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For a two-point differential operator L in L’[a, b], it is shown that the Green’s 
function has the representation G(t, s; A) = H(t, s; 1)/D(l) for 1 belonging to the 
resolvent set p(L), where D(1) is the characteristic determinant and H(t, s; 1) is an 
entire function in the I variable admitting a power series expansion about any point 
1, E @. This representation is given several applications: first, to calculate the coef- 
ficient operators in the Laurent series for the resolvent R,(L) about each point &, 
in the spectrum a(L), and second, to relate the algebraic multiplicity v(&) of an 
eigenvalue 1, to the ascent m0 of the operator ,%,I- L. 0 1989 Academic press, h. 

1. INTRODUCTION 

In developing the spectral theory of a two-point differential operator L 
in the Hilbert space L2[a, b], two key ingredients are the characteristic 
determinant and the Green’s function (see [2, Chap. 12; 8, Chaps. I and II; 
3, Chap. XIX] ). The characteristic determinant D(A) completely specifies 
the spectrum a(L) by means of its zeros, while the Green’s function 
G(t, s; A) is the L*-kernel of the resolvent R,(L) in its representation as an 
integral operator on L2[a, b]. Together with the resolvent they determine 
much of the local and global structure of L. 

For example, for any point 1, E o(L): (i) the ascent m, of the operator 
L,= &I-- L is equal to the order of the pole of R,(L) at A,, (ii) the 
algebraic multiplicity v(A,) = dim JV( [LiJmo) is identical to the order no of 
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A,, as a zero of D(J), where J”( [LnO]“) denotes the null space of the 
product operator CL,]““, i.e., the generalized eigenspace of I,, and (iii) 
the projection P, from L*[a, b] onto the null space J([L~,]““) along the 
range 6&?([LnO]“) is given by 

where r is any circle about A,, lying in the resolvent set p(L) with & the 
only point of o(L) inside L’. With regards to the global properties of L, 
D(J.) and G(t, s; 1) can be used to derive decay rates for R,(L) as ;1--) co, 
and in many cases this establishes the denseness of the generalized 
eigenspaces in L’[a, b]. Also, they provide the tools needed to study the 
uniform boundedness (or unboundedness) of the family of all finite sums of 
the projections onto the generalized eigenspaces. 

The purpose of this paper is to represent the Green’s function in the form 

G( t, s; A) = H(h s; 1) 
D(A) ’ 

1 E P(L)? 

where H is an entire function in the 1 variable admitting a power series 
expansion about any point &E @. This power series is quite simple to 
construct when one uses operator theory and works in the Sobolev space 
H”[a, b]. Several applications of the representation (1.2) are then given. 
First, for any point JO E a(L) we calculate the coefficient operators in the 
Laurent series for R,(L) about the point I,, expressing each one as an 
integral operator with L*-kernel formulated in terms of D(A) and H(t, s; A). 
Included among these results is a useful representation of the projection 
P,, namely 

a<t<b, (1.3) 

for all x E L2[a, b], where D(n) = (A- n,)“O h(l). Second, for each I, E o(L) 
we establish a fundamental relationship between the ascent m, and the 
algebraic multiplicity v(l,): 

VU,) = no = WJ + PO, (1.4) 

where p. is the order of 1, as a zero of the function H(t, s; A). 
In the next section we list the basic definitions and background material 

used in the paper. The power series expansions in H”[a, b] are discussed 
in Section 3, and then applied in Section 4 to the characteristic determinant 
D(A) and in Section 5 to the Green’s function G( I, s; A), where the represen- 
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tation (1.2) is studied in detail (see (5.11)). Section 6 contains the charac- 
terization of the coefficient operators in the Laurent series for R,(L) about 
any point &E a(L), with (1.3) as a special case (see (6.9)). The relationship 
(1.4) is established in Section 7 (see (7.5)). 

