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Abstract 

The principle of minimum cross-entropy (ME-principle) is often used as an elegant and pow- 
erful tool to build up complete probability distributions when only partial knowledge is available. 
The inputs it may be applied to are a prior distribution P and some new information R, and it 
yields as a result the one distribution P’ that satisfies R and is closest to P in an information- 
theoretic sense. More generally, it provides a “best” solution to the problem “How to adjust P 
to Ii??” 

In this paper, we show how probabilistic conditionals allow a new and constructive approach to 
this important principle. Though popular and widely used for knowledge representation, condition- 
als quantified by probabilities are not easily dealt with. We develop four principles that describe 
their handling in a reasonable and consistent way, taking into consideration the conditional-logical 
as well as the numerical and probabilistic aspects. Finally, the ME-principle turns out to be the 
only method for adjusting a prior distribution to new conditional information that obeys all these 
principles. 

Thus a characterization of the ME-principle within a conditional-logical framework is achieved, 
and its implicit logical mechanisms are revealed clearly. @ 1998 Elsevier Science B.V. 
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1. Introduction 

Within the last decades, knowledge representation and reasoning based upon prob- 

ability theory have received increasing attention in the area of artificial intelligence. 
Probability theory provides a solid foundation for nonmonotonic reasoning methods 
(cf. e.g. [ 2,3,10,11,281>, and probabilistic expert systems make use of the consis- 
tent computability of (quantified) uncertainty (cf. [ 22,30,3 I] ) . Probabilistic methods 
are applied effectively within domains where statistical databases are available, check- 
ing and representing important relationships between the variables investigated, e.g. 

dependencies between diseases and symptoms in medical diagnosis or between pro- 
fession and consumption in marketing. Just as well, they may be used to represent 
commonsense knowledge, as in the most popular example “Birds generally fly, pen- 
guins are birds but do not fly”, by assigning appropriate probabilities to the asser- 
tions. Probabilistic reasoning is nonmonotonic in itself, and so the correct answer to 

the question “What about Tweety?” where Tweety is a penguin and a bird may be 

derived easily-Tweety does not fly in an adequately specified probabilistic environ- 

ment. 
Usually, probabilistic knowledge is represented by a probability distribution P or by 

a system of compatible distributions over a set of (discrete or continuous) variables, 
and inferences are made by calculating conditional probabilities. Thus the notion of 
conditionals is central to probabilistic inference. On the other hand, conditionals play a 
major part in knowledge representation and reasoning (cf. e.g. [ 8,25,29] ) . The range of 
their expressiveness includes commonsense knowledge as well as scientific statements, 
proving them to be quite a natural and fundamental means to formalize important 
relationships. An appropriate probabilistic representation of (quantified) conditionals 
would close the circle connecting probability theory as a mathematically established 
method to handle quantified uncertain knowledge, and conditionals as a popular tool to 

express knowledge. 
Unfortunately, probabilistic representations have to struggle against arbitrariness. Usu- 

ally, a (consistent) set R of conditionals, each equipped with a probability, will provide 
only incomplete probabilistic knowledge, so there will be a lot of distributions which 
all fulfill the probabilistic conditionals in R. Which of them should be chosen to be 
the “most adequate” one? More generally, how to proceed if a (prior) probability dis- 
tribution P is present that has to be adjusted to some new conditional information R, 
resulting in a posterior distribution P*? 

The aim of this paper is to establish a direct and constructive link between probabilistic 
conditionals and their suitable representation via distributions, taking prior knowledge 
into account if necessary. We develop the following four principles which mark the 
corner-stones for using quantified conditionals consistently for probabilistic knowledge 

representation and updating: 

(Pl ) the principle of conditional preservation: this is to express that prior conditional 
dependencies shall be preserved “as far as possible” under adaptation; 

(P2) the idea of a functional concept which underlies the adaptation and which allows 
us to calculate a posterior distribution from prior and new knowledge; 
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(P3) the principle of logical consistency: posterior distributions shall be used consis- 
tently as priors for further inferences; and 

(P4) the principk of representation invariance: the resulting distribution shall not be 
dependent on the actual probabilistic representation of the new information. 

(Pl ) links numerical changes to the conditional structure of the new information. (P2) 

realizes a computable relationship between prior and posterior knowledge by means of 
appropriate real functions. (P3) forestalls ambivalent results of updating procedures, 
and (P4) should be self-evident within a probabilistic framework. As we will show, 
the only method that solves the representation respectively adjustment problem stated 
above while obeying all of the principles (Pl ) to (P4) is provided by the principles 
of maximum entropy respectively of minimum cross-entropy (ME-principles), both well 

known from statistics and information theory (cf. e.g. [ 6,14-16,211; a short introduction 
is given in Section 3). The first two axioms (Pl) and (P2) will lead to a scheme 
for adjusting a prior distribution to new conditional information, and the principles 
of logical; consistency and of representation invariance will be applied to this scheme, 
yielding the desired result. Thus a new characterization of the ME-principles is obtained, 

complete1.y based on probabilistic conditionals and establishing reasoning at optimum 
entropy 21s a most fundamental inference method in the area of quantified uncertain 

reasoning. 
Two earlier papers [ 26,331 are concerned with characterizing the ME-principles as 

logically consistent inference methods, too. Shore and Johnson [ 17,331 succeeded in 
proving (cross-) entropy to be the only functional the optimization of which satisfies 

four (respectively five) fundamental axioms of probabilistic inference. A similar result 
is attained for entropy in [26] by Paris and Vencovska without assuming that inference 
is performed by optimizing a functional, but heavily relying on solving linear equational 
systems. Among the properties these authors used for their characterizations are inde- 
pendence and invariance properties in the first place. This justifies ME-inference as an 
inference procedure of minimal changes, but very few was said about the nature or the 
extent of changes actually occurring under ME-adjustment. 

The passent paper points out a more constructive approach to the ME-principles. We 

show here that ME-inference not only respects (conditional) independencies but that 
it is basically determined by conditional dependencies (obeying independence proper- 
ties where no dependency exists), recommending the ME-principles as most adequate 
methods for reasoning with probabilistic conditionals. Therefore, in contrast to Bayesian 
networks (cf. e.g. [ 221) , probabilistic networks based on ME-techniques (cf. [ 30,3 1 ] ) 
do not require lots of probabilities and independence assumptions to process quantified 
conditional knowledge properly. 

Shore and Johnson [ 331 as well as Paris and Vencovska [26] based their char- 
acterizations on more general probabilistic constraints than probabilistic conditionals. 
Thus the results given in this paper are actually stronger, using only a proper sub- 
type of constraints (cf. [ 271). Moreover, the methods used here are quite different 
from those in [33] and in [26]. In particular, there will be no need to make use of 
optimization theory, as in 1331, or to transfer the problem into the context of linear 
algebra, as in [ 261. Our development explains clearly how the ME-principles may be 



172 G. Kern-lsbemer/Art@cial Intelligence 98 (1998) 169-208 

completely based on probabilistic conditionals. This may improve significantly the ex- 
planatory features of computational systems that use these principles for knowledge 
representation and processing (as, e.g. SPIRIT, cf. [ 30,311). For instance, using the 
representation formula (3) in Section 3 respectively ( 12) in Section 4.2 revealing the 
conditional-logical pattern of the ME-distribution, it is possible to indicate which of the 
conditionals given by the set R actually make a contribution to a conditional informa- 

tion derived from the posterior distribution (similar to listing active rules in rule based 

systems). 
A certain amount of mathematics and technical details will be necessary to formalize 

correctly the ideas behind the four principles (Pl) to (P4) and to prove the desired 
results. We will endeavor to give informal reasons for definitions and theorems, enclosing 
all proofs in an Appendix not to impair the readability of the paper. This paper is 
organized as follows: The following section provides some preliminaries to probabilistic 
logic, so as to fix notations and describe fundamental relations. Section 3 is dedicated to 
a brief presentation of ME-methods, pointing out a first striking parallel between them 
and conditional logic. Section 4 deals with the principle of conditional preservation 
which will be based on the algebraic representation of conditional structures. Section 5 
elaborates a functional concept which is to realize the idea of a computable solution. In 

the following sections, the last two postulates are dealt with, that of logical consistency 
in Section 6 and that of representation invariance in Section 7. We prove how they both 

influence the type of the functions involved in the functional concept so as to determine 
them uniquely. The adaptation scheme based on this distinguished concept indeed yields 
a unique posterior distribution, as is proved in Section 8. Finally, we are able to state 
the main result of this paper: The characterization of the ME-adjustment operator *e 
(Theorem 31). Section 9 presents some easy but essential properties of +, and in the 
concluding Section 10 we address connections to nonmonotonic reasoning and theory 
revision. All proofs may be found in the Appendix. 

2. Probabilistic conditionals 

We consider probability distributions P over a finite set V = {VI, fi, l$, . . .} of 
propositional variables x which are assumed to be binary. The dotted literal tii E 
{u;, Ci} stands for one of the two possible outcomes of the corresponding variable: Ui 
symbolizes “v is true”, and negation is indicated by barring, i.e. fii = TUi. P is uniquely 
determined by the values of its probability function p applied to the elementary events 

. . 
w = UlU2U3.. ., p(w) =p(r4ljzti3 . ..)=P(Vl=til.V2=02,V3=ti3 ,... ).Thedistinction 
between a probability measure P and its probability function p is not essential but used 
for the sake of correctness throughout this paper. Let 0 denote the set of all elementary 
events: fi = {W = Z$&ti3.. . 1 Oi E {Ui, a,}}. 

A propositional language _L = L(V) is defined in the usual way, using the letters of 
the alphabet V and the classical connectives A (respectively juxtaposition) and 1. Its 
formulas are denoted by capital Roman letters A, B, C, . . . . 

To each propositional formula A E L: a probability may be assigned via p(A) = 

Co:*(@)=1 P(W), h w ere the sum is taken over all elementary events w, and A(o) = 1 
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means that the complete conjunction corresponding to w is a disjunct in the canonical 
disjunctive normal form of A. P(A) reflects the probability that an arbitrary element of 
the population has properties which are described by A. Thus the correspondence be- 
tween complete conjunctions and elementary events induces a probabilistic interpretation 
of ,C (on the base of the distribution P). 

Now C is extended to a probabilistic conditional language C* by introducing a con- 
ditional operator + and probabilities in the following way: A probabilistic conditional 
(or a probabilistic rule, both terms are used synonymously) is an expression A * B [A-] 
with antecedent A E C, conclusion B E L and probability x E [0, 11. It is to represent 
syntactically non-classical conditional assertions A -+ B weighted with a degree of cer- 
tainty X. A probabilistic fact has the form B [ x] , B E C, x E [ 0, 1 ] and is considered 
to be equivalent to the conditional T u-t B [ x] , where T is tautological. 

L” = {.4 v) B[x] 1 A, B E L, x E [0, 11) is a flat conditional language, the 
conditional operator u-) must not be nested. Antecedent and conclusion of a conditional 

are propositional formulas. 
A semantic interpretation of probabilistic conditionals is given by conditional proba- 

bilities: If P is a distribution, P fulfills A -+ B[x], P k A - B[x], iff p(A) > 0 and 
p (B(A) = p(AB) /p(A) = X. In the sequel, we will tacitly assume that all antecedents 
of conditio’nals have positive probabilities. 

In general, we have 

x = p(BIA) iff p(A) > 0 and (1 - n)p(AB) = xp(AB), 

so the quotient p(AB) /p(AB) determines the probability of the conditional A -+ B. 
It represents the proportion of individuals or objects with property A which also have 
property B to those that B is not true of. Thus it is crucial for the acceptability of the 
conditional, not only within a probabilistic framework (cf. [ 251). 

