoretic or coloring analogue of a minimal k-block is a minimal (h 4 1)-chromatic
graph, a graph with chromatic number 4 4 1 such that deleting any one of its edges results in a
graph with chromatic number 4. Indeed, a minimal (2% + 1)-chromatic graph is a minimal k-block
over GF(2). Thus, there are many graphical minimal blocks known, in principle and in explicit
form. However, the only known graphic tangential k-blocks over GF(2) are the cycle matroids of
complete graphs on 2F 4 1 vertices. Indeed, if Hadwiger’s conjecture is true, then all graphical
tangential blocks are cycle matroids of complete graphs.

The situation in graph theory is far from typical. There are many non-graphical tangential
blocks, to the extent that in matroid theory, tangential blocks have held center stage. However, as
Tutte showed in [8], knowledge about minimal blocks can be the key to understanding tangential
blocks, particularly those which split as a set into the union of two proper flats. In addition,
the complement PG(r — 1, ¢)\M of a rank-r minimal k-block M over GF(q) is extremal in
the restriction-closed class of GF(g)-representable matroids not containing PG(r — k — 1, q)
as a submatroid, in the sense that any proper rank-r extension of PG(r — 1, ¢g)\M contains
PG(r — k — 1, g) as a restriction. See [3, Section 3].

Besides Tutte’s work, the only other result on minimal blocks is Oxley’s theorem that a series
connection of two minimal k-blocks is again a minimal k-block [6]. Apart from a few small
examples, all the previously known minimal blocks are tangential blocks or series connections of
minimal blocks. In this paper, we use a linear algebra method to show that certain sets of binary
vectors of even weight are minimal blocks. This direct method originated in [5] and is robust in
two ways: it works independently of dimension and it works for polymatroids as well as matroids.

Nothing more than elementary linear algebra is needed to read this paper. However, some
familiarity with matroid theory (see [1,7]) and the critical problem (see [4]) is necessary to see
why the results are interesting. A survey of minimal blocks can be found in Section 8.3 of [4].

We shall be working in both the vector space GF(¢)" and the projective space PG(N — 1, ).
In both, we choose a fixed basis e1, ez, ..., exy and use the following compact notation: if I C
{1,2,..., N}, then

elll=> e
iiiel

The Hamming weight of a vector or point (relative to the fixed basis) is the number of non-
zero coordinates in it; the support is the set of positions with non-zero coordinates. We will use
repeatedly the fact that a codimension-k subspace U in GF(g)" or PG(n — 1, g) is the null space
{x : AxT = 0} of a rank-k matrix A.

Let A be a matrix. We denote by A; the column indexed by i in A. A dyad in A is a pair of
columns A; and A such that A; = Aj.

2. Binary even-weight vectors

In Sections 2 and 3, we shall work over a finite field GF(2") having characteristic 2. The set
W (s, N) is the binary matroid represented by the subset

lel1] : 1] = s}
of weight-s points in PG(N — 1, 2). When s is even, the weight-s points are in the hyperplane H

defined by the equation x| 4+ x> + - - - + xy = 0 and they span H. Thus, for even s, the matroid
W(s, N) has rank N — 1.
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Let ¢ be a positive integer. A k X m matrix A with entries in GF(2") is said to be 2¢-sharp if
for every positive even number 2s not exceeding 2¢, no 2s columns sum to the zero vector, or,
briefly, “sum to zero”. This condition is equivalent to the null space of A and the union

t
L ws.m)
s=1
have empty intersection. By definition, a 2z-sharp matrix has distinct columns. Being 2¢-sharp is
preserved under column permutations and non-singular row operations. The parity check matrix
of a binary linear code with minimum distance greater than 2¢ is a 2¢-sharp matrix over GF(2),
but binary 2¢-sharp matrices can be bigger.

Let f(2t, k, 2") be the maximum number m such that there exists a k x m 2¢-sharp matrix over
GF(2"). For example, f (2, k, 2") equals 2" k the number of distinct k-dimensional vectors over
GF(2"). Because being 2¢-sharp implies being 2s-sharp if ¢ > s, f(2¢, k, 2") is a non-increasing
function of 2¢. In addition, the k x (k + 1) matrix constructed by adding the zero column to the
k x k identity matrix is 2¢-sharp for any 7. We conclude that if 2¢ > 2s,

k+1< FQtk27) < 25, k,270) < f(2,k,27) =27k, (1

The lower bound is sharp for suitable values of 2¢ when r = 1. Indeed, if & is odd, then f(k +
1,k,2) =k+1,and if k is even, f(k + 2, k,2) = k + 1. Another easy lower bound, useful for
doing small cases, is f(4,k,2) > k+ k/2ifkisevenand f(4,k,2) > k+ (k — 1)/2 if k is odd.
This bound follows from the fact that the columns of an identity matrix, together with weight-2
columns having mutually disjoint supports, form a 4-sharp matrix. Finally, since GF(2") is a
r-dimensional vector space over GF(2),

fQt, k,2") = f(2t,7k, 2).

