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Summary

Intra-abdominal fat accumulation is involved in development of the metabolic syndrome, which is associated with insulin
and leptin resistance. We show here that ectopic expression of very low levels of uncoupling protein 1 (UCP1) in epididymal
fat (Epi) reverses both insulin and leptin resistance. UCP1 expression in Epi improved glucose tolerance and decreased food
intake in both diet-induced and genetically obese mouse models. In contrast, UCP1 expression in Epi of leptin-receptor mu-
tant mice did not alter food intake, though it significantly decreased blood glucose and insulin levels. Thus, hypophagia in-
duction requires a leptin signal, while the improved insulin sensitivity appears to be leptin independent. In wild-type mice,
local-nerve dissection in the epididymis or pharmacological afferent blockade blunted the decrease in food intake, suggest-
ing that afferent-nerve signals from intra-abdominal fat tissue regulate food intake by modulating hypothalamic leptin sen-
sitivity. These novel signals are potential therapeutic targets for the metabolic syndrome.
Introduction

The explosive increase in obesity has become a major public
health concern in most industrialized countries (Flier, 2004;
Friedman, 2003). Insulin resistance is a fundamental contributor
to the metabolic syndrome associated with type 2 diabetes,
hypertension, hyperlipidemia, and atherosclerosis. Major ad-
vancements in this field include the discoveries of adipocyte-
derived humoral factors, such as leptin (Friedman and Halaas,
1998). Leptin conveys energy-storage information from adipose
tissue to the central nervous system, leading to food-intake
suppression. However, in patients with ordinary obesity, serum
leptin levels are increased in proportion to body fat (Considine
et al., 1996), but the responses to leptin are impaired (Heyms-
field et al., 1999), which defines a state of leptin resistance. Lep-
tin resistance also contributes to the development of obesity
and obesity-related metabolic disorders.

Fat accumulation in intra-abdominal fat tissue is involved
in development of the metabolic syndrome (Bjorntorp, 1992;
Matsuzawa et al., 1995) associated with insulin and leptin resis-
tance (Friedman, 2003). Therefore, in this study, to examine
whether the metabolic changes in intra-abdominal fat tissue af-
fect insulin and leptin resistance as well as systemic glucose
metabolism, we attempted to express uncoupling protein 1
(UCP1), which functions to dissipate energy as heat (Klingen-
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berg and Huang, 1999), in epididymal fat tissue (Epi) in mice
with obesity and diabetes.

Results and discussion

C57BL/6 mice were subjected to direct injection of the UCP1
adenovirus vector into Epi (UCP1 mice) after the development
of diabetes associated with obesity in response to high-fat
chow preloading for 4 weeks. Mice given the LacZ adenovirus
were used as controls (LacZ mice). Immunoblotting detected
adenovirus-mediated UCP1 expression in Epi (see Figure S1A
in the Supplemental Data available with this article online), and
this expression was restricted to Epi (Fig. S1A). UCP1 expres-
sion in Epi was detectable on the first day after adenoviral injec-
tion and was increased on day 3 but had fallen to very low levels
by day 7 (Figure S1B). However, expression levels were far
below those of endogenous protein in BAT: on day 3, approxi-
mately 5% per unit weight protein (Figure S1B). UCP1 expres-
sion was restricted to very limited portions of the tissue (left
panel of Figure 1B). Judging from the intensity of immunostain-
ing, UCP1 expression levels in UCP1-expressing white adipo-
cytes did not reach those in brown adipocytes (right panel of
Figure 1B). UCP1-expressing adipocytes were significantly
smaller than UCP1-nonexpressing adipocytes in the same tis-
sue (Figure 1C), suggesting enhanced metabolism in the former.
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Figure 1. UCP1 expression in Epi improved glucose

tolerance and insulin sensitivity

A) Immunoblotting, with anti-UCP1 antibody, of Epi

extracts from LacZ and UCP1 mice on day 3 after

adenoviral administration.