For a probability distribution P, let 7’h( P) = {A - B[ x] E L* 1 P k A + B[x]} 

denote the set of all probabilistic conditionals which are valid in P. Th(P) explicitly 

represents the conditional knowledge embodied in P. 
The problem this paper is going to deal with can now be described in a more formal 

manner: 

(*) Given a prior distribution P and some set of probabilistic conditionals R = {Ai u+ 

BI[xI~,...,& - B, [ x,] } C C*, how should P be modified to yield a posterior 
distribution P* with P* k R? 

To maintain compatibility between prior and posterior distributions, P* has to be 
P-continuous (P* < P), i.e. p (0) = 0 implies p* (w) = 0. Thus to avoid obvious 
inconsistencies, the set R is supposed to be P-consistent, that means there is some 
distribution Q with Q < P and Q k R. Throughout this paper, we will assume without 
further mentioning that the necessity of zero posterior probabilities is stated explicitly 

in R, i.e. if for any Q < P, Q k R implies q(w) = 0 then p(w) = 0, or there is 
a conditional A - B[x] E R such that either x = 1 and AB(w) = 1 or x = 0 and 
AB(w) = 1. 

In the next section, we are going to present a special solution to the adjustment 
problem (:r) : the distribution at optimum entropy. 
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3. The principles of entropy 

The entropy H(P) = - C, p(w) logp(o) (where the sum is taken over all elemen- 
tary events w, using the convention 0 log0 = 0) of a distribution P first appeared as 
a physical quantity in statistical mechanics and was later interpreted by Shannon as an 
information-theoretic measure of the uncertainty inherent to P (for a historical review, 

cf. [ 161). It is generalized by the notion of cross-entropy (also called relative entropy) 

WQ, 0 = C, do) log(dw)/p(w)) (with OWO/O) = 0 and q(w) log(q(w)/O) = 
co for q(w) # 0) between two distributions Q and P. If PO denotes the uniform 
distribution po( w) = 1 /m for all elementary events w, then 

R(Q,Po) = -H(Q) + logm 

relates absolute and relative entropy. So maximizing absolute entropy under some given 

constraints is equivalent to minimizing relative entropy to the uniform distribution under 
the same constraints. Therefore the principle of minimum cross-entropy 

minR(Q,P) = cq(o) log% 
w 

s.t. Q is a probability distribution with Q /= R (1) 

can be regarded as more general than the principle of maximum entropy 

maxff(Q) = - c q(w) lwdw) 
0 

st. Q is a probability distribution with Q /= R. (2) 

We refer to both principles as the ME-principle, where the abbreviation ME stands both 
for Minimum cross-Entropy and for Maximum Entropy. 

Cross-entropy is a well-known information-theoretic measure of dissimilarity between 

two distributions and has been studied extensively (for a brief, but informative intro- 
duction and further references cf. [ 321; cf. [ 341). In particular, optimizing entropy 
is known to yield best expectation values in statistics (cf. [ 14,161). Cross-entropy is 
also called directed divergence for it lacks symmetry, i.e. R( Q, P) and R( P, Q) differ 
in general, so it is not a metric. But cross-entropy is positive, that means we have 
R(Q, P) 2 0, and R(Q,P) = 0 iff Q = P (cf. [6,32]). 

For a distribution P and some P-consistent set R of probabilistic rules there is a 
distribution Pe = P, (P, R) that fulfills R and has minimal relative entropy to the prior 
P (cf. [6]), i.e. P, solves (1). 

The condition Q b R imposed on a distribution Q can be transformed equivalently 
into a system of linear equality constraints for the probabilities q( 0). Using the La- 
grangian techniques, we may represent Pe in the form 

(3) 
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with the cri’s being exponentials of the Lagrange multipliers, one for each conditional 
in R, and cy,-, = exp( ho - 1)) where ho is the Lagrange multiplier of the constraint 

C&?(w) = 1. 
By construction, P, satisfies all conditionals in 72: pe(BilAi) = Xi, which is equivalent 

to ( 1 - x)pe(AiBi) = XPe(Aig) for all i, 1 < i < n. SO (~1,. . . , LY, are solutions of the 

nonlinear equations 

Xi 
cyi = ,- 

Cw:AiS,(o)=l Ptw) llj+i,AjB,(o)=I &i-” nj+i,,4jF(,)=* cyj’j 
* -XiCw:AiB;(o)=lP(W) IIj+i,*,L3,(o)=l @:-"j llj+i,,,(,)=, cyi"' 

(4) 

> 0, Xi E (03 1)~ 

with (pi =CO, Xi= 1, 1 <i<n, 

= 0, Xi = 0, 

using the {conventions coo = 1, 00~ ’ = 0 and 0’ = 1. (~0 arises simply as a normalizing 

factor. Each ai symbolizes the impact of the corresponding rule when P is modified. 

It depends on the prior distribution P, the other rules and probabilities in R and-in a 

distinguished way-on the probability of the conditional it corresponds to. 
Though the formulas above appear deterrently complex at first sight, (3) shows rather 

clearly how the ME-adjustment to a rule is carried out: Apart from the normalizing 
factor cyo, at most the probabilities of those complete conjunctions o are changed 
which satisfy the antecedent of this rule. And the new probability depends in addition 
on whether w satisfies the conclusion or not. In particular, the probabilities of all 
conditionals of Th(P) whose antecedents do not fulfill an antecedent of any of the 
rules in 72 remain unchanged. This means that the ME-adaptation respects one of 
the fundamental principles of conditional logics: Asserting a conditional should only 
affect the (conditional) knowledge about states which the conditional may be applied 

to. 
This intuitive and reasonable principle of conditional preservation will be elaborated 

more deeply in the next section. 
But first, we will illustrate the use of the ME-approach and the benefits of the 

representation formulas (3) and (4) by two simple but informative examples. The first 
example shows knowledge processing in the case of conflicting information, whereas 
the second example deals with transitive inference. All numerical results were obtained 
by using the probabilistic expert system SPIRIT which realizes knowledge processing 
at optimum entropy (cf. [ 3 11) . 

Example I ( Conjicting information). A knowledge base is to be built up representing 
“Typically, students are adults”, “Usually, adults are employed” and “Mostly, students 
are not employed” with probabilities subjectively attached to of 0.99, 0.8 and 0.9, 

respectively. Let A, S, E denote the propositional variables A = Being an Adult, S = 
Being a Student, and E = Being Employed. The quantified conditional information 
may be written as R = {s y-) a[xl],u u-) e[xz],s u-) e[xJ]}, XI = 0.99, x2 = 0.8, 
x3 = 0.1. -No prior information is at hand, so we start from the uniform distribution. 
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We are interested in the probability of the conditional us rcc) e the antecedent of which 

combines the evidences a and s conflicting with respect to E. 

SPIRIT calculates Pe (elas) = 0.1009, which is much more closer to x3 than to x2. So 

the more specific information s dominates a clearly but not completely, as we should 

expect. If we set x1 = 1, assuming the set of students to be definitely a subset of the set 
of adults, this preference of the more specific knowledge conveyed by the third rule is 
a probabilistic necessity, and may also be seen clearly by using (3) and (4) : 

Let PL denote the ME-solution to the same problem as before, except that now xi = 1 
instead of xi = 0.99. For arbitrary x2,x3, we obtain 

with 

x2 cp + 1 
ff2 = 1 - x2 $x3 + 1’ 

x3 Cqx2 x3 -1 --=_-(y 
a3 = 1 - x3 *;-x2 l-x3 2 * 

This implies at once CX~CX~ = x3/( 1 - x3) (note that the normalizing factor and the 

constant priors are being canceled, and that (~1 = co). This shows pd( e ]as) = x3. 

Thus ME-inference solves in an elegant way the problem of conflicting evidences. 
Specific information dominates more general knowledge by virtue of the inherent mech- 
anisms, without any external preferential or hierarchical structures as in [4,20], and 
without rankings as in [ 10,121. The weight of a rule is encoded by its logical structure 
and its probability, its dependency on other rules being given implicitly. It is only the ap- 
plication of the ME-principle which combines the probabilistic rules to yield inferences, 

thus allowing a convenient modularity of knowledge representation. 
In the second example, we will make once more use of symbolic calculations to 

reveal knowledge processing. 

Example 2 (Transitivity). Let Y, S, C denote the three propositional variables Y = 
Being Young, S = Being Single and C = Having Children. We know (or assume) that 
young people are usually singles (with probability 0.9) and that mostly, singles do not 
have children (with probability 0.85). Here we have R = {y -+ s[xr 1, s -++ E[x~]} 
with xi = 0.9, x2 = 0.85. Again we take the uniform distribution as prior information. 
A calculation with SPIRIT shows y --+ c[ 0.8151, connecting both rules transitively. By 
use of the formulas (3) and (4)) a more general transitive inference rule can be proved: 

For arbitrary xi, x2, we obtain for the ME-distribution Pe: 

with 

x1 ** 2 x2 

*I = 1-2 Ly2 + 1, a2= 1 _x2’ 
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This yields 

qLy;‘x2 = 2x1(1 -x2) and PAYE) 1 +2x1x2 - Xi -= 
1 --xi PdYC) 1 - 2X1X2 + Xi ’ 

proving 

pe(Ely) = $1+2x1x2 --Xl). (5) 

Of course, the correctness of this formula is independent of the particular meanings 
of the propositional variables involved. So (5) states a general transitive inference rule 
for problems with an analogous knowledge structure. More ME-deduction rules may be 
found in 1: 191. 

These examples are but to give an idea of the soundness and the power of the ME- 
principle. The rest of this paper will be dedicated to its development from a conditional- 
logical point of view. 

4. The principle of conditional preservation 

4. I. Conditional structures 

Following Calabrese [ 51 (and, earlier, De Finetti [ 71)) a conditional A ?c) B can be 
represented as a generalized indicator function (B ]A) on elementary events, setting 

{ 

1, &GAB, 

(BIA.)(w) = 0, w E AB, 

u, o $A, 

where u stands for unde$ned. This definition captures excellently the non-classical 
character of conditionals within a probabilistic framework. According to it, a conditional 
is a function that polarizes AB and AB, leaving x untouched. Due to their non-Boolean 
nature, coaditionals are rather complicated objects. In particular, it is not an easy task 
to handle the relationships between them so as to preserve conditional dependencies “as 
far as possible” under adaptation. To make the problem plain and to point out a possible 
way to solve it, we give an example which is taken from [36] and which illustrates a 
phenomenon also well known under the name “Simpson’s paradox”. 

Example 3 (Florida murderers). This example is based on a real-life investigation. 
During the six year period 1973-1979, about 5000 murder cases were recorded in the US 
state of Florida, and the following distribution P mirrors the sentencing policy in those 
years (for further references, cf. [ 36, pp.46ff] ). The propositional variables involved 
are V = Victim (of the murder) is black respectively white, b E {ub, uW}, M = Murderer 
is black respectively white, ti E {mb, m,}, and D = Murderer is sentenced to Death, 
ci E {d,6}. 
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P: v,mwd 0.015 1 v,m,d 0.4353 

v,mbd 0.0101 vwmbd 0.0502 

ubmwd 0 vbmwd 0.0233 

VbTtlbd 0.0023 Vbmbd 0.4637 

Thus P implies 

m, + d[0.0319], mb + d[0.0236], 

so justice seemingly passed sentences without respect of color of skin. Differences, 

however, become strikingly apparent if the third variable V, revealing the color of skin 

of the victim, is also taken into account: 

v,m, -+ d[0.03351, uwmb us d[0.1675], 

vbmw - d[Ol, ubmb -+ d [ 0.00491. 

If e.g. the probability of the conditional mb u) d [ 0.02361 is to change, the probabilities 
of the rules tiriz ++ d containing important information should be preserved in an adequate 

manner. 