In a future paper [6] we will combine the results of this paper with those 
in [4] to give a comprehensive study of the spectral theory of all differen- 
tial operators in ,!,‘[a, b] determined by r = - (d/dt)2 and all possible pairs 
of independent boundary conditions. This new work will encompass all the 
regular and irregular boundary conditions, including both spectral and 
nonspectral operators and both simple and multiple eigenvalue cases. 
Equations (1.2) (1.3) and (1.4) will play a major role in this work. 

2. BASIC DEFINITIONS AND PRELIMINARIES 

In the complex Hilbert space L’[a, b] let ( , ) and )I 1) denote the 
standard inner product and norm. Let W[a, b] denote the Sobolev space 
consisting of all functions u E C”- ‘[a, b] with U(~ ~ ‘) absolutely continuous 
on [a, b] and u ‘“‘EL~[u, b]. On H”[u, b] we introduce the P-norm 

IuIw= 2 max lu(‘)(t)l + I\u(~)\~, 
i=. a<r<b 

under which W[u, b] becomes a Banach space; this norm is equivalent to 
the standard Sobolev norm. Let 

z= i u,(t) & 
1=0 0 

be an nth-order formal differential operator on [a, b], where the 
coefficients UiEH’[u, b] for i= 0, 1, . . . . n and u,(t) #O on [a, b]; let 

n-1 n-1 

Bi(u) = 1 a/)(u) + 1 /3,24”‘(b), i=l n, , . . . . 
j=O j=O 

be a set of n linearly independent boundary values on H”[u, b]; let L be 
the two-point differential operator in L2[u, b] defined by 

9(L)= {ud”[u, b]IBi(u)=O, i= 1, . ..) n}, Lu = zu. 

It is well known that L is a Fredholm operator of index 0 in L2[u, b] 
whose Fredholm set is all of C. 

Throughout this paper we assume that p(L) # Qr, and hence, a(L) is a 
countable subset of @ having no finite limit points. The points of a(L) are 

409/141/2-8 
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all eigenvalues of L, and for each lo E a(L) the operator L, = 1,-J-- L has 
a finite ascent m,. Introducing the notation 

L(&) = (&I- L)“O, 

the null space N(L(&)) is just the generalized eigenspace corresponding to 
the eigenvalue 1,~o(L), and its dimension ~(1,) is the algebraic multi- 
plicity of 1,. 

As we study the characteristic determinant D(1) and the Green’s function 
G(t, s; A) in the following sections, we will utilize two Banach spaces of 
operators. First, let g(L’[a, b]) denote the Banach algebra of all bounded 
linear operators on L2[a, 61 with the uniform operator norm 

II4 = ,,s;zl IIRull. 
u 

The standard results in the spectral theory of the differential operator L are 
usually stated in terms of the space W(L’[a, b]), e.g., the representation 
(1.1) of the projection P, and the Laurent expansion of &(L) about any 
point &EC(L). Second, let X denote the Banach space of all bounded 
linear operators from L2[a, b] under the Lz-structure into H”[a, 61 under 
the H”-structure, with the uniform operator norm 

lIWw= sup ISulH”. 
/lull = 1 

The key to developing the line structure of D(1) and G(t, s; A) is to work 
with operators in the space X instead of ~(L’[u, b]). 

3. EXPANSIONS IN THE SOBOLEV SPACE H"[u,b] 

Fix a point &EC, and suppose c,,, c,, . . . . c,- i are given complex 
numbers. For each i E C let $A = $( .; 1) be the unique function in H”[u, b] 
satisfying the initial value problem 

(nz-t)IC/~=o, 

l):"(u) = Cl, j=O, 1 , . ..) n - 1, 
(3.1) 

and then set $ = @&. Working in the space H”[u, 61, we want to expand 
the function *A in a power series about A,. These series expansions will 
play a central role in the sequel. 