B) Immunohistochemistry, with anti-UCP1 antibody,

of Epi (left panel) and BAT (right panel) sections from

a UCP1 mouse on day 3 after adenoviral administra-

tion. These two samples were immunostained under

the same conditions.

C) Diameters of UCP1-nonexpressing (gray bar) and

UCP1-expressing (hatched bar) adipocytes in Epi

from UCP1 mice on day 3 after adenoviral adminis-

tration.

D–J) Epididymal fat weights (D), body weights (E),

resting oxygen consumption during light and dark

phase (F), and metabolic parameters (G–J) of LacZ

mice (black bars) and UCP1 mice (white bars) on

day 3 after adenoviral administration. Glucose-

tolerance (G) and insulin-tolerance tests (H) were

performed on day 3. Data in (H) are expressed as

percentages of the blood glucose levels immediately

before intraperitoneal insulin loading. Serum insulin

levels (I) and serum lipid parameters ([J]; left: total

cholesterol, middle: triglyceride, right: free fatty

acids) were measured after a 10 hr fast (n = 6 per

group). Data are presented as means 6 SD (n = 6

per group). *p < 0.05 by unpaired t test.
We further confirmed enhanced metabolism by adenoviral
UCP1 expression using 3T3-L1 adipocytes. UCP1 expression
decreased intracellular ATP concentrations (Figure S1C) and in-
creased levels of peroxisome proliferator-activated receptor g
coactivator (PGC) 1a and cytochrome c expression (Figure S1D).
Thus, exogenous UCP1 was functionally active, resulting in in-
creased mitochondrial biosynthesis in adipocytes.

However, neither total Epi weights nor body weights differed
between LacZ and UCP1 mice on day 3 after adenoviral admin-
istration (Figures 1D and 1E). Oxygen consumption was not af-
fected by UCP1 expression in Epi during either the light or the
dark phase (Figure 1F), also reflecting the very limited UCP1 ex-
pression. Therefore, to avoid the secondary effects of body-
weight change, we analyzed metabolic parameters on day 3.
To our surprise, however, even very limited UCP1 expression
in Epi resulted in marked changes in metabolic phenotype.
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Glucose- and insulin-tolerance tests indicated marked im-
provements in glucose tolerance and insulin sensitivity (Figures
1G and 1H). Fasting blood glucose (Figure 1G) and insulin (Fig-
ure 1I) levels were significantly lower in UCP1 mice, further con-
firming improved insulin sensitivity. In addition, serum lipid
parameters, including triglycerides and free fatty acids (Fig-
ure 1J), were also improved with UCP1 expression in Epi.
Thus, limited regional expression of UCP1 in Epi markedly im-
proved systemic insulin resistance, resulting in improvement
of diabetes and dyslipidemia.

Next, we measured serum adipocytokine levels (Figure 2A).
Adiponectin and tumor necrosis factor a levels were not signifi-
cantly altered. In contrast, serum leptin was markedly de-
creased, by 46%, with UCP1 expression in Epi. Although in-
tra-abdominal fat-tissue weights were unaltered or only very
slightly decreased in UCP1 mice (Figure 1D and Figure S1E),
CELL METABOLISM : MARCH 2006
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Figure 2. UCP1 expression in Epi improved leptin

sensitivity

A–F) LacZ (black bars) or UCP1 (white bars) adeno-

virus was injected into Epi of mice with dietary obe-

sity.

A) Serum adipocytokine levels (left: adiponectin,

middle: TNFa, right: leptin) in LacZ mice and UCP1

mice after a 10 hr fast on day 3 after adenoviral

administration.

B) Relative amounts of leptin mRNA in adipose tis-

sues.

C) Total food intakes on days 2 and 3 after adenoviral

administration.

D) Relative amounts of neuropeptide Y (left) and

proopiomelanocortin (right) mRNA were measured

by quantitative RT-PCR using total RNA obtained

from the hypothalamus on day 2 after adenoviral ad-

ministration. Data were corrected with b-actin as the

standard (B and D).