This last example illustrates a strange but typical behavior that marginal distributions 
and the conditionals involved may have. Let us look upon this problem in an abstract 

environment. 
Suppose P is a distribution over a set of variables containing A, B, and suppose 

P + a u-) b[ x] . In which way may a third variable C affect this conditional, i.e. what 

can be said about the probability of ad y-) b in P? 
Roughly, there are two possibilities. In the first case, C does not affect a u-) b[x] 

at all, that is to say we have p( blat) = p( bla). We may classify this as a monotonic 
behavior, showing B and C to be conditionally independent given a (cf. [ 361). By a 
straightforward calculation, we see that p (blat) = p (bla) iff 

p(abclp(ab4 l  

p(ak)p(abE) 
= . 

In the second, more usual case, we have p( blue) f p (bla), and consequently 

p(abdp(abG + 1 

p(abc)p(abE) * 

Thus departures from conditional independence-and thereby the extent of nonmono- 
tonicity, to introduce a logical aspect-may be measured by the cross product ratio or 
interaction quotient 

p(abc)p(ak) 

p(a&)p(abE) . 
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A reasonable demand for a posterior distribution P* adapted to a changed probability 
of a ys b then is that posterior interaction should be the same as prior interaction, i.e. 

p*(ubc)p*(&) = p(ubc)p(&) 

p*(ubc)p*(abZ) p(ubc)p(ubE)’ 
(6) 

In statistics, logarithms of such expressions are used to measure the interactions between 

the variables involved (cf. [ 13,361) . 
In the general case, we consider formulas A, B instead of variables A, B, joint influ- 

ences of groups of variables (instead of one single variable) on the conditional A us B, 

and, last not least, we have to take a set of conditionals into account. Thus the notion 
of (statistical) interaction quotients has to be generalized, involving more elementary 
events both in the numerators and in the denominators and being based appropriately 
on R. The comments above following Example 3 give interaction quotients a logical 
meaning that fits the intention of this paper better than a statistical interpretation and 

offers a suitable way to carry out the necessary generalization from a conditional-logical 

point of view: 
In (6), two sets of elementary events are related to each other with respect to P 

and P*: {abc, a6c) in the numerator, and {a&, ubE} in the denominator. In both sets, 
the conditional a y-) b is once confirmed (by abc respectively ubE) and once refuted 

(by a& respectively a&), so both sets show the same behavior with regard to the new 
conditional a us b[x]. This idea of a behavior or structure with respect to ‘R may 

be formalized easily for sets or multi-sets of elementary events. We choose a group 

theoretical presentation. 
To each conditional Ai UC) Bi[xi] in R = {At u-) Bt[xl],...,A, -+ B,[x,]} we 

associate two symbols ui, bi. Let FR = (~1, bl, . . . , a,, b,,) be the free abelian group with 

generators al, bl , . . . , a,, b”, i.e. FR consists of all elements of the form @by’ . . . a: b? 
with integers zi, wi E Z (the ring of integers)), and each element can be identified by 
its exponents so that FE is isomorphic to Z2” (cf. [ 231). The commutativity of FR 
corresponds to the fact that the conditionals in R shall be effective all at a time, without 
assuming any order of application. 

For each i, 1 < i < n, we define a function Ui : D -+ FR by setting 

ai(w) = 

i 

ai if (BilAi)(o) = 1, 

bi if (BilAi)(w) ~0, 

1 if (BilAi)(w) = U. 

U;(O) represents the manner in which the conditional Ai + Bi[Xi] applies to the 
elementary event w. The neutral element 1 of FR corresponds to the non-applicability 
of A; -+ Eli [ Xi] in case that the antecedent Ai is not satisfied. The function 

c=crR: a+ FR, a(o) = d := n gi(m) = n ui r]: bi (7) 
I<i<n 1<ig. l<i<’ 

AiBi(wkl - A,B,(u)=l 

describes lthe all-over effect of R on o. cJ’ is called the conditional structmz of o with 
respect to R. Having the same conditional structure defines an equivalence relation 3~ 
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on 0. For each elementary event w, ma contains at most one of each ai or biy but never 
both of them because each conditional applies to o in a well-defined way. 

The notion of conditional structure is generalized to multi-sets in a straightforward 
way. A multi-set is a collection of elements as a set, except that each element may occur 

more than once in a multi-set. Multi-sets are also known as bugs. In the sequel, we will 
use the following notation: 

Notation 4 (Multi-set). A multi-set containing a finite number of elements yl, y2,. . ., 
each element yj occurring with multiplicity mj, is denoted as {yl : ml, y2 : m2, . . .}. 
The cardinality of such a multi-set is the sum xi mj of its multiplicities. 

Definition 5 (Conditional structure of multi-sets). Let 0, = {WI : q , . . , , o,, : rnr, } 
denote a multi-set of elementary events. The element Oi’ := nlGiGnr, a(wi)” E FR is 
called the conditional structure of L?, . 

Thus the conditional structure q of a multi-set 01 = {WI : ~1,. . . , w,, : rm,} is 
represented by a group element which is a product of the generators ai, bi of FR, 

with each Ui occurring with exponent &.aiColj=ai rk = & ~BiJAi~~or~=l rk, and each b; 

OcCUrkg With exponent ck ai(wt)=b, rk = ck: ~B.IA.~~ot~=O rk (note that each of the sums 
may be zero in case that the corresponding cbhitional cannot be applied to any of 
the elements in 0,). So the exponent of ai in q indicates the number of elementary 
events in 01 which confirm the conditional Ai +-+ Bi, each event being counted with its 

multiplicity, and in the same way the exponent of bi indicates the number of elementary 

events that refute Ai 4 Bi. 
Oi’ encodes this information in an elegant manner. We could have used a simpler 

representation, e.g. with tuples of natural numbers representing positive and negative 
applicabilities of conditionals. But making use of a group structure allows us to form 
products and thus provides a more convenient representation and handling of conditional 

structures. Moreover, the group element corresponding to an elementary event (7) 

obviously parallels the structure of its posterior probability, as we will see later on 

(see Theorem 11) . 

Definition 6 (R-equivalence of multi-sets). Two multi-sets RI = { 01 : rl , . . . , 
onl,: rm,} and & = (~1: sl,...,~,,: s,,} of elementary events with equal cardinali- 

ties &k(m, rk = ClgrGnr2 q are R-equivalent iff q = q, i.e. iff their conditional 
structures with respect to R are identical. 

The additional prerequisite that both multi-sets must have the same cardinality is due 
to the fact that actually, the normalizing conditional T [ 1 ] has also to be taken into 
account, requiring equal numbers of elementary events in both multi-sets. 

Recalling the remarks following Definition 5 above, an immediate description of 
R-equivalent multi-sets can be stated: 

Lemma 7. Two multi-sets 01 = (01: rl,..., ok, : r,,} and L$ = (~1: SI ,..., 
vnz2 : s,,,~} are R-equivalent iff all of the equations 
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c rk= c Sly 

1 <k<m, I<l+n~ 

c 
rk = 

c Sl, 

k: (BilAi)(wt)=l [: (B,IAi)(vr)=l 

c 
rk = 

c Sl 

k: (B,jA,)(w)=O I: (BilA;)(v~)=Il 

holdforalli=l,...,n. 

4.2. C-adaptations 

R-equivalent multi-sets show an equal, indistinguishable behavior with respect to 72, 
so the corresponding posterior probabilities should be, in some sense, quite similar. 
Conditional structures, however, are abstract objects, independent of probabilities, and 
we have to relate them to the distributions involved appropriately. This can be achieved 
by considering the relative change function p*/p, giving rise to the following idea: 

If the changes the prior distribution undergoes when being adapted to R is to be 
based on R in a reasonable and intelligible way there should be no difference in the 
relative changes of probabilities of R-equivalent multi-sets (as defined below). 

Adaptations following this idea will be called c-adaptations. 

Definition 8 (C-adaptation). Let P* be a distribution which fulfills R. P* is called a 
c-adaptation of P to R iff it satisfies the following two conditions: 

(i) 

(ii) 

For an; w E a, p*(o) = 0 if and only if p(o) = 0 or there is a conditional 
A, VJ Bi [ xi] in R such that either Xi = 1 and Ai&( w) = 1, or Xi = 0 and 
A,Bi(w) = 1. 
The R-equivalence of any two multi-sets 01 = (01 : rl, . . . , w,, : rm,} and 
&={v,: Sl,...,V,*,: sm2} of elementary events Wk, v[ with p ( Wk) , p (vr) > 0 
implies 

p*(O,)Q . . .p*(Wm,yml = p*(v,)s’ * 1 ‘p*(vm*)S~2 

P(W)” . ..P(%.Yrnl P(W)” . . .p(vm*)% ’ (8) 

which is equivalent to 

P*(wY’ * * ‘p*(Wm,yml = p(q)” . . .p(wm,)‘~l 
p*(vI)Q . . .p*(vm,)S”2 P(Q)“‘. . .p(Vm2)+ * (9) 

for p*(Ok),P*(VI) # 0, 1 < k 6 1121, 1 < 2 < m2. 

The first condition (i) above states that the posterior distribution is P-continuous and 
is positive otherwise if not demanded explicitly by R. Note that in particular, two R- 
equivalent multi-sets have the same cardinality. This precondition ensures that an equal 
number of factors is involved on both sides of (8) respectively both in numerators and 
denominators in (9). This allows to interpret (9) in fact as a generalized interaction 
quotient. So, starting from problems involving interaction quotients, we discovered the 
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concept of conditional structures as an adequate means to describe the behavior of sets 
of elementary events with respect to R and to relate their probabilities to one another. 
By virtue of the equivalence between (8) and (9)) we ended up with the intended 
generalization of interaction quotients. 

Another interpretation of conditional structures makes (9) directly intelligible: if two 
multi-sets have the same conditional structure with respect to R, then they represent 
equal conditional weight, and (9) describes a balanced system. 

Notation 9. For a prior distribution P and some P-consistent set R of probabilistic 
conditionals, let C (P, R) denote the set of all c-adaptations of P to R: 

C( P, R) := {P," ] Pz is a c-adaptation of P to R}. 

Theorem 11 respectively Corollary 12 will show that ME-adaptations are c-adaptations, 

so C( P, 77,) # 0 for P-consistent R (cf. Corollary 13). 
A c-adaptation is completely based both on P and R, using P as a reference point 

and R as a guideline for changes. It realizes perfectly a conditional-logical approach to 

the adaptation problem (*) : 

Postulate (Pl): conditional preservation. The solution P* of (*) is a c-adaptation: 

P* EC(P,R). 

Let us consider the benefits of all these technical definitions when being applied to 
the example presented in Section 4.1. 

Example 3 (continued). Assume that in a following year, we observe a slightly changed 

relationship between mb and d, say mb 4 d [ 0.031, and we want P to be adjusted to 
this new information. so we have R = {mb u-t d [0.03]}, and let two symbols at, bl be 

associated with R. The conditional structures with respect to R are calculated easily as 
follows: 

(v,m,d)a= (v,m,d)” = (ubm,d)a = (vbm,d)” = 1, 

(U&n&)” = (Ubmbd)” = Ul , 

(Uwmbd)” = (f.$,mbd)” = bl. 

Consider the (multi-)sets fit = {v,mbd, vbmbd} and 02 = {vbmbd, v,mbrf) with equal 
conditional structures q = at bl = q. Therefore for P* to be a c-adaptation of P to 

R it has to satisfy 

f’*hvmbd)f’*(vbmb~) _ I’hvmbd)P@bmb~) 

P*(vbmbd)P*(hvmb~) - P(ubmbd>J’(hvmb& ’ 

which corresponds to (6). 

Thus the concept of conditional structures helps to get a technically clear and precise 
formalization of the intuitive idea of conditional preservation. 
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The definition of a c-adaptation given above, however, is rather a technical and abstract 
one. It describes the conditional-logical behavior of such a distribution, but conveys 
hardly any idea of its actual appearance and form. Nevertheless, a simple but important 

property of c-adaptations may be seen at once from Definition 8 when regarding the 

case I&( := j&n,l = 1: 

Lemma 110. Let P* E C (P 72). Then for any two elementary events 01, w2 E 0, 
p (01) , p (~2) # 0, with equal conditional structures 07 = UT, we have 

P*(“‘l) P”(WZ> -- = ~. 