We begin with the case k = 2. This case gives the ideas behind our method free of technicalities.
There are four 2-dimensional binary vectors. These four vectors sum to zero, and any three can
be chosen as the columns of a 2-sharp matrix. Hence, when r > 2, f(2¢, 2,2) = 3.

Theorem 2.1. When t > 2, the matroid W (2t, 2t + 2) is a minimal 2-block over GF(2).

Proof. Let A be a2 x (2f 4+ 2) matrix over GF(2). Let iy, be the number of columns in A equal
to the vector «, expressed in base 2. Then ig + i1 + i + i3 = 2t + 2. There are three cases.

(a) The integers i, are all even. Then there are t + 1 disjoint dyads. Picking ¢ of them give 2¢
columns summing to zero.

(b) Two of the integers are even and the other two are odd. Then there are ¢ disjoint dyads and
they give 2¢ columns summing to zero.

(c) All the integers i, are odd. Let i be the minimum of iy, i1, i3, i3. Then there are i disjoint
quadruples consisting of four distinct vectors. Since four distinct columns sum to zero, we
obtain 4i columns summing to zero. We are left with i, — i columns equal to o (with one
or more of the integers i, — i equal to zero). Since i is odd, i, — i are all even. As in case
(a), we obtain 2t 4 2 — 4i disjoint dyads. Picking 2¢ — 4i dyads and adding the 4i columns
obtained earlier, we get 2¢ columns summing to zero.

This shows that W (2t, 2t + 2) is a 2-block.
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To show minimality, observe that the null space of the 2 x (2¢ + 2) matrix
(O 0---0 1 0)
0 0---0 0 1
is a tangent for e[1, 2, . .., 2¢]. Tangents for other weight-2¢ points can be obtained by permuting
the columns. [

By Theorem 2.1, W (4, 6) is a minimal 2-block over GF(2) having 15 points and rank 5. As
one might expect from the tangential 2-block conjecture [8], W (4, 6) is not a tangential k-block.
For example, the rank-2 flat {e[1, 2, 3, 4], e[2, 3, 4, 5]} does not have a tangent.

There are two other simple cases besides Theorem 2.1. The first is the case k = 1. There are two
1-dimensional column vectors over GF(2) and the matrix (0 1) is 2-sharp. Hence f(2¢, 1,2) = 2.
A simpler version of the proof of Theorem 2.1 shows that the matroids W (2¢, 2¢ + 1) are binary
minimal 1-blocks. Since W (2¢, 2t 4 1) is isomorphic to a circuit with 27 4 1 points, this result is
the easier implication of Tutte’s odd circuit lemma [8], that a matroid is a minimal 1-block over
GF(2) if and only if it is an odd circuit.

The other simple case is when 2¢ = 2. Since being 2-sharp is just having distinct columns,
fQR, k2" =2" k Because a matrix with 2% 4+ 1 columns must contain a dyad, it is easy to
show that W (2, 2% 4 1) is a minimal k-block over GF(2"). Alternatively, one can observe that
W(2,2"% + 1) is the cycle matroid of the complete graph on 2" 4 1 vertices. As is well known,
this is a tangential (hence, minimal) k-block over GF(2").

Our main results are motivated by the preceding three examples. We begin with a theorem
which holds generally.

Theorem 2.2. If the matroid W (2t, f(2t, k,2") + 2t — 1) is a k-block (over GF(2")), then it is
a minimal k-block.

Proof. We shall find a tangent for each pointin W (2¢, f(2¢, k, 2") + 2t — 1). Since the symmetric
group acts transitively on 2¢-subsets, we need only consider the vector e[1, 2, ..., 2¢]. Consider
the k x (f(2t,k,2") 4+ 2t — 1) matrix A constructed by choosing columns 2z to f(2¢, k, 2") +
2t — 1 so that submatrix A’ consisting of those columns is 2¢-sharp, and then setting the initial
columns 1, 2, ..., 2t — 1 equal to column 2¢. Since the first 2¢ columns are equal, e[1, 2, ..., 2¢]
is in the null space of A.