With this in mind we introduce the differential operator T in L*[a, b] 
defined by 

9(T)= {u~H”[u,b])u”‘(u)=O, i=O, 1, . . . . n-l>, Tu = zu, 
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which has p(T) = C and a(T) = 0. Note that +A - $ E zG@( T), and 

so $A-$=(&,-n)R,(T)II/ and 

Il/% = Ic/ + tnO - Al R%( T, II/ for all A E C. (3.2) 

Setting R = R&(T) E @(L’[a, b]), we have 

RJT)= f (&-I)kRk+l in g(L*[a, b]) (3.3) 
k=O 

for all IE @ (see Lemma 3.3 in [S] or [ll, p. 2691). Upon substituting 
(3.3) into (3.2), we obtain the expansion 

t+bi= f (lo-A)“Rk+ in L*[a, b] (3.4) 
k=O 

for all I E C. 
Next, we show that (3.3) and (3.4) are also valid in X and H”[a, b], 

respectively, and that the convergence is uniform in the I variable 
on compact subsets of C. Indeed, take arbitrary constants do and 6r 
with 0<6,<6,, and set tI=do/6,. Since R is a compact operator in 
B(L*[u, b]) and a(T)= 0, it follows that a(R) = (0) and the spectral 
radius r(R) = 0, and hence, we can choose a positive integer k, such that 
11 Rk(l ilk < l/6, for all k > ko. Clearly 

II(/io-A)k Rkl( &$&Ok 
1 

for all ll-loj <do and for k>ko. If we define Y=maxoGkiko6:llRkll >, 1, 
then we obtain the estimate 

Il(& - l)k RkIl < ~8~ 

for all 13, - A01 < &, and for k = 0, 1,2, . . . . 

(3.5) 

The linear operators R,(T) and Rk+‘, k = 0, 1,2, . . . . which appear in 
(3.3), are also elements of X, and from (3.5) it is immediate that 

Il~~o-~~k~k+lll~~~Il~II~~k (3.6) 

for all II - LoI < do and for k = 0, 1, 2, . . . . which shows that the series on the 
right side of (3.3) converges in X to an operator SA E X for each IKE C. 
Applying this series to an arbitrary u E L2[u, b] and using the fact that 
W-convergence implies L*-convergence, we conclude that R,(T) = Sl for 
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all AE @, i.e., the expansion (3.3) is valid in X for all 2 E @. In addition, 
(3.6) yields the estimates 

R,(T)- : (&-A)” Rk+’ /I <WV o H” N+l 

k=O H” ‘T-ii- 

and 

(3.8) 

for all II-J,/ < 6, and for N= 0, 1,2, . . . . thereby proving the convergence 
to be uniform in the 1 variable on compact subsets of @. 

Finally, by the above we see that the expansion (3.4) is also valid in 
H”[a, b] for all 1 E @, and from (3.2) and (3.7) we obtain the error estimate 

ll/i.- 5 (io-A)kRk+ 

N-1 

= I/lo-AI R,(T) $- 1 (io-A)kRk+l@ 
k=O w k=O CF 

(3.9) 

for all IA--1,( 66, and for N=O, 1, 2, . . . (for N=O the estimate (3.7) is 
replaced by (3.8) in the argument). Also, since the boundary values Bi, 
i = 1, . . . . n, are continuous linear functionals on H”[a, b] under the 
W-structure, we obtain the result 

Bi($,)= ff (no-l)k Bi(Rk#), i = 1, . . . . n, (3.10) 
k=O 

for all 1 E C, and hence, the functions f,(n) = Bi( $,J, i = 1, . . . . n, are entire 
functions on @. 

Let us summarize these results as 

THEOREM 3.1. Let 1, E @, let co, cl, . . . . c,_ 1 be complex numbers, andfor 
each A E @ let en be the unique function in H”[a, b] satisfying the initial 
value problem (U-z) II/i =O, +y)(a)=cj for j=O, 1, . . . . n- 1. Then there 
exists a sequence of functions uk, k = 0, 1, 2, . . . . in H”[a, b] such that 

$bl= f (R-Io)kz4k in H”[a, b] (3.11) 
k=O 

for all A. E C, where the convergence is in the H”-norm and is uniform in the 
1 variable on compact subsets of @. Moreover, the functions Bi(ll/J, 
i = 1, . . . . n, are entire functions on @. 
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Remark 3.2. A more classical result along the lines of Theorem 3.1 is 
given in [lo, p. 6991. 