P(Wl) P(~2) 

The next theorem provides a catchy and easy characterization of c-adaptations: 

Theorem 11 (Characterization of c-adaptations). Suppose P is a distribution and R = 

{Al + Bl[n~l,...,& -+ B,[x,]} is a P-consistent set of probabilistic conditionals. 
Let P* denote a distribution. 

P* is a c-adaptation of P to R if and only if there are real numbers (~0, cur, al, . . . , 

a,+, “; withao>Oanda~,cu; ,..., a$,cr; satisfying the positivity condition 

a++; > 0, a+=Oi#x;=O, (yi=Oi#x;=l (10) 

and the adjustment condition 

(1 - X;)f$ c P(W) I_I cyi’ j--J a; 

o: A,Bi(o)=l j+i j+r 
.4,Bjb~4 

- 
AjBj,“kl 

= XiU!F 

o: A;~(o)=l 
j+i jtt 

*jBjco,=’ 

- 
AjBj(&l,=l 

(11) 

1 6 i Q n, such that 

P*(w) =~oP(@) n 4 n ai 
IQ<,, 

AiB;,w)=l 
,+,a 

AiBi(“)=l 

(12) 

for all elementary events w. 

Thus probability values of c-adaptations parallel the conditional structures of the 

corresponding elementary events (cf. (7) ) . The proof of this theorem can be found in 
the Appendix. 

Comparing (3) and (4) to ( 12), ( 11) and (lo), we get as an immediate consequence: 

Corollary 12. Any ME-adaptation is a c-adaptation. 

Because ME-adaptations exist for priors P and P-consistent sets R, we have 

Corollary 13. For any prior distribution P and any P-consistent set R of probabilistic 
conditionals, C (P, R) # 8. 
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So c-adaptations generalize the concept of ME-adaptations and embed it into a 

conditional-logical environment. We will make use of c-adaptations in the form ( 12). 
Distributions of this type will play a major part in the rest of this paper. 

Notation 14. Let P be a distribution, and let UT, ay1, . . . , CY$, a; be nonnegative real 
numbers such that 

Then P[ar,a;, . . . ,a:, a;] denotes the distribution with probability function 

p[ff;,ff; ,..., Ly;, a,l(w) = LyoP(@) n a+ I-I a;, 
I<i<,, I<i<” 

Ap;(co)=l - AiBj(Okl 

The normalizing factor crc is completely determined by P and CY;‘, crl, . . . , a,f , a;. 
Note that P [ CUT, a;,. . . , a:, cu; ] is P-continuous. 

According to Theorem 11, for any c-adaptation P* of P to R, there are nonnega- 

tive real weight factors a:, a;, . . . , con+, a; satisfying (10) and (11) such that P* = 

P[a:,a;, . . . ,aL,a;]. Define 

wf(P*) := {(Ly+;,.. . ,a,+,a,> E KP” 1 

(C+&..,& a; ) satisfies ( 10) and ( 11) 

and P*=P[cuT,a); ,..., CY,‘,CY,]} 

for any P* E C( P, 72). In general, weight factors of c-adaptations are not uniquely 

determined, so that card(wf(P*)) > 1. 
As the proof of Theorem 11 shows, ( 10) ensures that all premises Ai occurring in 

R have positive probabilities in P [ CT;‘, a;, . , . , a$, LY; 1, and ( 11) then is equivalent 

to P[c+q ,..., a,f,n,] FR. 

Corollary 15. Let P be a distribution, and suppose R is a P-consistent set of prob- 
abilistic rules. If CUT, al,. . . , CY:, a; are reals satisfying ( 10) then P[ CUT, (Y;, . . . , 
~,+,a;] ~RiifSff~,a~ ,..., a~,ff~fifjll(ll). 

Therefore 

wF(P,R):= u wf(P*) 
P*EC(P,R) 

= {(+q ,..., (Y,+,cy,) ER2” 1 (a$q- ,.*., a,+,a,) 

satisfies (10) and (11)). (13) 
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So, c-adaptations actually realize quite a simple idea of adaptation to new conditional 
information: When calculating the posterior probability function p*, one only has to 
check the conditional structure of each elementary event w with respect to R = {At ++ 

Bl[x~l,...,A,, y-) B,[x,l} c L*, set up p*(w) according to (12) with unknown 
quantities a:, a;, . . . , a,+, a$ and then determine appropriate unknowns using (10) 
and ( 11)) i.e. so that R is satisfied. Finally, aa is computed as a normalizing factor to 
make P* iI probability distribution. 

Example 16 briefly illustrates this adaptation scheme. 

Example 16. Let P be a positive distribution over two variables A, B, and suppose 
R = {a -b b[ X] } with x E (0,l). Applying the formulas above, any c-adaptation P,* 
of P to R may be written as 

p,*(ab) =aop(ab)a;t, pt(a2;) = aop(ab)n;, 

J?,*(izb) = (Yop(Zlb), p,* (56) = ct’op (is) 

with 

cult, a, - >o, (1 - x)atp(ab) = xo;p(ab), 

CYO = ($p(ab)n: +p(Sib) +p(ab))-‘. 

C-adaptations provide a straightforward scheme to calculate solutions to the adjust- 
ment probblem (*). ME-adaptations are a special instance of this scheme, and it is of 
interest to investigate which of the characteristics of ME-distributions also hold for 

c-adaptations in general. 
The author proved in [ 181 that c-adaptations possess the properties of system inde- 

pendence and of subset independence which both played an outstanding part in Shore 
and Johnson’s [33] characterization of the ME-principle. They also cope in an elegant 
manner with irrelevant information in that posterior marginals are determined only by 
conditionalls involving the respective variables (cf. [ 181; cf. [ 261). All this is due to 
their modular, conditional-logical structure. 

There is another principle that ME-adaptations actually seems to fail at first sight and 
that can now be formulated adequately and proved in terms of c-adaptations: it is the 
Atomic@ Principle stating that substituting formulas for variables shall not affect the 
adjustment process (cf. [ 271) : 

Theorem 17 (Atomicity principle). Let V = {VI, fi, . . .} and V’ = {V:, Vl, . . .} be two 
finite disjoint sets of binary propositional variables with corresponding sets of elementary 
events 0 respectively O’, and let V be another binary variable not contained in either 
of them. Suppose A E JC(V’) is a propositional formula that is neither a tautology 
nor a contradiction, using only variables in V’. Let R = {At VJ Bt [xl], . . . , A,, -+ 
B,[x,]} lie a set of probabilistic conditionals with antecedents Ai and consequences 
Bi in 13(V U {V}). Let A: respectively Bd denote the formulas that arise when each 
occurrenclo of V in Ai respectively Bi is replaced by A, 1 < i < n, and so 72’ = {Af -+ 
BfM,. ..,A; --+ B,~[x,]} c L*(VU V’). 
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Consider the two distributions P’ over V U V’ and P over V U {V}, respectively, that 
are related via p(tiw> = CofEn,, A~~,)=~ p’( 0’0) , and suppose R to be P-consistent. 

Then RA is P’-consistent, and WF( P R) = WF( P’, 72”). 

We omit the straightforward but technical proof. This result emphasizes the importance 

of the weight factors cuf, cu,, . . . , a$, a; as logical representatives of an adaptation 

scheme. 
The concept of c-adaptations, however, is not perfect-it fails to satisfy uniqueness: 

Example 16 shows that, even in the simple case when dealing with two variables 
and one conditional to be adjusted to, the resulting c-adaptation is not uniquely de- 
termined. In general, WF( P, R) will contain lots of elements, and there will be many 

different posterior c-adaptations. Demanding uniqueness means to assume a functional 
concept that guides the finding of a “best solution” so that a unique distribution of 

type (12) arises in dependence of the prior knowledge P and the new conditional 

information R. 

5. The functional concept 

It is not only the abstract property of uniqueness that makes a functional concept 
desirable. In a fundamental sense, there should be a clear and understandable depen- 
dence between prior distribution, new (conditional) information and resulting posterior 

distribution, i.e. a-somehow well-behaved-function F : (P, R) H P* that works for 

all distributions P and all P-consistent sets R. These arguments P and R, however, are 
quite monstrous. The knowledge represented by them is usually huge and hard to grasp, 
let alone introducing such concepts as continuity or even differentiability to describe a 
functional well-behavedness. 

Moreover, P* should depend signijcantly only on the relevant parts of the prior P, i.e. 
relevant with respect to the new information R. Treating this problem requires making 
clear what relevant information is, and how irrelevant information should be handled. 

LetR={At -)Bt[xt],...,A, y-) B, [cc,] }, and suppose 9, P2 are two distributions 

withpt(w]Ai) =pz(wlA;) for all o E nand forall i= l,...,n. Then Pt,P2 match 
on all parts which are relevant with respect to R, so the difference in their posterior 
relative changes should be insigni$cant, namely a constant (due to possible differences 
in irrelevant parts) : 

Definition 18 (Relevance condition). Suppose F : (P, R) +-+ P* is a function that 
assigns a P-continuous distribution P* satisfying R to any pair (P,R) with P being a 
distribution and R representing a P-consistent set of probabilistic rules. 

Then F fulfills the relevance condition iff the following holds: 
LetR={At -+Bt[~tl,...,A, u-1 B, [ x,] }, and suppose PI, P2 are two distributions 

with pt(o]Ai) = pz(w]Ai) for all w E 0 and for all i = l,...,n, PI(O) = 0 iff 
p2 (o) = 0 and such that R is PI- and P2-consistent. Let Pl := F( Pk, R), k = 1,2. Then 
p;(w) = 0 iff p;(w) = 0 and 
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PT(OJ) : &(a) = const 

Pl(~,) P2(@) * 

for all w E D with pi(w) # 0, k= 1,2. 

Let dP denote the set of all pairs (P R) representing a solvable adjustment prob- 
lem (*): 

dP := {(P, R) 1 P distribution, R c C*, R P-consistent}. 

According to postulate (Pl), the solution to the adaptation problem (*) should be 
a c-adaptation. So we will now focus on further assumptions that appear useful and 

reasonable within the special context of c-adaptations. 
At first, the following proposition shows that the prerequisites formulated in Defini- 

tion 18 in fact are able to capture the idea of relevant information for c-adaptations: 

Proposition 19. Let R = {Al ++ Br [XI], . . . , A,, u-) B, [ x,]}, and suppose 9, P2 are 
two distributions with pl(olA;) = pz(w]Ai) for all w E 0 and for all i = 1,. . . ,n, 
p,(w)=OifSp2(o)=OandsuchthatRisP,-andP2-consistent. ThenWF(PI,R)= 
wF( P2, K!). 

Therefore distributions incorporating the same relevant conditional knowledge have 
the same sets of weight factors occurring in the corresponding c-adaptations. 

Let us henceforth assume that there is a function 

F, : AP 3 (p,R) t+ P,* E C(P,R) (14) 

that assigns to each pair (P, ‘72) E dP a particular c-adaptation. We will describe F, by 
specific properties of the weight factors involved. 

Proposition20. Assume (eR) E dP, R= {Al +J Br[xr],...,A, * B,[x,]} and 
let PJ =P[cY~,cY~ ,..., ai, a;] E C (P, R) be a c-adaptation of P to R with weight 
factors (cl:, ~1, . . . , a,+, a;) E wf(P,*). Suppose I U J is a partition of {l,...,n}, 
and set Pj I= P[(Y+,(Y~]~EI, RJ I= {Ai Y-) Bj[Xj]}jc_/. 