E and F) Leptin-tolerance tests were performed on

day 3 after adenoviral administration. Data were ex-

pressed as ratios to the food intakes of vehicle-

treated mice (E). Mice were weighed at 12 hr after

each daily injection of leptin or vehicle (F).

G–K) LacZ (black bars) or UCP1 (white bars) adeno-

virus was injected into Epi of db/db mice.

G) Total food intakes on days 2 and 3 after adenoviral

administration are presented.

H–K) Blood leptin (H), glucose (I), and insulin (J)

levels and serum lipid parameters ([K]; left: triglyc-

eride, right: free fatty acids) of db/db mice were

measured after a 10 hr fast. Data are presented as

means 6 SD (n = 8 per group). *p < 0.05; **p < 0.01

by unpaired t test.
leptin mRNA expression was markedly decreased in intra-
abdominal fat tissues (Figure 2B). Thus, the effects of UCP1 ex-
pression in Epi are also exerted in fat tissues other than those
injected with the adenovirus. Food intake was significantly sup-
pressed (Figure 2C), indicating that hypothalamic leptin sen-
sitivity was markedly improved despite the lack of significant
changes in body weights. Decreased leptin expression in sev-
eral adipose tissues suggests efferent sympathetic nerve acti-
vation, which also supports leptin signal enhancement.

Administration of green fluorescent protein-adenovirus ex-
erted minimal metabolic effects (Figures S1F–S1J). On day 7,
when adenoviral UCP1 expression was markedly decreased
(Figure S1B), blood glucose, insulin, and leptin levels did not dif-
fer between the UCP1 and LacZ mice (Figure S2). In addition, we
confirmed the metabolic effects of UCP1 expression in Epi using
three other obese models: AKR mice on high-fat chow and KK
mice and KK-Ay mice on normal chow. In these three models,
similar metabolic impacts were observed with UCP1 adenovirus
CELL METABOLISM : MARCH 2006
administration into Epi (Figure S3). Thus, UCP1 expression in Epi
exerts acute, beneficial metabolic effects in both diet-induced
and genetically obese models.

Increased leptin signals in the hypothalamus induced by
UCP1 expression in Epi were further confirmed by changed
levels of hypothalamic neuropeptide expression in UCP1 mice
on day 3 after adenoviral administration. Real-time RT-PCR
revealed adipose UCP1 expression to significantly decrease ex-
pression of neuropeptide Y, an orexigenic neuropeptide, while
tending to increase that of proopiomelanocortin, a precursor
of an anorexigenic neuropeptide, in the hypothalamus (Fig-
ure 2D).

To directly test whether leptin sensitivity was improved, we
performed leptin-tolerance tests. When leptin was injected in-
traperitoneally into fasting mice on day 3, leptin-induced food-
intake inhibition was far more profound in UCP1 mice than in
LacZ mice (Figure 2E). In addition, when leptin was given daily,
body weights were significantly decreased (Figure 2F). Thus,
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even very limited UCP1 expression in Epi exerts a remote ther-
apeutic effect on hypothalamic leptin resistance, which had al-
ready developed in response to preloading with high-fat chow.
Transgenic overexpression of UCP1 (Kopecky et al., 1995)
and rather minor induction of UCP1 in white adipose tissue
(Cederberg et al., 2001; Leonardsson et al., 2004; Tsukiyama-
Kohara et al., 2001; Um et al., 2004) result in resistance to
high-fat-diet-induced obesity but do not reportedly cause hypo-
phagia. In this study, however, we expressed UCP1 after the
development of obesity and leptin resistance and were thus
able to observe acute, beneficial effects, i.e., improved leptin
sensitivity, which would be difficult to detect using congenitally
UCP1-overexpressing mice.