4. THE CHARACTERISTIC DETERMINANT OF L 

Utilizing the power series expansions of Theorem 3.1, we next introduce 
the characteristic determinant of the differential operator L and use it to 
begin the study of the spectrum and the generalized eigenspaces of L. For 
each 1 E @ and for i= 1, . . . . n let tini= Ic/;( .; A) be the unique function in 
H”[a, 61 which satisfies the initial value problem 

(AZ-T) $ii=o, 

$$'(a)=6i,j+l, j=O, 1 ) . ..) n - 1. 
(4.1) 

Clearly the functions $).i, . . . . tiin form a basis for the solution space of 
(AZ- r) $ = 0 for each 1 E C, and by Theorem 3.1 the functions 

are entire functions on C. 
The characteristic determinant of L is the entire function D(n) defined by 

W~)=detCBi(ti~,)I for iE@. 

It is well known that o(L) is precisely the set of zeros of D(L), and hence, 
our underlying assumption that p(L) # 121 is equivalent to D(J) being not 
identically 0 on C. For future reference we list the basic properties of D(n) 
in the following two theorems (see [S, Part I, pp. 13-201). 

THEOREM 4.1. Let L be an nth-order differential operator in L2[a, b] 
determined by a formal differential operator z and by independent boundary 
values B, , ,.., B,, and assume p(L) # 0. Then the characteristic determinant 
D(A) of L is an entire function on C which is not identically 0, and the 
spectrum o(L) is the set of zeros of D(A). 

THEOREM 4.2. Under the hypothesis of Theorem 4.1, let 1, E o(L), let m, 
be the ascent of the operator L,, let v(&) = dim N(L(&)) be the algebraic 
multiplicity of A,, and let n, be the order of A0 as a zero of D(A). Then 
1~ m, < ~(1,) and 

~(1,) = n,. (4.2) 
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5. POWER SERIES EXPANSIONS FOR THE GREEN'S FUNCTION OF L, 

For each 1 E p(L) we now construct the Green’s function G(t, S; A) 
corresponding to the differential operator L, = AZ- L. The construction 
proceeds along the lines developed in [7, pp. 142-1441. 

Step 1. For each 1 E @ and for i = 1, . . . . n let ~9~~ be the unique function 
in H”[a, b] which satisfies the initial value problem (4.1). By Theorem 3.1 
for i = 1, . . . . n there exists a sequence of functions uik, k= 0, 1, 2, . . . . in 
ZZ”[a, b] such that 

k=O 

for all ;1 E @, where the convergence is in 
1 variable on compact subsets of @. 

in H”[a, 6) (5.1) 

the H”-norm and is uniform in the 

Step 2. For each 1 EC let Vj,it i= 1, . . . . n, be the unique functions 
determined by the linear system 

E ~~)Vj~i = 0, j=o, 1, . ..) n-2, 
i= 1 

(5.2) 

jcl lj$-l)vp --a-‘. n 

We can use induction to show that the vAi belong to ZZ”[a, 61, and in fact, 
for k = 0, 1, . . . . n - 1 the kth derivatives satisfy a linear system of the form 

j=O, 1 , . . . . n - k - 2, 

(5.3) 
i @v$‘=~,j, j=n-k- 1, . . . . n- 1, 

i=l 

where the functions okj belong to ZYPk[a, b] and are independent of 1 
(see Lemma 111.3.6 in [7]). It follows from (5.3) that the vAi satisfy the 
initial conditions 

v$‘(a) = 0, j=O, 1 , . . . . n - i- 1, 

v:j’(a) = oj,j- ,(a), j=n-i, . . ..n- 1, 
(5.4) 

which are independent of 1. Also, the v~, satisfy the differential equation 
(AZ-T*)E=O or 