Then ((yf,ai)jcJEWF(P,,RJ) andP,[orjf,~~]i~J=P[a~,al,...,n,f,cu,]. 

So, onc:e weight factors (Y:, cu;, . . . , ai, cu; are chosen to yield a “best” solution 
P,* E C (1: R), they should yield “best” solutions in C ( PI, RJ) (with all notations as 
stated in the text of Proposition 20). We name this property continuity (of solutions) : 

Definition, 21 (Continuity condition). Let F, be as described in ( 14). Fc satisfies the 
continuity condition if the following holds: 

Suppose (PR) E dP with R = {Al u-) Br[,rr],...,An u-) B,[x,]}. Assume 
- 

+Y, ),..) cE,‘,cX, E wf(F,(P,R)). Let ZUJ be a partition of {l,...,n}, and set 
PI := P[a’,ai];c,, RJ I= {Aj US Bj[xjl}jeJ. Then (ai+, ay)jeJ E wf(Fc(&, R_r) ), 
i.e. F,(PI$RJ) = P~[olj+,~~]je~=Fc(P,R). 



188 G. Kern-Isberner/Art~cial Intelligence 98 (1998) 169-208 

Finally, FC should obey the principle of atomicity (cf. Theorem 17): 

Definition 22 (Atomic@ condition). Let F, be as described in ( 14). F, satisfies the 

atomic@ condition if for any (P, R) , (P', Rd) E dP as in Theorem 17, wf( F,( P, R) ) 
= wf(F,(P’,R”)). 

The following proposition derives necessary conditions for a function FC to fulfill the 
conditions of relevance, continuity and atomicity in special but important cases: 

Proposition 23. Assume FC as described in ( 14). 

(9 

(ii) 

Suppose Pt , P2 are positive distributions over two variables A, B with p1 (bla) = 
pz( bla) , and let ‘R = (a + b[x]}, x E (0,l). If F, satisfies the relevance 
condition, then the weight factors cr+, a- respectively /3+, /3- of F,( Pt , ‘R) 
respectively F,( P2, R) are equal in pairs, i.e. (Y+ = /3+ and LY- = p-. 
Suppose FC satisfies the conditions of relevance, continuity and atomic&y, and 
let (P 72) E A? with positive prior P, and such that no variable occurs both in 
antecedent and conclusion of a conditional in R and all assigned probabilities 
in R are different from 0 and 1. Then the weight factors a+, a- associated in 
F, (P, 73) with a conditional in R only depend upon the probability x of this 
conditional and upon their quotient CY’/CY- , i.e. for any (P, R) , (P’, 72’) E dP, 
P, P’ positive, R = {A + B[x],Ar I^) B, [x,1,. . .}, 72’ = {A’ 4~-) B’[x],A; + 
B’, [xi I,. . .}, both sets finite, all of x,x;, xi E (0, l), no variable occurring 
both in antecedent and conclusion of any conditional in R and R’, and for any 
weight factors a’, a- respectively cx’+ , a’- associated in FC (P, R) respectively 
F, (P’, R’) with the conditional A + B [ x] respectively A’ -+ B’[ x] , a+/(~- = 
ff’f /a ‘- implies CY+ = & and CY- = a’-. 

Example 16 shows that, in the cases dealt with by Proposition 23(i), all pairs CRY+, cy- 
of weight factors have to fulfill 

(Y+ x PM) __=--_ 
cl- 1 - xp(ab) 

The cross ratio on the right-hand side, depending only on prior and new conditional 
probabilities, represents exactly relevant knowledge. The left-hand side is just the quo- 
tient of CX+ and LY-. This gives an intuitive reason for this quotient playing a key role, 

as it is stated in Proposition 23 (ii). 
Thus in the context of c-adaptations, we identified clearly the parameters weight 

factors should be dependent on to give rise to a reasonable functional concept: a+/cu- 
and (the probability) x incorporate all relevant knowledge for the weight factors. Thus 
a reasonable functional concept for c-adaptations may be realized by setting 

a!+ = F+(X,LU), a- = F--(&C?), (15) 

with two real positive functions F+ and F-, defined on (0,l) x R+ and related by 

F+(x, a)/F-(x, a) = a, i.e. 
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F+(rc,(Y) = CkF(x,a). (16) 

As our global function F : dP 3 (P, 72) H P* is to work for arbitrary P and R, the 
functions F+ and F- are assumed to be independent of the prior and new information 
actually present, thus representing a fundamental inference pattern. Moreover, to yield 
“smooth” inferences we assume them to be continuous on (0,l) x IR?. The functional 
concept, designed so far, should also be applied to the extreme probabilities x E (0, l}, 
incorporating classical logic as a limit case by assuming 

F+(O,O) := lii F+(x,a) = 0, F+(l,oo) := linin F+(x,cu) E R+, (17) 
a-II U--rcc 

and 

F-(0,0) := lii F-(x,@) E B+, F-(1,oo) := !i_nt F-(~,a) =O, (18) 
0-o Ll-C-2 

in accordance with (10). The resulting posterior distribution P; has the form 

with nonnegative extended real numbers ~1, . . . , a, E Rf U (0, 00) solving the n equa- 

tions 

ffi = Xi Z 031, 

0, Xi = 0, 

00, xi= 1. (20) 

Note that CQ E B+ for xi E (0, l), because of the positivity of both functions Ff and 
F- and due to the P-consistency of R. So the positivity condition (10) is satisfied, and 

(20) corresponds to the adjustment condition ( 11) here. Thus, for any n nonnegative 
extended real numbers (~1,. . . , an E R+ U (0, oo}, CY~, . . . , LY, is a solution of (20) iff 

F+(xl,a~),F-(n~,a~),... ,F+(x,,,n,),F-(~,,a,) is a solution of (11) satisfying 

(10). 
We sum:marize these remarks for the axiomatization of the second postulate (P2) : 

Postulate (P2): functional concept for c-adaptations. There is a function F* : dP 3 
(P, R) I-+ P,* E C(P, R) that assigns to each adjustment problem (P, R) E dP a 
particular c-adaptation P,? fulfilling 7% = {Al ~9 B1 [XI I,. . . , A, -+ B, [x,]}, and there 
are two real positive and continuous functions F+ and F- defined on (0,l) x XX+, 
fulfilling the conditions (17) and (18) and related by (16), such that Pi = F*(P, R) =: 
P *F R has the form (19) with CYI, . . . , a, E JR+ U (0, CXJ} solving (20). 
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Define for (fixed) F*, F+, F- as in (P2) and for (P, R) E dP, R = {At -+ B, [x, 1, 

. . ..A. ~B,[x,l}, 

WQF(ER) :={(LYI,...,LY~) l IW~lJ(0,co) ] ((~,....,a~) solves (20)) (21) 

to be set of all weight quotients that belong to c-adaptations 

so (al,... ,a,) E WQF(~R) iff 

For any (eR) E dP, F*(P,R) = P[crt,... , (Y,],v is described by a particular 

element (at,... , a,) E WQF (P, R) . This disagreeable dependence on a special yet 
unknown solution of (20) may be overcome by assuming that the functions F+ and F- 
fulfill the condition of uniqueness: 

Definition 24 (Uniqueness condition). Let F+ and F- be functions as described in 
(P2). Ff and F- satisfy the uniqueness condition iff whenever (& R) E dP and 

(al,... ,%I), (Pl,... , &) E WQF (P, R) it holds that 

P[a,,... ,%lF=P[PI,...,PnlF. 

So, if Ft and F- satisfy the uniqueness condition then F* is determined by (20), 
i.e. F*(P,R) = P[al,. . . ,a,]~ for any (a~, . . . ,a,) E WQF(P,R). 

The functional concept (P2), describing weight factors of c-adaptations, was initi- 
ated by the conditions of relevance, continuity and atomicity. The uniqueness condition 
ensures recovering these properties from (P2) : 

Proposition 25. Let F* : dP 3 (P, R) H P$ E C (P, R) be as in (P2) with associated 
functions Ft and F- satisfying the uniqueness condition. Then F* fulfills the conditions 
of relevance, continuity and atomicity. 

We will see in Section 8 that the condition of uniqueness will in fact be satisfied for 
the special functions Ft and F- that will be determined by (P2) together with (P3) 
and (P4) (cf. Proposition 30). 

Note that the conciseness of (P2) is essentially due to making use of c-adaptations. 
So the efforts we invested in developing this conditional-logical concept begin to pay, 
providing now an elegant functional concept. 

After having put the functional dependencies in concrete terms we are now going 
to study which properties the functions Ft and F- should have to guarantee sound 
probabilistic inferences. To simplify notation, we will usually prefer the operational 
P *,Q R to the functional F* (P, R), where *F is described by (52). 
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6. Logical consistency 

Surely, the adaptation scheme (19) will be considered sound only if the resulting 
posterior distribution can be used as a prior distribution for further adaptations. This is 
a very fundamental meaning of logical consistency. 

In particular, if we first adjust P only to a subset Rt C R, and then use this posterior 
distribution to perform another adaptation to the full conditional information R, we 
should obtain the same distribution as if we adjusted P to R in only one step. 

We state this demand for logical consistency as Postulate (P3) : 

Postulate s(P3): logical consistency. For any distribution P and any P-consistent sets 

RI, R2 c P, the (final) posterior distribution which arises from a two-step process 
of adjusting P first to Rt and then adjusting this intermediate posterior to Rt U 77,~ is 
identical to the distribution resulting from directly adapting P to Rt U 722. 

More formally, the operator *F satisfies (P3) iff the following equation holds: 

P*FI:R,UR2)=(P*FR,)*F(R,UR2). (22) 

Theorem 26. If the adjustment operator *F satisfies the postulate (P3) of logical 
consistency then 

F-(0,0) = F+(l,oo) = 1, (23) 

and F- necessarily filjills the functional equation 

F-(x,@) = F-(n,a)F-(x,/7) (24) 

forallxE(O,l),cr,/IER+. 

Because of ( 16), F+ satisfies (24) iff F- does. 
Theorem. 26 is proved by checking condition (23) and (24) in the very special case 

that P is a positive distribution over three variables A, B, C, and Rr, R2 are given 
byRt ={a+c[x]}andRp={b -+ c[ y] } (see the Appendix). These conditions 
are necessary to guarantee a logical consistent behavior of the adaptation process for 
this example, and because we assumed the functions Ff, F- to be independent of the 

actual case we thus proved the general validity of (23) and (24). In fact, there is little 
arbitrariness in choosing this special example which such a crucial meaning is being 
assigned to. The way in which two conditionals with common conclusion should interact 
is one of the main issues in conditional logic and refers to the antecedent conjunction 
problem (c:f. [ 25,351). The validity of (23) and (24) ensures a sound probabilistic 
treatment of this problem. 

The functional equation (24) restricts the type of the function F- (and that of F+, 
too,) essentially: 

Proposition 27. Let *F be an adjustment operator following (P2) such that F+ and 
F- satisfy (23) and (24). Then there is a (continuous) real function c(x) , n E (0,l) , 
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with 

lilioc(x) = 0, J% c(x) = -1 (25) 

such that 

F- (x, a) = a’(‘), F+ (,y, a) = (Y’(‘)+~ (26) 

for any positive real LY and for any x E (0,l). Especially for a = 1, this implies 

F-(x, 1) = F+(n, 1) = 1. (27) 

In Theorem 26 we showed how the consistency property (22) determines the part 
the quotients C-Q have to play in the adjustment process. We are now left with the inves- 
tigation of the isolated impact of the numbers Xi which represent posterior conditional 
probabilities. 