Increased leptin sensitivity is likely to be involved in the phe-
notype of UCP1 mice. If this is the case, at least some of the phe-
notypic features of UCP1 mice would presumably be absent in
mice lacking the hypothalamic leptin signal. To test this, UCP1
or LacZ adenovirus was injected into Epi of db/db mice, lep-
tin-receptor Ob-Rb mutants. Food intake (Figure 2G) and serum
leptin (Figure 2H) did not differ between LacZ-expressing and
UCP1-expressing db/db mice. These findings confirm that the
effect of UCP1 expression in Epi on food intake is leptin-signal
dependent. On the other hand, UCP1 expression in Epi of db/db
mice caused small but significant decreases in blood glucose
(Figure 2I), insulin (Figure 2J), and triglyceride (Figure 2K) levels,
as well as tending to decrease serum free-fatty-acid levels
(Figure 2K). These findings demonstrate that UCP1 expression
in Epi improves insulin sensitivity, in part, independently of leptin
signaling.

To eliminate the secondary effects of reduced food intake,
pair-feeding experiments were performed using C57BL/6 wild-
type mice (Figure S4). Pair feeding did not significantly alter
the body weights of LacZ mice. Fasting blood glucose did not
differ between UCP1 mice and pair-fed LacZ mice, but after glu-
cose loading, blood glucose levels were significantly lower in
UCP1 mice. In addition, serum insulin and leptin levels were sig-
nificantly lower in UCP1 mice than in pair-fed LacZ mice. Taken
together with the results obtained using db/db mice, the im-
proved insulin sensitivity induced by UCP1 expression in Epi ap-
pears not to be mediated solely by decreased food intake.

The same amounts of recombinant adenovirus encoding
UCP1 were directly injected into subcutaneous fat tissues in
the flank of C57BL/6 mice with dietary obesity and diabetes.
UCP1 expression levels were similar to those obtained by injec-
tion into Epi (data not shown). Food intake was significantly de-
creased by UCP1 expression, as compared with LacZ expres-
sion, in subcutaneous fat (Figure 3A), but the effects were
much smaller than those produced by UCP1 expression in Epi
(Figure 2C). Furthermore, there were no statistically significant
decreases in blood glucose (Figure 3B), insulin (Figure 3C), or
leptin (Figure 3D) levels. Thus, exogenous UCP1 expression in
subcutaneous fat was far less effective in improving insulin
and leptin resistance than that in intra-abdominal fat tissue.
These findings suggest the anatomical location of the manipu-
lated adipose tissue to be involved in the observed therapeutic
effects, which would appear to be important for understanding
the metabolic differences between visceral fat-dominant and
subcutaneous fat-dominant obesity.

How does the signal (or signals) from intra-abdominal fat tis-
sue exert these remote effects? The importance of anatomical
fat-tissue location suggests the involvement of neuronal signal-
226
ing. The afferent activity from Epi is reportedly transmitted
through the nerve bundle, which runs alongside blood vessels
supplying Epi, in rats (Niijima, 1998). To study the possible in-
volvement of neuronal signals from Epi, we dissected this nerve
bundle in mice with dietary obesity and diabetes. Ten days after
bilateral nerve-bundle dissection, adenoviruses were injected
into Epi. No significant differences in body weights or Epi
weights were observed between sham-operated and nerve-
dissected mice (data not shown). While UCP1 adenoviral admin-
istration significantly decreased food intake in sham-operated
mice, nerve dissection blunted this decrease in food intake
such that it was no longer statistically significant (Figure 3E).
Similarly, nerve dissection blunted a decrease in hypothalamic
NPY mRNA expression, rendering it statistically insignificant
(NPY; LacZ versus UCP1: 12.06 6 6.16 versus 6.39 6 3.10;
p = 0.15). These findings suggest that neuronal signals from in-
tra-abdominal fat tissue are involved in food-intake regulation.
In contrast, in nerve-dissected mice, blood glucose (Figure 3F)
as well as serum insulin (Figure 3G) and leptin (Figure 3H) levels
were significantly suppressed in a fashion similar to in sham-
operated mice. Thus, improved insulin resistance is largely inde-
pendent of this neuronal pathway.