(21-F) vj,i=o (5.5) 
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(see Corollary 111.3.15 in [7] or [2, Problem 19 on p. 1011). Applying 
Theorem 3.1 to each of the functions vii for i = 1, . . . . n, there exists a 
sequence of functions vik, k = 0, 1, 2, . . . . in H”[a, b] such that 

vj.i= f (A - ;l,)k Uik in H”[a, b] (5.6) 
k=O 

for all ,J E @, where the convergence is in the W-norm and is uniform in the 
I variable on compact subsets of C. 

Step 3. Let Ci, Di be the boundary values defined by 

n-l n-1 

C,(u) = 1 a&j’(a), D,(u)= c &u”‘(b), 
J=o j=O 

for i = 1, . . . . n, so Bi= Cj + Di for i= 1, . . . . n. For each 1 E p(L) let qli, 
i = 1, . . . . n, be the unique functions determined by the linear system 

j= l? ..‘Y n. (5.7) 
i=l 

By Cramer’s rule we have 

VIAi = &;g, Y,(n) vJ.j, i = 1, . . . . n, (5.8) 

where the r,(n) are entire functions on @, and this clearly shows that the 
qli belong to H”[a, b]. In (5.8) the functions cJ!= i yii(J.) vy, i= 1, . . . . n, 
exist for all A E C, while the functions qii, i = 1, . . . . n, exist only for A E p(L). 

Step 4. For each 1 E p(L) let tAi, i= 1, . . . . n, be the functions in 
H” [a, b] defined by 

where the jr,(n) = r,(n) - 6$(A) are entire functions on C. Observe that 
the functions cJ’=, FU(l) vAj, i= 1, . . . . n, exist for all IE C, while the 
functions cni, i= 1, . . . . n, exist only for A E p(L). 

Step 5. For each Acp(L) the Green’s function for the differential 
operator L, = AZ- L is given by 
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G(t, S; A) = i $j.i(t) 5~i(s) 

To simplify the notation, for each 1 E @ we set 

M(t? s; Q= i Tij(ll) IC/,C(l) vj.j(s), 
i, j = 1 

and 

N(t> ‘; Al= i YIP +i.i(z) vAj(s)v 

i,j= I 

and then define 

for a<t<s<b, 

(5.10) 

for a<s<t<b. 

H( t, s; A) = WC s; 21, a<t<s<b, 

WC s; n), a<s<t<b. 

In terms of these functions 

G(t, s; A) = 
H(t, s; A) 

D(A) 
(5.11) 

for all ,I E p(L) and for all t #s in [a, b]. Again we emphasize the fact that 
the functions M, N, and H exist for all 2 E @, while the Green’s function G 
exists only for 1Ep(L). 

To conclude this section, we employ the series (5.1) and (5.6) to expand 
the functions M, N, and H in power series about the point /2, E @. 
The lemmas which follow provide the theoretical foundations for the 
convergence analysis. They are proved in the same manner as the classical 
results, e.g., see [l, p. 39; 9, p. 741. 

LEMMA 5.1. Let 1,~ C, let uk, k= 0, 1,2, . . . . be a sequence of functions 
in H”[a, b], and for each A. E @ let $l be a function in H*[a, b] such that 

*;~ = z (A - Ao)k Uk in H”[a, b], 
k=O 
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where the convergence is in the H”-norm and is untform in the 1 variable on 
compact subsets of C. If Jz is any compact subset of @, then there exists a 
constant o > 0 such that 

for all 1EQ. (5.12) 

In addition, if y(A) = Ckm_O (A - I,)k ak is a scalar-valued entire function on 
C and if wk E H”[a, b] is defined by wk = CF==, aluke, for k = 0, 1,2, . . . . then 

YtA) ll/i= f tn - IOJk wk in H”[a, b] 
k=O 

(5.13) 

for each A E C, where the convergence is in the H”-norm and is untform in the 
1 variable on compact subsets of @. 