7. Representation invariance 

By and large, we neglected how (conditional) knowledge is represented in R. Indeed, 
the principle of atomicity deals with logical equivalence of propositional formulas, but 
what about probabilistic equivalences, i.e. equivalences that are due to elementary proba- 
bility calculus? For instance, the sets of rules {A -+ B[ xl, A[y] } and {AB [ xy] , A[ y] } 
are equivalent in this respect because each rule in one set is derivable from rules in the 
other. We surely expect the result of our adjustment process to be independent of the 
syntactic representation of probabilistic knowledge in R: 

Postulate (P4): representation invariance. If two P-consistent sets of probabilistic 
conditionals R and R’ are probabilistically equivalent then the posterior distributions 
P * R and P * R’ resulting from adapting the prior P to R respectively to R’ are 
identical. 

The notion of probabilistic equivalence used here completely corresponds to that 
introduced in [ 261. Using the operational notation, we are able to express (P4) more 
formally: 

The adjustment operator *F satisfies (P4) iff 

P*FR=P*FR’ (28) 

for any two P-consistent and probabilistically equivalent sets R, R’ c C*. 
The demand for independence of syntactic representation of probabilistic knowledge 

(P4) gives rise to two functional equations for c(x) (cf. Proposition 27): 

Proposition 28. Let the functions F- and F+ describing the adaptation operator *F 
in (P2) be given by (26) with a continuous function c(x) fulfilling (25). Zf *F satisfies 
postulate (P4) respectively (28) then for all real x,x1, x2 E (0,l) the following 
equations hold: 
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c(x) -tc(l -x) = -1, (29) 

C(XX, + (1 - X)X2) = _C(X)C(Xl) - c( 1 - X)C(_Q). (30) 

The most obvious probabilistic equivalence is that of each two rules A us B[x] and 
A u-) B[ 1 .- X] . This implies (29). Eq. (30) is again proved by investigating a special 
but crucial adaptation problem. The relation p (bJa) = p (blac)p (cla) + p (b@)p ( C~U) 
for arbitrarily chosen propositional variables A, B, C is fundamental to probabilistic 
conditionals, yielding the probabilistic equivalence of the two sets R = {u u-) c[ n] , UC u) 
b[nl],aE -+ b[x~]} and R’ = {u us b[y],uc + b[xl],uE ++ ~[xz]} with y = 
xx1 + ( 1 - x)x2 for real X, XI, x2 E (0,l). The validity of (28) in this case necessarily 

implies (30) (see Appendix). 
As a consequence of (29) and (30)) we finally obtain: 

Theorem 29. If the operator *,G in (P2) is to meet the demands for logical consistency 
(P3) and .for representation invariance (P4), then F+ and F- necessarily have the 

forms 

F+(x,a) = a’-’ and F-(x, a) = a-‘, (31) 

respectively. 

The continuity of the functions Ff and F-, in particular the continuous integrating 

of the extreme probabilities 0 and 1, i.e. the seamless encompassing of classical logic, 
is essential to establish this theorem (see the Appendix). 

8. Uniqueness and the main theorem 

So far we have proved that the demands for logical consistency and for representation 
invariance determine the functions which we assumed to underly the adjusting of P 
to R, as described by the functional concept (P2). Applying (31) to ( 19) and (20) 
we recognize that the posterior distribution necessarily is of the same type (3) as the 
ME-distribution if it is to yield sound and consistent inferences. 

Therefore we have nearly reached our goal. But one step is still missing: Is this enough 
to characterize ME-inference within a conditional-logical framework? Are there possibly 
several different solutions of type (3), only one of which is the ME-distribution? And 
moreover, ;if we assume the functions Ff and F- to fulfill (31), is this suj’kient to 
guarantee that the resulting operator *F satisfies logical consistency and representation 
invariance? 

The question of uniqueness of the posterior distribution is at the center of all these 
problems. If it can be answered positively, we will be finished: The unique posterior 
distribution of type (3) must be the ME-distribution, *F then corresponds to ME- 
inference, and ME-inference is known to fulfill (22) and (28) as well as many other 
reasonable properties, cf. [ 26,33,34]. Moreover, together with (P2) uniqueness implies 
the conditions of relevance, atomicity and continuity (cf. Proposition 25). 
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The uniqueness of the solution (ai, . . . , CY,) of the fixpoint equation (4) is question- 
able. Imagine the case that the set R representing new conditional knowledge contains 
twice the same rule in different notations. All that can be expected at best is a unique- 

ness statement for the product aiaj of the corresponding factors. Even if we exclude 
such pathological cases, (4) is not easy to deal with at all. 

But remember that we are primarily interested in the uniqueness of the posterior 
distribution, not in that of the solutions to (4). And indeed, this uniqueness is affirmed 

by the next theorem. In its proof, we will make use of cross-entropy as an excellently 
fitting measure of distance for distributions of type (3) (see the Appendix). 

Proposition 30. There is at most one solution of the adaptation problem (*) of type 
(3)) i.e. the functional concept defined by (3 1) satisfies the uniqueness condition. 

The following theorem summarizes our results in characterizing ME-adjustment within 
a conditional-logical framework: 

Theorem 31 (Main Theorem). Let *e denote the ME-adjustment operator, i.e. + as- 
signs to a prior distribution P and some P-consistent set R = {At us Bi [xl], . . . , 
A,, -+ B, [x,] } of probabilistic conditionals the one distribution Pe = P ee ‘R which has 
minimal cross-entropy with respect to P among all distributions that satisfy R. 

Then + yields the only adaptation of P to R that obeys the principle of condi- 
tional preservation (Pl ) , realizes a functional concept (I%!) and satisfies the postulates 
for logical consistency (P3) and for representation invariance (P4). *e is completely 
described by (3) and (4). 

In the next section, we are going to prove some properties of + which are already 
known about ME-inference but which can be proved easily within the framework pre- 

sented here. 

9. Some properties of the adjustment operator *e 

The uniqueness of the solution of type (3) yields an easy but important corollary 
which meets fundamental demands for “good solutions”: 

Corollary 32. P *e R = P if and only if P k R. 

This corollary makes obvious an idea of minimality of change that is implicitly 
inherent to all of the postulates (Pl)-(P4). We will now make this minimality more 
explicit by proving two properties known from the area of nonmonotonic reasoning. 
Within that framework, the notions of idempotence and cumulativity are fundamental to 
characterize reasonable nonmonotonic inference operations (cf. [ 20,241) : 

Proposition 33. The adjustment operator *e has the following properties: 
(i) Zdempotence: (P + R) *= R = P + R. 

(ii) Cumulativity: Zf Rt G 722 and P *e 721 k 722 then P *e 721 = P *e 72~. 
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As can be seen at once, cumulativity (ii) is equivalent to 

(ii)‘IfP*,Rt ~R*thenP*,(R1UR2)=P*eR1, 

which is stated as Principle 5 in [ 261. 

10. Conchsion and future work 

Starting from a conditional-logical point of view we found another characterization 
of the ME;-solution to the problem 

Given a distribution P and a P-consistent set of probabilistic conditionals R, 
which way is the best for adjusting P to R? 

The thorough embedding of the problem within the conditional-logical framework 

presented here conveys a clear understanding what actually makes the ME-distribu- 
tion to be the best choice-ME-inference and probabilistic conditionals fit perfectly 

well. 
The principle of conditional preservation was used to determine the structure of 

the posterior distribution. Then we assumed that a (continuous) functional concept 
extending classical logic should underly the adjustment process, and we isolated the 
crucial parameters which this concept should depend on. It was represented by means of 
two functions FC and F- accomplishing the discrimination between these elementary 
events satisfying the antecedent of a rule that also satisfy its conclusion and those events 
that do not. So they constitute the decisive components for the extent of distortion the 
prior distribution is to be exposed to under adjustment. 

Only two further preconditions were necessary to arrive at the desired character- 
ization: logical consistency and independence of syntactical representation. Both are 

usually considered to be fundamental to any reasonable inference procedure. So no 
exceptional demands had to be made, and the ME-solution arose in a rather natural 
way. Moreover, the proof of proposition 30, which states the uniqueness of the solu- 
tion, illustrates how perfectly well the approach presented here realizes ME-inference 
in an understandable manner, without imposing any external and abstract minimality 

demand. Actually, the proper idea of minimality is being made explicit by the four 
postulates 

In Secuon 9, we showed that the adjustment operator + which we proved to be 

the best within that framework chosen satisfies two essential axioms of nonmonotonic 
reasoning. So the nonmonotonic inference operation Cp (R) = Th( P *e R) seems to be 
a good candidate to provide sound quantitative inferences. 

Introducing a functional concept parallels obviously (and intentionally) the ideas of 
Gardenfors [9] concerning theory revision. The problem we were dealing with in this 
paper may indeed be considered as a theory revision problem, with Th( P) playing the 
role of the theory to be revised by the new information R. 

These connections to nonmonotonic reasoning and theory change are topics of our 
ongoing research. 
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Appendix A. Proofs 

Proof of Theorem 11. Let P be a distribution and R = {At v-) Bt [xl], . . . ,A, u-) 
B, [ x,] } be P-consistent. Let O* denote all elementary events with positive prior prob- 
ability: 0* = {w E 0 1 p(w) > 0). 

Suppose first that P* is a c-adaptation of P to R. The equivalence relation ER induces 
a partition Kt , . . . , K4 of .f2* in disjoint classes. According to Lemma 10, p*(w)/p( o) 

is constant on each equivalence class, SO assume p*(w)/p( w) = Kj for w E Kj. Let 

WI,..., wq E L2* be a representative system of Kt , . . . , &. 
For the sake of simplicity of notation, we suppose that ~1, . . . , ~~~ > 0, K~!+~ = 

. . . =Ky=Owithq’<q,andfurthermore,xt ,..., X,rE(O,l),&~+t ,..., x,E{O,l}, 
n’ < n. 

If Kj = 0, q’ < j < q, we have p*( wj) = 0 and P(Oj) > 0. From Definition 8(i) 
there must be a conditional Ai -+ Bi in R, n’ < i < IZ, such that either xi = 1 and 
AiBi( Wj) = 1, or X; = 0 and AiBi( oj) = 1. In the first case, set CZ+ = 1 and (Y; = 0, in 
the second case exchange the values of these two factors. In this way, any Kj = 0 (and 

thus any certain conditional in R, i.e. any conditional with probability 0 or 1) is dealt 
with. 

Let us now consider the constants Kj Z 0. Finding positive factors (~0, a:, a,, . . . , 
a,‘, , CY;, with 

0 # p*(w) =a@n(w) n CX” n a; 
I<#<!#’ l<i<# 

AiBi,“,‘l AiEl;(N,=l 

amounts to solving the following system of qf equations, 

ff0 rI a+ II a,: = Uj, j= l,...,q’, 
I <,<,t’ I<i<#,’ 

A,B,(“, ,=I 
- 

*jaicq,=, 

which can be transformed into a linear equational system 

(A.1) 

@=A (A.21 

with p = (logcut,loga, ,..., logcu,f,,lOg~~,logao)T E WZn’+t, A = (1OgKt ,... , 

log Kyt )T E IV’ (where R denotes the field of real numbers) and a q’ x (2n’ + l)- 
matrix 0 with elements in (0, l}, 0j,2i = 1 iff ai = ~i, Bj,zi+t = 1 iff ai = bi, 
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@j,2n’fl = 11 for all 1 6 j < q’, 1 < i 6 n’. Let @j, 1 < j < q’, denote the row vectors of 
0. The equational system (A.2) is solvable over R iff any linear dependencies (over the 
field of rationals, because each entry of 0 is either 0 or 1) between these row vectors 
correspond to relations between the Aj = log Kj, i.e. ck rmkt& = XI sn,&, must imply 

Ck rmt A,, = Cl s,,, A,,, with rationals r,, , s”,. 
Arranging and multiplying both sums appropriately, we may assume xk rmt&t = 

Cl s,, fl,,, with natural numbers r,, , s,, . By comparing the vector components, we obtain 