To finish the proof, we will show that if e[/], where |I| = 2¢, is in the null space of A,
then I = {1,2,...,2¢}, Since the submatrix A’ is 2¢-sharp, I is not contained in {2f,2r +
1,..., fQ2t, k,2") + 2t — 1}, or, equivalently, at least one index in [ isin {1, 2, ..., 2t — 1}.

Suppose that exactly [ indices in I are in {1, 2, ..., 2t — 1}. Relabeling if necessary, we may
suppose that 1, 2, ..., [ are those indices. Let J = I\{1, 2, ...,[}. Then

Al+Ar+--+ A+ Z A;=0.
jijed
If [ is even, then Ay + A +---+ A; =0 and {A; : j € J} is an even non-empty subset of
columns in the 2¢-sharp submatrix A’ summing to zero, a contradiction. If / is odd, then A| +
Ay +---+ A=Ay . Ifl <2t —1and2t ¢ J, then Ay, and the columns A, j € J form a non-
empty even subset of columns in A’ summing to zero, a contradiction. If / < 2 — 1 and 2t € J,
then {A; : j € J, j # 2t} is a non-empty even subset summing to zero, a contradiction. Finally,
if | =2t — 1, then J is a single-element set {j} and A; = Ay,. Since j > 2t and the columns in
A’ are distinct, we conclude that j = 2t and e[I] = ¢[1,2,...,2t]. O
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Theorem 2.3. The matroid W (4, f (4, k,2") 4+ 3) is a minimal k-block over GF(2").

Proof. By Theorem 2.2, it suffices to show that W (4, (4, k,2") + 3) is a k-block, or, equiva-
lently, in every k x (f (4, k, 2") + 3) matrix A, there exist four columns summing to zero. If the
number of distinct columns in A is strictly greater than f (4, k, 2"), then some four columns sum
to zero. Thus we can assume that there are at most f (4, k, 2") distinct columns in A. Since there
are at least three more columns than the number of distinct columns in A, there exist (a) four or
more columns, all equal to each other, (b) three columns, all equal to each other, and disjoint from
the triple, a dyad, (c) two disjoint dyads. In all three cases, we can extract four columns summing
to zero. [

The next theorem shows that for a given integer k greater than 2, W (2¢, f(2¢,k,2") + 2t — 1)
is a minimal k-block for all sufficiently large ¢.

Theorem 2.4. Suppose that
FQtk2)+2t—1=2%+1
and
242> f4,k, 2.
Then, the matroid W (2t, f(2t,k,2") + 2t — 1) is a minimal k-block over GF(2").

Proof. By Theorem 2.1, it suffices to show that W (2z, f(2¢, k, 2") + 2t — 1) is a k-block. Let A
beak x (f(2t,k,2") + 2t — 1) matrix over GF(2") with columns indexed by /. If « is a vector
in GF(2"), let I, = {i :i € I and A; = «} and let

0 = {a € GF2"¥ : |1,| is odd}.

If |1,]| is even, then the columns equal to « can be paired into |/y|/2 disjoint dyads. If |1, |
is odd, then we can choose |I,| — 1 columns equal to « and pair them into (|I,| — 1)/2 disjoint
dyads, leaving one single column unpaired. The total number of dyads obtained is

2t — 14 f(2t,k,27) — 0]
2
and there are |(V] single columns left over. The single columns are, of course, distinct.

From the set of single columns left over from the pairing, choose a maximum-size even subset

of columns which sum to zero. Let this subset of columns be indexed by J. We claim that

[J| > 10| — fQ2t,k,27). 3)

(@)

[Otherwise, there would be at least f(2t, k,2") single columns not in J. These columns are
distinct and by definition of f(2¢, k, 2"), there exist 2s single columns not in J summing to zero.
We can add these 2s columns to the columns already chosen, obtaining a bigger even subset
of columns summing to zero.] Combining formula (2) and inequality (3), we conclude that the
number of dyads is at least (2t — |J|)/2.

If | J| < 2t¢, then we can choose (2¢ — |J|)/2 dyads and add the columns in them to the columns
indexed by J to get 2¢ columns summing to zero.

To deal with the case when |J| > 2¢, we need to use the two technical hypotheses. Since
|J| = 2t+2 > f(4,k,2"), the columns in J contain four columns, indexed by F, say, summing
to zero. Since the columns indexed by J sum to zero, the columns in the complement J\ F also
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sum to zero. Repeating this procedure, we obtain a subset H of J so that the columns in H sum
to zero and | H| equals 2t or 2t — 2, depending on whether |J| — 2¢ is congruent to 0 or 2 modulo
4. In the first case, H is a set of 2¢ columns summing to zero. In the second case, the hypothesis
fQt,k,27) 4+ 2t — 1 >2"% 4 1 implies that there exists at least one dyad. Adding any dyad to
H yields a set of 2¢ columns summing to zero. [J

3. Two bounds and an example

Although Theorem 2.4 shows that W (2¢, f(2¢t,k,2") + 2t — 1) is a k-block for all but finitely
many ¢, the technical hypotheses are there only to make the proof work. To remove them, we need
to know, for example, whether f(2¢, k, 2") + 2t — 1 distinct columns always contain 2¢ columns
summing to zero. Knowing more about the values of f(2¢, k, 2") would certainly help.