LEMMA 5.2. Let AOe @, let wk, k = 0, 1, 2, . . . . and vk, k = 0, 1, 2, . . . . be 
sequences of functions in H*[a, b], and for each AE @ let 1+4~ and vI be 
functions in H”[a, b] such that 

#A= f (b&,)kwk and vi= f (n-n,)” Ok in H”[a, b] 
k=O k=O 

for all A E @, where the convergence is in the H”-norm and is untform in the 
A variable on compact subsets of C. Define 

for k = 0, 1, 2, . . . . Then 

ditt) vi(s) = f [A - IOlk zk(t, s, 
k=O 

(5.14) 

for all t, s E [a, b] and for each 1 E @, where for each compact subset Q of 
@ the convergence is untform in the t, s, 1 variables on the set 
[a, b] x [a, b] x Q. 

To expand the functions A4 and N in power series about ,Ioe @, first 
apply Lemma 5.1 to the products jjii(A) ~j.i and ~~(1) eri, expanding each 
one in a power series about A,, where the convergence is in the H”-norm 
and is uniform in the A variable on compact subsets of @. Second, apply 
Lemma 5.2 to the products [y’,(A) Il/j,i(t)] Vv(S) and [yu(A) Il/j.i(t)] vv(s) 
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and then sum; this produces functions Mk and Nk, k = 0, 1,2, . . . . in 
C( [a, b J x [a, b]) such that 

M(t, s; II) = f (A - IZ,)k Mk(l, s) 
k=O 

(5.15) 

and 

N(t, S; 2) = f (2 - jlo)k Nk(t, S) 
k=O 

(5.16) 

for all t, s E [a, b] and for each 1 EC, where for each compact subset Q of 
@ the convergence is uniform in the t, S, 1 variables on the set 
[a, b] x [a, b] x52. From (5.15) and (5.16) it is immediate that A4 and N 
are continuous on [a, b] x [a, b] x @, and for fixed t, s E [a, 61 the 
functions M( t, S; . ) and N( t, s; . ) are entire functions on @ with 

$y (t, s; A,) = k! Mk(t, s) (5.17) 

and 

$( t, s; A,) = k! Nk(t, s) (5.18) 

for k = 0, 1, 2, . . . . 
Finally, to expand the function H in a power series about A,, we 

introduce the slit square 

A= {(t,s)ER2Ju6t,s<b, tfs} 

and the sequence of functions 

Hk( t, s) = 
Mk(f, s), u<t<s<b, 

N/d& s), u<s<t<b, 

k = 0, 1, 2, . . . . defined on A. From the above the following properties are 
apparent : 

(a) The Hk are continuous on A and are bounded measurable 
functions on [a, b] x [a, b] for k = 0, 1, 2 . . . , 

(b) H has the representation 

H(t, S; 2) = f (2 - Ao)k Hk(t, S) 
k=O 

(5.19) 
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for all (t, s) E A and for each A E @, where for each compact subset Q of C 
the convergence is uniform in the t, s, I variables on the set A x Sz. 

(c) H is continuous on A x @, and for fixed 1 EC the function 
Ht.,.; A) is a bounded measurable function on [a, b] x [a, b]. 