To confirm that afferent-nerve signals are involved in UCP1-
expression-mediated suppression of food intake, we next
examined the effects of functional deafferentation by adminis-
tering capsaicin (Fu et al., 2003), a selective neurotoxin for un-
myelinated C fibers. In LacZ mice, food intake was not altered
by capsaicin treatment 10 days prior to adenoviral administra-
tion. In contrast, capsaicin pretreatment significantly reversed
the food-intake suppression induced by UCP1 expression in
Epi (Figure 3I). The inhibitory effect of capsaicin pretreatment
was very similar to that of local-nerve dissection (Figure 3E).
Taken together, these observations suggest that afferent-nerve
signals from Epi are involved in food-intake regulation. To eluci-
date the molecular mechanism whereby UCP1 expression in Epi
modulates neuronal activity, we searched for genes upregulated
by adipose UCP1 expression. Using the DNA microarray tech-
nique, gene expressions were examined in LacZ- and UCP1-
adenovirus-treated Epi (Table S1) and in 3T3-L1 adipocytes
(Table S2). With the exception of UCP1, however, there was
no overlap in genes showing significantly increased expression.
Although further expression profiling including proteomic ap-
proaches might elucidate the underlying mechanisms, the ap-
parent lack of genes showing increased expression raises the
possibility that the activation of afferent nerves does not involve
gene-expression alterations. For instance, UCP1 generates
heat, and a capsaicin receptor, TRPV1, is activated by a slightly
above normal body temperature (Caterina et al., 1997). Capsa-
icin treatment affected UCP1-induced food-intake suppression
(Figure 3I), raising the possibility that UCP1 expression activates
capsaicin-sensitive nerves via TRPV1 activation. Another pos-
sibility is involvement of reactive oxygen species, which are af-
fected by mitochondrial uncoupling (Bernal-Mizrachi et al.,
2005; Jezek et al., 2004) and reportedly regulate capsaicin-
sensitive afferent fibers (Ruan et al., 2005). Further studies are
required to examine these hypotheses.

In this study, very limited UCP1 expression in Epi markedly
improved insulin and leptin resistance, thereby improving glu-
cose tolerance and decreasing food intake. UCP1 mice were
more insulin sensitive than pair-fed LacZ mice. In addition, in
db/db mice, despite no food-intake suppression, blood glucose
CELL METABOLISM : MARCH 2006
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Figure 3. Neuronal signals are likely to be involved in

food-intake regulation

A–D) LacZ (black bars) or UCP1 (white bars) adeno-

virus was injected into subcutaneous fat, and meta-

bolic markers were measured. Total food intakes

on days 2 and 3 after adenoviral administration are

presented. Blood glucose (B), insulin (C), and leptin

(D) levels were determined after a 10 hr fast on day

3 after adenoviral administration. **p < 0.01 by un-

paired t test.

E–H) Mice were subjected to local-nerve dissection

10 days prior to adenoviral injection into Epi. Total

food intakes of sham-operated (sham) and nerve-

dissected (cut) mice (E) on days 2 and 3 are pre-

sented graphically. Blood glucose (F), serum insulin

(G), and leptin (H) levels were determined on day 3.