We begin with an upper bound obtained with the pigeonhole principle.

Lemma 3.1. Let s be an integer satisfying 1 <s < t. If
(];’ ) > 2k 4)

fQtk,2)<N—1.

then

In particular,

f@,k,2") < [20rkb/2y,

Proof. Let N satisfy the inequality (4) and let A beak x N matrix over GF(2"). We will show that
A is not 2¢-sharp. Consider the function on the collection of s-subsets of columns of A sending a
subset of 7 columns to the sum of those columns. Since there are 2% distinct columns, inequality
(4) implies that two s-subsets of columns, indexed by I and J, have the same sum. Hence, the
columns indexed by the symmetric difference I AJ sum to zero. Since |/ A J| equals the positive
even integer 2¢t — 2|1 N J|, the matrix A is not 2¢-sharp. [

From Theorem 2.4, Lemma 3.1, and the lower bound f(2t,k,2") > k + 1, we obtain the
following corollary.

Corollary 3.2. If2t > 27k — k 4+ 1, then the matroid W (2t, fQt, k,2") + 2t — 1) is a minimal
k-block over GF(2").

A companion to Lemma 3.1 is the following lower bound, suggested by the close similarity
between sharp matrices and parity check matrices of codes.

Lemma 3.3. Ak x N 2t-sharp matrix with no column equal to the zero vector exists over GF(2")

if
N-—1 N-—1 N-—1 "
() () () <
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Proof. Use the argument in the proof of the Gilbert—Varshamov bound in coding theory (see, for
example, [2, Chapter 1]). O

The lower bound implied by Lemma 3.3 is not very useful for small k or large . However, the
upper bound given in Lemma 3.1 is often the true value for small .

Lemma 3.4. For all integers t greater than 1, f(2t,3,2) = 4.

Proof. By Lemma 3.1, f(4, 3,2) < 4. Up to row operations and column permutations, there are
two 3 x 4 4-sharp matrices. They are

1 0 0 O 1 0 0 1
0O 1 0 0}, 0 1 0 1
0 0 1 O 0 0 1 O

We conclude that f(4, 3, 2) = 4. Since these two matrices are 2¢-sharp for ¢+ > 3, we also have
f(2t,3,2) = 4 for those values of t. [

Theorems 2.1, 2.4, and Lemma 3.4 imply the following result.
Theorem 3.5. For all t > 2, the matroids W (2t, 2t + 3) are binary minimal 3-blocks.

The cases k = 2 and 3 are by no means typical. The case k = 4 shows what complications
may occur in general.

Lemma 3.6. f(4,4,2) = 6. Whent >3, f(2t,4,2) = 5.

Proof. By Lemma 3.1, f(4,4,2) < 6. Up to row operations and column permutations, there are
two 4 x 6 4-sharp matrices. They are

1 0 0 0 1 O 1 0 0 0 1 O
0O 1 0 0 1 O 0 1 0 0 1 O
0O 0 1 0 1 o) 0 01 0 0 1
0O 0 0 1 1 0 0 0 0 1 0 1

Hence, f(4,4,2) = 6. Now suppose that # > 3. Then these two matrices given above are not
2t-sharp, but4 x 5 2¢-sharp matrices are obtained when any one column is deleted. Using Lemma
3.1 and inequality (1), we conclude that f(2¢,4,2) =5. O

Theorems 2.1, 2.4, and Lemma 3.6 imply that W (4, 9) and W (2¢, 2t 4+ 4) fort > 6 are minimal
4-blocks. The three remaining matroids W (6, 10), W (8, 12), W (10, 14) can be shown to be
4-blocks by case analysis.

We briefly describe how to do this for W (6, 10) in three steps. (1) By Lemma 3.1, every 10
distinct columns contain six columns summing to zero. (2) If the number of distinct columns is
between 6 and 9, then either there are six distinct columns summing to zero or there are four
distinct columns summing to zero and a dyad disjoint from them. (3) If there are five or fewer of
distinct columns, then there are at least three disjoint dyads.