(d) For fixed (t, s) E A the function H(t, s;.) is an entire function on 
@ with 

$ (t, s; A,) = k! H,Jt, s) for k=O, 1,2 ,.... (5.20) 

Remark 5.3. Suppose the point 1, E o(L), so 

D(&) = D’(&) = . . . = p-l)(&) = 0 (5.21) 

and D’““‘(&) # 0 with n, = ~(1,) (see Theorem 4.2). For each 1 E @ set 

Then 

Q(t, S; 2) = i Ii/At) v,dsh t, s E [a, b]. 
i=l 

M( t, s; A) = N( t, s; 1) - D(A) Q( t, s; A) (5.22) 

for all t, s E [a, b] and for each II E Cc; the function Q can be expanded in 
a series about A0 in the same way as M and N; for fixed t, SE [a, b] the 
function Q(t, s;. ) is an entire function on C. If we fix t, s E [a, b] and 
proceed to calculate successive derivatives of (5.22) with respect to A, then 
in view of (5.21) we obtain 

dkM 
~(t,s;1,)=~(1,s;i.,)=~(r,s;I,) (5.23) 

for k = 0, 1, . . . . n, - 1, and hence, 

Mk(t, S) = Nk(f, S) = Hk(t, S) (5.24) 

for all t, s E [a, b] and for k = 0, 1, . . . . n, - 1 (t #s in the formulas for 
akHfaP and Hk). 

Remark 5.4. If we examine how the functions Mk(t, s) and Nk(t, s) are 
fashioned out of Lemmas 5.1 and 5.2, then we see that each one is of the 
general form 

,zl wk,(t) ukl(s), 

where the w k,, U~,E H”[a, 61, and hence, the Hk(t, s) have a similar 
structure on each of the two triangles which make up A. 
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6. INTEGRAL REPRESENTATIONS IN THE LAURENT SERIES FOR R,(L) 

Throughout this section we assume that lo is a fixed point of the spec- 
trum a(L), m, is the ascent of L,, and v(&)=n, is the algebraic multi- 
plicity of &. Let P, be the projection of L2[a, b] onto the generalized 
eigenspace 1(L(&)) along W(L(&)), and let 

d=inf((I-&I (LEO(L)- {A,}> >O, 

so the punctured disk 0 < Ii - &I < d lies in p(L). Suppose 6 is any number 
satisfying 0 < 6 cd, and let r be the circle with center A, and radius 6 
parametrized by A = A(0) = 1, + de’*, 0 < 8 < 27~. 

It is well known (see [ 11, pp. 328-3311) that the resolvent R,(L) has the 
Laurent series 

(6.1) 

in g(L’[a, 61) for all 0~ )A--A,I <d, where the R,, Sk are operators in 
W(L2[a, b]) given by 

k = 0, 1, 2, . . . . (6.2) 

&=$-,I (A-Ao)k-’ RJL)dll, k = 1, . . . . m,, (6.3) 
I- 

S,#O for 1 <k<m,, and S, = PO (cf. (1.1)). These coefficient operators 
can also be expressed in terms of the Green’s function G(t, s; A) = 
H(t, s; 1)/D(A) for L,. Indeed, suppose 

D(l) = (A - LOyO h(i), lE@, 

where h is an entire function on @ with h(l,) # 0. Then by (5.11) 

(6.4) 

ff(t, s; A) 
G(f, s; n) = (A _ qo h(l) 

for all A Ed and for all t#s in [a, b], and 

a<tbb, 

for all 1 E p(L) and for all x E L2[a, b]. 
Now take arbitrary functions x, y E L2 

(6.5) 

(6.6) 

:a, b]. Using (6.2), (6.6), and 
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Fubini’s theorem on the rectangle a < t 6 b, a 6 s d b, 0 < 6’ 6 2~ in R3, we 
obtain 

which implies that 

for all x E L2[a, b] and for k = 0, 1,2, . . . . A similar argument shows that 

‘fan= (no-k)! (I aA”Opk ’ ,““““[ H;;;;‘)]i=j.ox(s)ds, a<t<b, (6.8) 

for all x E L2[a, b] and for k = 1, . . . . m,. 
Equations (6.7) and (6.8) express the coefficient operators in (6.1) as 

integral operators whose kernels are determined from the functions 
H(t, s; 2) and h(1) which make up the Green’s function G(t, s; 2). These 
equations also give us a primitive relationship between the ascent m, and 
the algebraic multiplicity ~(1,) = n,, which we will refine in the next 
section. Setting k = 1 in Eq. (6.8), we obtain the important result 