$I r,,e,i,zi = Cl snrenl,2ir &, rmt$t.2i+t = Cl S,,ennr,2i+tr 1 G i G n’, and Cer~,, = 
I sn,, the last equation bemg vahd because of 0j,zns+i = 1 for all 1 6 j 6 q . The 

first two equations imply Ck: C,(w,t lzai rmt = Cl: Ci(on, jzui snr and Ck: oi(o.,)=bi rmr = 

CI: V;i(o,,,)=:b; s,/* Therefore the multi-sets {wmk : rmk}k and {c+, : sn,}r are R-equivalent 

by Lemma 7, and because P* is assumed to be a c-adaptation we obtain 

Applying the logarithm function now yields 

as desired. Thus the equational system (A.2) is solvable, yielding a solution J? = 

(P;&... ,P,+,,P;,Po)T E R 2n’+1. Setting CXJ = exp( pa) and cy+ = exp( @), a; = 
exp( pi), 1 < i < n’, we obtain 

P*(w) =aop(w) n 4 n q- 
IQ<,, I<i<“’ 

A;B;~‘~‘l AiBf(Ukl 

for p* (0) # 0. Taking into account the certain conditionals, we thus have 

for w E a’* because the non-zero factors belonging to certain conditionals are 1. For 

o E 0 - 0*, this equation holds trivially because p(w) = p* (w) = 0 in this case. In 

particular, these factors cyr, CY~, . . . , an+, 0; satisfy (10). Moreover, P* b 72 means 
p*(BilAi) = Xi, 1 < i < n which is equivalent to (1 - xi)p*(AiBi) = xip*(AiBi). This 

shows (11). 
To prove the converse assume 

is a distribution with aa > 0, n:, CUT,. . . , a;, a; satisfying ( 10) and ( 11). We have 
to show P"; E C(P,R). 
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implies that p(w) = 0 or there is a conditional Ai -+ Bi[xi] in R such that ff: = 0, thus 
X; = 0 by (lo), and AiBi(ti) = 1, or (Y: = 0, which implies Xi = 1, and AiBi( w) = 1. 
Conversely, if AiBi( 0) = 1 for a conditional Ai -+ Bi [ xi] in R with Xi = 0, then, again 
by ( IO), a+ = 0 and p* (w) = 0. The second case A&(o) = 1 and xi = 1 is similarly 
dealt with, and p(w) = 0 implies p*(o) = 0 trivially. 

Now consider two R-equivalent multi-sets 0, = {wr : t-1,. . . , w,,, : r,,} and 0, = 

{Z’r : Sl, . . . , Y,,, : &Q}, mk, v/ E a*, 1 < k < ml, 1 < 1 6 m2, with identical conditional 

structures q = flr++r, @(@k)ra = &GiG,,, d@)S’ = q. Then 

c 
,-k = 

c Sl, 

l<k<nzl I<l<mz 

c 
t-k = 

c SIT 

k: (BilAi)(w~)=l 1: (BilAi)(vr)=l 

c 
rk = 

c Sl 

k: (B;lAi)(wk)=O 1: (BilAi)(v,)=O 

holdforalli=l,..., n according to Lemma 7. Checking condition (8) is now an easy 
calculation: 

p*(wl)” . . .pf(Wm,)r,l 

P(Wl)” . . .p(Wm,)r,@l 

l<i<n I&i+! 

p*(vl)Q . . .p*(Vm2)S.)Z 
= 

p(vI)s’ ..‘p(Ynlz)S”JZ . 

At last we have to show that P* k R. (10) implies p*(Ai) > 0 for all i = 1,. . . , n. 
For assume the contrary, i.e. there is an i such that p*(Ai) = 0. Then for all w with 
Ai = 1, 

P*(w) = sop(w) jyI a+ ]II a; =o, 
I<,<,, I<i<H 

A,0i~N14 AjBi,Obl 

thus for each such W, we have p(w) = 0, or there is a j, such that (~2 = 0 and 

Aj,Bjo(0) = 1, or “j_ = 0 and Aj,Ejo(o) = 1. If ti E a*, SO either XjM = 0 or xjW = 1. 
Suppose Q is a distribution with Q k R. Then for each w E a* with Ai = 1, either 
Xi” = 0 and Aj,Bj,(o) = 1, or XjU = 1 and Ajax(w) = 1; in any case, q(o) = 0. But 
Q b Ai u-) Bi[xi] implies in particular q( Ai) > 0, so there must be an 00 E 0 - 0* 
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with Ai( tijo) = 1 and q( 00) > 0, i.e. we have p (00) = 0 and q( wo) > 0. So Q cannot 
be P-continuous. This contradicts the P-consistency of 72. Therefore p* (Ai) > 0 for 
all i= l,...,n. 

For Ai * Bi [xi] E R with xi = 0, ( 10) ensures that LY+ = 0, therefore p* ( AiBi) = 0, 
because cr+ occurs in each product p* ( w’) with AiBi( 0’) = 1. Because p* (Ai) > 0 
this implies p*( BilAi) = 0. Analogously, P* k Ai -+ Bi[xi] for Xi = 1 by virtue of 

(10). For X; E (0, l), P* b Ai + Bi[xi] because of (11). 0 

Proof of Proposition 19. Let R = {Al IC) B1 [XI I,. . . , A,, * B, [x,]}, and suppose 
PI, P2 are two distributions with p1 (@[Ai) = p2(01Ai) for all w E 0 and for all 

i= 1 ,...,n, PI(W) = 0 iff p*(w) = 0 and such that R is PI- and Pz-consistent. 

According to (13), (LY:, a;, . . . , a:, a;) E WF(Pl,R) iff cr’,cw; > 0, a+ = 0 iff 

xi = 0, LYE- = 0 iff Xi = 1 and 

for all i= l,...,n. 

For any such i, and because of pI (@[Ai) = pz(wlAi) for all w E 0, we have for all w 

with Ai( = 1: Pl(m)/pl(Ai) =P2(~)/P2(4), SO PI(&) = (PI(Ai)/P2(Ai))P2(W)* 

Consequently, the equations above may be rewritten as 

(1 -Xi)O!+ P1 (Ai) 
o:AiBi(w)=l p2(Ai)p2(0) AjgjI, Oil’ $! ff’ c- 

AjBj(",4 

(1 - Xi)CYyi+ 
o: AiB;(w)=l j+i 

AjBjlO)4 

p 
*jBj,O)=l 

= xja, 

w: A&(o)=1 j+i j+i 
Ajoj(hl,=l - 

A,Bjb+l 

because p1 (Ai)/pz(Ai) > 0. Together with the positivity condition, this is equivalent 
to (+Yy; )...) a,+, LV; ) E WF( Pz, 72). (Note that all elementary events w occurring 
in the sums above satisfy Ai( 0) = 1.) 0 

Proof of Proposition 20. Assume that all notations are as stated in the text of the 

proposition. 
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(cy~,cy;‘.“,& a,) E wf(P,*), SO in particular, (a;, aj)jc~ satisfy the positivity 
condition for RJ, and for each j E J, we have 

- 
= Xj(Yj c P(W) n (Yk+ n a; 

Proof of Proposition 23. Proof of (i). Let PI, P2 be positive distributions over two 
variables A,B with pl(bla) = pz(bla), and let R = (~2 vg b[x]},x E (0,l). Let 
PC := F,( Pk, R) E C( P, R) be c-adaptations with weight factors cx+, (Y- respectively 
flf, p-, k = 1,2. According to (11) and (12), P;, P; have the following forms, 
respectively: 

with 

CY+ x Pd& x P2W P+ 

-=l-xplo= 
----=- 

a!- 1 - xPz(ab) P- 

(note that x # 0,l). Due to the positivity of the prior distributions, the weight factors 
Ly+,CY- and /3+,/S- are uniquely determined by F,, i.e. card(wf(F,(Pk,R))) = 1, 
k= 1,2. 
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Calculating all cross-ratios 

p;(hb) p;(hb) ------:: 
P1 (& J&b) ’ 

we obtain the three values ~yecy+/fi&+, ~a(~-//?aP-, act/&. So if F, satisfies the 
relevance condition, then c~yg~y~/fleP+ = LyaLy-/@a/3- = ac/&. This implies (Y+ = p+ 

and ay- = /3-. 
Proof of (ii). Suppose P, P’ are positive prior distributions. Let R = {A us B[x], 

Ar w Bt[xr] ,... }, R’ = {A’ u-) B’[x],A’, u-) B{[xi] ,... } be two (finite) P- re- 
spectively P’- continuous sets of probabilistic conditionals, all of x, Xi, xi E (0, 1) , no 
variable occurs both in antecedent and conclusion of any conditional in R and ‘R’. 
Let a+, a- respectively a’+, a’- be weight factors associated in Fc (P, R) respectively 

F,( P’, R’) with the conditional A y-) B[x] respectively A’ y-) B'[x] . Note that the 
same probability x is assigned to both A * B in ‘R and A’ * B’ in R’. Let Fc satisfy 

the conditions of relevance, continuity and atomicity, and assume a+/cy- = &+/a’-. 
We have to show: cy+ = a’+ and (Y- = (y’-. 

For F, (P, R), we have 

where the CUT, a; are associated with the remaining conditionals Ai * Bi[x’] in R, 
i E I. Set PI = P [ a:, ai ] iEf = PI, in the notation of Definition 21. F, is supposed 
to satisfy the continuity condition, therefore (cyi, a-) E wf(F,(Pt, {A * B{x]})). 
Similarly, (cy’+,&) E wf(F,(P,‘,{A’ * B’[x]})) with Pi = Pfi. In particular, we 

have 

a+ x ~1 (AB) and c _ x pl(A’B’) 

- = l-xPr(~~) Ly- a’- 1 - xp;(A’B’)’ 

Thus ‘x+/a- = cy’+/& implies pr (AB)/pr (AB) = pi (A’B’)/pi (A/B’), hence 

pI (BIA) = pi (B’IA’). By virtue of the atomicity condition, we may replace A, A’ 
and B, B’ by new propositional variables A and fi (note that we assumed that no vari- 
able occurs both in antecedent and conclusion). Suitably marginalizing PI and P,‘, we 
thus obtain positive distributions over A, B (which we will denote again by PI andP,’ 
) with pi (615) = p{ (6jZr), and a+, LY- respectively cy’+, LY’- being the weight factors 

of F,(P,,{B ug g[_x]}> respectively F,(P,‘,{ ZI u-t 6[x]}). From (i), it follows that 
CY+ = cy’+ and (Y- = a’- , as desired. Cl 

Proof of Proposition 25. Let R = {Al u-) Bt[xr],...,A’, u) Bn[xn]}, and suppose 
PI, P2 are two distributions with pr (@[Ai) = Ps(wlAi) for all o E fi and for all 
i= I,... , n, PI (o) = 0 iff p2( w) = 0 and such that R is PI- and P2-consistent. Let 
P; =F*(Pk,R) fork= 1,2, 
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p;(w) =p2[P1,... *PnlF(w) =POP2Cw) n F+(XivPi) n F-(-CvPi)7 
L$i<n 

AiBi,W’)4 
gi<,, 

A;Bi(w)‘I 

cm,... ,a,> E WQF(PI,W, (PI, . . . , /3,,) E WQF( P2, R) . Arguing as in the proof 
of Proposition 19, we see WQF( PI, R) = WQF( P2, R). In particular, (al,. . . , a,) E 
WQp (P2, R). Due to uniqueness, we thus have P; = P2 [ a~, . . . , a,] F, i.e. 

P;(W) =a&(@) n F+(xivai) n F-(xi*~i)- 
I<i<,# IQ<” 

*;EQ(m)=l A,B;(u)=I 

Now for any o E R, we have p;(w) = 0 iff p;(o) = 0 or else 

a constant. This proofs the relevance property. 

With the notations of Definition 21, (aj)jcJ E WQF( PI, RJ), therefore by the 
condition of uniqueness, F*(PI,RJ) = Pl[cUj,j E J],v = P[al,...,a,]~ = F*(P,R). 
So F” satisfies the continuity condition. 