I) Mice were treated with capsaicin or vehicle 10 days

prior to adenoviral injection into Epi. Total food in-

takes on days 2 and 3 after administration of LacZ

(black bars) or UCP1 (white bars) adenovirus are pre-

sented. In (E) and (I), the food intakes of UCP1 mice

are expressed in the right graph as ratios to those of

LacZ mice. **p < 0.01 assessed by one-factor

ANOVA. Data are presented as means 6 SD.
and insulin levels were modestly but significantly decreased by
UCP1 expression in Epi. Thus, the mechanism underlying im-
proved insulin sensitivity with UCP1 expression in Epi is, in
part, independent of leptin signaling and food-intake suppres-
sion (Figure 4). Dissection of the nerve bundle from Epi did not
alter the decreases in blood glucose and insulin levels. Taken to-
gether with the findings that UCP1 expression in subcutaneous
fat did not significantly decrease blood glucose or insulin levels,
our observations indicate that nonneuronal signals including hu-
moral factors from intra-abdominal adipose tissue possibly par-
ticipate in systemic improvement of insulin resistance. Since
UCP1 expression was observed in a very limited population of
adipocytes in Epi, suppression of insulin-resistant adipocyto-
kine secretion is unlikely to explain the beneficial effects. Serum
adiponectin levels were not altered, suggesting involvement of
other unknown insulin-sensitizing factor (or factors).

On the other hand, decreased food intake is likely to be, at
least partially, mediated by afferent-nerve signals from Epi (Fig-
ure 4). Afferent-nerve signals from Epi to the central nervous
CELL METABOLISM : MARCH 2006
system reportedly result in a reflex from epididymal fat to white
adipose tissues via efferent sympathetic-nerve activation (Nii-
jima, 1998; Tanida et al., 2000). In addition, vagal afferent

Figure 4. The proposed mechanism whereby UCP1 expression in Epi decreases

food intake and improves glucose tolerance
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neuronal signals from intra-abdominal tissues, including the gut
(Fu et al., 2003; Smith et al., 1981) and the liver (Friedman, 1998;
Scharrer, 1999), are known to play a part in regulating food in-
take. We also reported that UCP1 gene administration into the
liver modulates food intake (Ishigaki et al., 2005). Herein we re-
port that intra-abdominal fat tissue is likely to convey metabolic
signals to the brain via a neuronal pathway, in addition to via
the circulation, resulting in modulation of food intake. Although
the precise molecular mechanism remains to be elucidated,
this neuronal pathway might play a role in development of the
metabolic syndrome, making it a potentially novel therapeutic
target.

Experimental procedures

Preparation of recombinant adenovirus

Recombinant adenovirus containing murine UCP1 cDNA (Ishigaki et al.,

2005) was constructed as described previously (Katagiri et al., 1996).

Recombinant adenoviruses bearing the bacterial b-galactosidase gene

(Adex1CAlacZ) and green fluorescent protein (AdCMV-GFP) were used as

controls.

Animals and in vivo adenovirus injection into fat pad

Animal studies were conducted in accordance with the institutional guide-

lines for animal experiments at Tohoku University. Male C57BL/6N and

AKR/N mice were housed individually, and high-fat-chow feeding (32% saf-

flower oil, 33.1% casein, 17.6% sucrose, and 5.6% cellulose) (Ishigaki et al.,

2005) was initiated at 5 weeks of age. After 4 weeks of high-fat-chow loading,

body-weight-matched mice were anesthetized prior to dissection of the skin

and body wall. The adenoviral preparation (1 3 108 plaque-forming units in

a volume of 20 ml) was injected at two points each on each side of the epidid-

ymal fat pad or subcutaneous fat tissues in the flank, i.e., a total of four points.

KK mice and KK-Ay mice maintained on a standard diet (65% carbohydrate,

4% fat, 24% protein) were similarly administered adenoviruses at 9 weeks

and 5 weeks of age, respectively.

Immunoblotting

Tissue protein extracts (250 mg total protein) were boiled in Laemmli buffer

containing 10 mM dithiothreitol, subjected to SDS-polyacrylamide gel elec-

trophoresis, and transferred onto nitrocellulose filters. The filters were in-

cubated with anti-UCP1 antibody (Santa Cruz Biotechnology, Santa Cruz,

California) and then with anti-goat immunoglobulin G coupled to horseradish

peroxidase. The immunoblots were visualized with an enhanced chemilumi-

nescence detection kit (Amersham, Buckinghamshire, UK). The intensities of

bands were quantified with the NIH Image 1.62 program.