Theorem 3.7. The matroids W(4,9) and W (2t, 2t + 4),t > 3, are binary minimal 4-blocks.
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Next, we state the results of three more calculations without proof.
Lemma 3.8

) f(4,5,2) =7, andfort >3, f(2t,5,2) =6.
)9 < f(4,6,2) <11, £(6,6,2) =8, andfort >4, f(21,6,2) =1.
© 10< f(4,7,2) < 16, f(6,7,2) = 10, £(8,7,2) =9, andfort > 5, f(21,7,2) = 8.

Knowing sufficiently many small cases, we can now answer the question: does Theorem 2.4
hold unconditionally for all triples 2¢, k, 2" ? The disappointing answer is “no”. When2t = 6, k =
7, and r = 1, the matroid W (2¢, f(6,7,2) 4+ 2t — 1) is not a binary 7-block.

We begin by checking that f(6, 7, 2) is indeed 10. To do so, observe that Lemma 3.1 implies
f(6,7,2) < 10.Inaddition, a7 x 10 6-sharp matrix can be constructed by taking a7 x 7 identity
matrix and adding the columns

(1,1,1,1,1, 1,07, (1,1,1,1,0,0,00T,  (0,0,0,1,1,1, DT
Proposition 3.9. W (6, 15) is not a binary 7-block.

To prove Proposition 3.9, consider the 7 x 16 “echeloned” matrix A

Al Ap 0
0 0 A3)’
where A is the 4 x 4 identity matrix, A, is the 4 x 4 matrix made by putting together all four

4-dimensional weight-3 column vectors, and A3 is the 3 x 8 matrix made from all eight 3-
dimensional column vectors.

Lemma 3.10. The matrix A contains no six columns summing to zero.

Proof. Divide the matrix into two parts, the first part consisting of the first eight columns and the
second the remaining seven columns. Suppose that six columns sum to zero. Then, noting that
there is only one zero column (in the second part) and no two columns sum to zero, one of the
following four cases holds.

(a) Five columns, summing to zero, come from the first part, and the remaining column is the
zero column from the second.

(b) Both parts contain three columns each.

(c) All six columns are in the first part.

(d) All six columns are in the second part.

It is easy to check that all four cases are impossible. For example, to rule out (b), observe
that because A is echeloned, the three columns from the first part must sum to zero. Since all the
columns in the first part have odd weight, this is not possible. [J

The matrix A is bigger than we need. Any 15 columns from A give a 7 x 15 matrix whose
null space is disjoint from W (6, 15). We conclude that W (6, 15) is not a 7-block.
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4. Minimal blocks from graphs

This section is intended as an appendix. The new results are easy and should be known, but
they do not seem to have been written down.

We begin with a construction due to Zaslavsky [10]. Let I' be a simple graph with N vertices
and g be a power of a prime. The full GF(q)-expansion I'(q) is the set

{ei —wej : {i, j}anedgeinI', w € GF(q)}

of points in N-dimensional projective space PG(N — 1, g) with the coordinates indexed by the
vertices of I'. Two column vectors in GF(g)¥ are said to be projectively equivalent if one is a
non-zero scalar multiple of the other. The relation between the critical problem for full expansions
and colorings of the underlying graph is given by the following easy lemma.

Lemma 4.1. Let I'(q) be the full expansion of the graph I' over GF(q). The null space of a matrix
A with columns indexed by the vertices of I is disjoint from I'(q) if and only if the columns of A,
under projective equivalence, give a coloring of I

Theorem 4.2. Let
k
-1
n=T""11,
qg—1
the number of equivalence classes in GE(q)* under projective equivalence. Then the full expansion
I'(g) of a minimal (h + 1)-chromatic graph is a minimal k-block.

Proof. Since the number / is the number of projective equivalence classes in GF(g)¥, the matroid
I'(g) is a k-block over GF(g). Minimality follows from the fact that for every edge {i, j} in
a minimal (2 + 1)-chromatic graph I', there exists an h-coloring such that {i, j} is the only
monochromatic edge. U

Theorem 4.2 generalizes Tutte’s odd circuit lemma in another direction. Recall that the odd
cycle Cy;41 1S a minimal 3-chromatic graph.

Corollary 4.3. The full expansion Co+1(q) is a minimal 1-block over GF(q).

Note that C3(q) is the rank-3 jointless Dowling group geometry over the multiplicative group
GF(g)*. These matroids are known to be tangential 1-blocks over GF(g) (see [9]). All the results
in this section extend easily to the critical problem for submatroids of Dowling group geometries
(see, for example, [9,10,4, Sections 4.5 and 8.11]).
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