At last, Theorem 17 implies immediately WQF (P, R) = WQ,V (P’, 72“). Atomicity 

now follows from uniqueness, using equivalences of classical-logical formulas. We omit 

the technical details. Cl 

Proof of Theorem 26. If (22) holds in principle for any adaptation carried out by *F, 
it is surely valid for some special type of P, 721 and R2. So let P be any positive 
distribution over 3 variables A, B and C, let RI = {u u-) c [xl} and R2 = {b u) c [y]}. 
Letpt,... ,pg denote the prior probabilities of P, p1 = p(abc), . . . ,pg = p(ii6E). The 
following table shows the three adapted distributions P *F RI, (P *F RI) *F (‘721 U 732) 

and P *F (Rt U R2): 

0 

abc 

abE 

a&c 

a& 

iibc 

iibE 

&C 

ii6E 

p *F (RI uR2) P*F% (P*F%) *F(Rl UR2) 

aoPl~+Cv)~+(y~P) P;PIF+(wo cub~~,plF+(x,cu’)F+(x,(YI)F+(Y,PI) 

aopzF-(x,a)F-(Y,P) P;p2~-(d) cu~P~pzF-(x,cu’)F-(x,cul)F-(Y,Pl) 

~OP3Ff(L a) P;P~F+ (xv a’) &3;p3F+(x, dF+(x, 01) 

~oP~F- (~9 a) P;p4F- (~3 a’> (~~P~p4F-(x,cy’)F-(x,al) 

~oP~F+(Y, PI PhP5 ~,P;P~F+(YJ~~ 

ffoPsF_ (Yv PI PhP6 d&,~sF- (Y, PI > 

ffoP7 PhP7 4&P7 

ffOp8 PAPS ff$%Pa. 

Postulating P*F(RIUI&) = (P*FRI)*F(R~UR~) yields LYO = ~~$36 and F+(y.P) = 
Ff (y, p, ) , F- ( y, p) = F- (y, PI), hence /3 = /3r because of ( 16). 

Further for x = 0, we see cx = cy’ = (~1 = 0 and F- (0,O) = F- (0,O) . F- (0,O). Due 
to ( 18), F- (0,O) # 0, hence F- (0,O) = 1. Similarly, F+ ( 1, oa) = 1. 
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For n # 1, the weight quotients a, CJ and (~1 may be calculated as 

203 

x PDF- (Y, P) + ~4 x p2 +p4 

&= I-n ’ plF+(y,p) +p3’ 
a’=_.- 

1-x p*+p3’ 

x F-(xva’) ~2F-(y,P1) +p4 x .&I. p2F-(y,Pl) +p4; _ -. 
a1 = 1 --x F+(n,a’) ’ PIF+(~,PI) +p3 1-X PIF+(Y,PI) +p3 

thus a = (~‘a,,. 
Comparing again P *F (RI U 722) and (P *F RI) *F (RI U R2) we obtain 

F-(X,(Y) = F-(x,a’al) = F-(x,a’)F-(~,a,). (A.3) 

For fixed x, P and y can still be chosen arbitrarily. Choosing y = 0 respectively 
y = 1 simplifies the equations for (Y, (Y’, cyt essentially, making these weight quotients 

being only dependent on P (and, of course, on x). Straightforward calculations show 

that indeed any (Y’, at E IR+ may be represented as weight quotients by setting up P 
appropriately. Therefore (A.3)) i.e. (24)) must hold for all positive real cy’, ~yt, and all 

x E (0,l). 0 

Proof of Proposition 27. Let the preconditions of Proposition 27 be satisfied. Assume 
x E (0,l) to be held fixed and let for a moment F;(a) := F-(x, a) be regarded 
only as a function of 0 (even if x is held fixed, (Y still may vary because it generally 
depends on many parameters other than x, at least on the prior distribution; cf. the proof 
of Theorem 26). 

According to [ 1, pp. 46ff] and by taking account of (24), we see FL (a) = d for 

some real constant c, and again taking into consideration the dependency on x, we 
obtain F- (x, UT) = a’(‘) and, due to ( 16), Ff (x, a) = CYST’, for any positive real CY 

and any x E (0,l). This proves (26). (27) now is obvious. 
According to (23), 1 = F- (0,O) = lim,,o,,,o F- (x, a) = lim,,c, cr+a &*); this 

implies lim,,a c(x) = 0. 
Similarly, by observing (26), (23) and (17), we obtain lim,,t c(x) = -1. 0 

Proof of Proposition 28. All priors P in this proof are assumed to be positive. 
Suppose first R = {A 6 B[x]} and R’ = {A -+ B[l -xl}, n E (0, l), and let cy 

respectively p be the factor associated with R respectively R’. Let PC = P *F R, and 
PT = P *,v R’. According to the functional concept (P2), 

i 

F+(x,a), AB(w) = 1, 

p;(o) = (Y;+(W) F-(X,(Y), A@w) = 1, 

1, A(o) = 0 

and 

F+( 1 -x,/I), AB(w) = 1, 

p;(w) =@p(w) F-(1 -x,p), AB(w) = 1, 

1, A(w) = 0, 
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with 

x P(AB) -g-l. 
LU=l~(~~) 

If (P4) is satisfied then P;” = P;, thus implying F+(x, cu) = F- ( 1 - x, (u-l) and 
F-(~,a) = F+(l -x,(Y-t ). Together with (16), this shows F-(x, a) = a-IF-( 1 - 
x,cu-‘). Using (26) proves (29). 

Now we are going to prove (30). Because of 

P(blU) = p(blac)p(cla) +P(4~~)P(~l~) 

for arbitrarily chosen variables A, B and C, the two sets of rules 

R={u-+C[X],ac + NIxI I, aE --+ b[X21}, 

R’ = {u --+ b[y],uc -)b[x~],uE--,b[_x2]} withy=xxt+(l-x)x2 

are probabilistically equivalent for x, XI, x2 E (0, 1) . Because *,v is assumed to satisfy 
(2811, we have P *F R = P *F 72’ when applying ( 19). We list both distributions below. 
The correspondence between each (pi respectively pi and the conditional it belongs to 
should be clear. 

P*FR P*FR’ 
c(x)+1 c(xt)+l 

(YOPI aI a2 

c(x) c(xz)+I 
aoP2@, ff3 

c(x)+1 
~opsa, 

C(XI 1 
ff2 

C(Y) c(m) 
PoP3P, P2 

c(x) C(R) 
aop4ff1 a3 

C(Y) c(x2) 
PoP4P* P3 

sops POPS 

*Op6 

nop7 

sops 

POP6 

POP7 

POP8 

with 

. p2(y3 + p4 X 
C(Q) 

(yl=l_X 

“3 

&I) PIa + P3 ’ 

-.E Xl X2 P4 

a2= 1 -x* p,’ 
*3=-.- 

1 -X2 P2’ 

p,=Y. p3@) + p4py 

1 - y p,p;(~l )+I + p2p;(x2)+1 ’ 

p,,x’.JL 
1 -x1 PIP1 

a2P;‘, p3=x:!.e= 

1 -X2 P2P1 
a3Pl’. 

(A.4) 

(A.5) 

(A.6) 

(A-7) 
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These last equations (A.6) and (A.7) yield 

p3p;(z= l-xl x -.- 
Pdp 1-Q l-x’ 

and putting all these equations together we obtain 

c(xz)-c(xl) 
aI = 131 

For P *F R. = P *F R’ to hold, we necessarily must have 

c(x) _ 
ffl 

_ p-cw ( 

and (30) now follows from (29), (A.8) and (A.9). q 

(A.81 

(A.9) 

Proof of Theorem 29. Properties (P3) and (P4) imply F-(x, a) = &) with a 

continuous real function c(x) satisfying lim,,c c(n) = 0, lim,,t c(x) = - 1 and c(x) + 
c(l--x) = -l,c(xxt+(l-x)x2) = -c(x)c(xt)-c(l-n)c(xz) forallrealx,xl,xf E 
(0, 1), due: to Propositions 27 and 28. Choosing n = 3 in the first of these equations, 

we see c( ji) = -3. From the second equation, x2 4 0 yields 

c(xx,) = -c(x)c(x1). (A.lO) 

Using this, we obtain for x = i: c( ixt + ix2) = c( 1x1) + c( 5x2) for XI, x2 E (0,l). 
Therefore c(x) fulfills a Cauchy functional equation on (0, i). Similar to the proof 

in [l, p.441, using (A.lO) and c(i) = -3, one sees c(x) = -x for all x E (0,I). 
Together with ( 16), this shows (31). 0 

Proof of Proposition 30. Suppose (E R) E dP, R = {At * BI [XI], . . . , A,, u-) 
B, [x,] }, and let P;“, Pg be distributions of type (3), 

p;(W;)=a(jp(W) I-I (Y&f-xi I-I q-x’, 
I<i<,# IQ<,? 

A;B,(m,=l A,B;(w)=l 

p;(w:l=pop(w) n ,y n J?,:rn 
,<iQ,, ,<i<,t 

AiBi(0)=l Ai[li(m)=L 

with nonnegative real numbers (ai)c<i<n, (fii)c<;<n fulfilling equations (4). Let a* = 
{w E 0 1 p (w) > 0). Without loss of generality, we may assume that all Xi # 0,l (in 

those cases, ai = pi). SO p;(w),p;(w) > 0 for all w E II!*. 
We calculate the cross-entropy between P; and PT: 

P;(w) P?(W) 
R(P;.P;)=~P;(WO~~= c ~;(W%p+(o) 

0 2 oEf2’ 2 
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= 
c I$(@> hz~o - logP0 

UJEf2’ [ 

+ C (1-Xi)(lOg~i-lOgPi)+ C (-xil( 
,<t<,, I<i<,# 

log ai - 1% pi)] 

AiBi(w)=l AiLsi(” 

= 
c P;(w) m%~o - l%Pol 

i&R’ 

+ w+ PfCw> C (-xi)(logai - log/%) 

* l<i$’ 

A;B,,&s)=l 

= w%ao - logPo1 c P;(w) 
oEn* 

+ C Cl -xi)(logQi-log&) P;(w) 
l<i<n oE.n*:A;Bi(w)=l 

+ C (-Xi)(lOg~i - lOgPi) P:(o) 
l<i<n oEf2’: A&(w)=1 

= [log&o - IogPol + c (1 - xi)(logLui - logPi)p;(AiBi) 
l<i<n 

+ C (-x;)(lOg~i - lOgPi)p;(AiBi) 

I<i<Il 

= [loga - 1ogPol 

+ C(lg 0 ai-lOgPi)[(l -~;)p;(AiBi) -xip;(AiEi)] 
l<i<n 

= [loga - logPo1 

because p;(B;lAi) = x; for all 1 < i < n. 
In the same way, 

WP,*,P;“) = 1logPo - logaol 

can be derived. But now both equations together imply 

R(PT,P,*) = 0, 

for cross-entropy is nonnegative, and by using its positivity (cf. [ 321) , both distributions 
must be identical. This proves the proposition. 0 

Proof of Corollary 32. If P ee R = P then P k R by definition of any adjustment 
operator. 
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Conversely, if P k R then LY; = 1, 1 < i < n, provide a solution to (4) because 
of x;~(A$i) = ( 1 - xi)p(AiBi), 1 Q i < n. These factors leave the prior distribution 

unchanged, yielding the trivial posterior P of type (3). The uniqueness statement of 
Proposition 30 now implies P *e R = P. Cl 

Proof of Proposition 33. Idempotence is clear with Corollary 32. 

If RI C. R2, we have P*,R2 = P*,(R1UR2) = (P*,RI)*~R~ because of (22). By 
prerequisite P +Rl k 722, so again Corollary 32 implies (P ++77..1) +.R2 = P *err. 0 
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