Histological analysis

Mouse epididymal fat and BAT were immunostained as previously reported

(Ishigaki et al., 2005). Mature white adipocytes were identified by their char-

acteristic unilocular appearance. Diameters of 100 or more white adipocytes

per mouse in each group were traced manually and analyzed.

Oxygen consumption

Oxygen consumption was measured as previously reported (Ishigaki et al.,

2005).

Pair-feeding experiments

Pair-feeding experiments were performed as previously described (Ishigaki

et al., 2005).

Blood analysis

Blood glucose and serum insulin, leptin, adiponectin, TNFa, total cholesterol,

triglyceride, and free-fatty-acid levels were determined as previously de-

scribed (Ishigaki et al., 2005).

Measurement of quantitative RT-PCR-based gene expression

The skull was reflected from the brain and the hypothalamus was isolated by

snap freezing in liquid nitrogen as previously reported (Bjorbaek et al., 1998).
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Total RNA was isolated from mouse hypothalamus, fat tissues, or 3T3-L1 ad-

ipocytes with ISOGEN (Wako Pure Chemical Co., Osaka, Japan), and cDNA

synthesized from total RNA was evaluated with a real-time PCR quantitative

system (Light Cycler Quick System 350S; Roche Diagnostics GmbH, Mann-

heim, Germany).The relative amount of mRNA was calculated with b-actin

mRNA as the invariant control. The primers used are shown in Table S3.

Glucose-, insulin-, and leptin-tolerance tests

Glucose-tolerance tests were performed on fasted (10 hr, daytime) mice.

Mice were given glucose (2 g/kg of body weight) intraperitoneally, followed

by measurement of blood glucose levels. Insulin-tolerance tests were per-

formed on ad libitum-fed mice. Mice were intraperitoneally injected with hu-

man regular insulin (0.75 U/kg of body weight; Eli Lilly Co., Kobe, Japan).

Leptin-tolerance tests were carried out as described in a previous report

(Igel et al., 1997), with slight modification. Fasted (12 hr) mice were injected

with mouse leptin (7.2 mg/kg of body weight; R&D Systems, Inc.) intraperito-

neally, and food intakes were monitored for 12 hr after the injection. To exam-

ine effects on body-weight change, these two groups of mice were given lep-

tin daily starting on the day of adenoviral administration. Each mouse was

then weighed.

Capsaicin treatments

Capsaicin treatment was performed as described in a previous report (Fu

et al., 2003), with minor modification. Mice were anesthetized prior to subcu-

taneous injection of capsaicin solution (50 mg/kg, 12.5 mg/ml dissolved in

vehicle). The control group received vehicle treatment (10% Tween 80,

10% ethanol, and 80% saline) under identical administration conditions. Ad-

enoviral administration into Epi was carried out 10 days later.

Local-nerve dissection

The small nerve bundle which runs along side blood vessels supplying Epi

was dissected as previously reported (Niijima, 1998). Ten days after bilateral

dissection of this nerve bundle, adenoviruses were injected into epididymal

fat pad.

Measurement of ATP

Fully differentiated 3T3-L1 adipocytes were infected with recombinant ade-

noviruses as previously described (Katagiri et al., 1996). Intracellular ATP

levels were measured using an ATP determination kit (TOYO B-Net, Tokyo,

Japan).

Microarray experiments

Total RNA from epididymal fat or 3T3-L1 adipocytes was used to synthesize

cRNA, which was then hybridized to an HG-U133A oligonucleotide array

(Affymetrix, Santa Clara, California) according to standard protocols, as de-

scribed previously (Hippo et al., 2002).

Statistical analysis

All data were expressed as means 6 SD. The statistical significance of differ-

ences was assessed by the unpaired t test and one-factor ANOVA.

Supplemental data

Supplemental Data include four figures and three tables and can be found

with this article online at http://www.cellmetabolism.org/cgi/content/full/3/

3/223/DC1/.
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