’ pox(t)=(no- I)! (I (g;1”0-1 s” ,,, [ H(hl;fli)]j,=h x(s) ds, a<t<b, (6.9) 

for all x E L’[a, b]. Equation (6.9) will play a central role in a future paper 
CO 

Remark 6.1. Let us briefly examine the kernels appearing in (6.7)-(6.9). 
For fixed (t, S) E n we know that the function H( t, s;.)/h is analytic on the 
disk I,? - il,l cd, and taking successive derivatives with respect to 1, we 
obtain 

(6.10) 
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for all 11 -&,I -cd and for k=O, 1, 2, . . . . where the hkl(A) are entire func- 
tions on C. If we set 2 = &, in (6.10) and substitute (5.20), then it becomes 

CW,)l-2k i 1’ h (4,) HA& s) 
,=o . k’ 

(6.11) 

for all (t, s) E n and for k = 0, 1, 2, . . . . Thus, these kernels are continuous 
on the slit square /1 and are bounded measurable functions on the square 
[a, b] x [a, b]. For k=O, 1, . . . . n, - 1 these formulas simplify even further: 

C&Ml -2k i I’ h (Ad M,(f, s), ,=o . ki (6.12) 

which are continuous functions on [a, 61 x [a, b] (see Remark 5.3). 

Remark 6.2. In [S] another characterization of the coefficient 
Operators Rk, Sk iS given, namely 

Rk=(-l)kRj.o(T,)k+l (Z-P,), k = 0, 1, 2, . . . . 

&=(-N,,)k-l P,, k = 1, . . . . m,, 

where N,, = LI, 1 N(L(&)), T, = L [9(L) n W(L(&)), and the resolvent 
R,,(T,) belongs to BI(B(L(A,))). Also, using the methods of Section 3, it 
can be shown that (6.1) is valid in the operator space X, the convergence 
being uniform in the J variable on compact subsets of 0 < ]A - &,I < d. 

7. THE ASCENT-ALGEBRAIC MULTIPLICITY RELATIONSHIP 

Fix a point &EC, and let us reconsider the power series expansion 
(5.19) for the function H about the point lo. Since the functions H( ., .; A), 
AE@, and H,, k=O, 1, 2, . . . . are bounded measurable functions on 
[a, b] x [a, b], we can use them as the L*-kernels of the integral operators 
T(A) and Tk defined by 

T(A) x(t) = f” H(t , s; 2) x(s) 4 a<t<b, 
a 

and 

T/$(t) = s” Hk(t, s) x(s) ds, adt<b, 
a 

for x E L’[a, b]. Clearly 7’(n) E B(L’[a, b]) for all 1 E @ and 
T,EW(L*[U, b]) for k=O, 1, 2, . . . . 
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Take any E > 0, and let 52 be any compact subset of @. Then from (5.19) 
there exists a nonnegative integer N,, such that 

H(t,s;I)- ; (A-A,)“H,(t,s) <& for all N> N,, 
k=O 

for all (t, s) E n and for all 1 E Sz, and hence, 

II T(I)- f (A-lo)k T, 
2 

k=O II 

b b 

d 
N 

H(t,s;A)- f (bno)kHk(t,s) ‘drds 
a ll k=O 

< E2( b - a)2 

for all N > No and for all 1 E Q. Thus, we obtain the power series expansion 

T(I) = f (&&)k Tk in 2J(L2[a, 61) (7.1) 
k=O 

for all 2 EC, the convergence being uniform in the 2 variable on compact 
subsets of @. Also, from (5.11) it is obvious that 

T(I) = D(A) R,(L) for all 1 E p(L). (7.2) 

Suppose the operator T(A) has a zero at Jo of order po, i.e., p. is a 
nonnegative integer with 

To=T1= ... =TPO--l=O and T,, # 0. 

Note that T(A,) =0 in case p. > 0, while T(A.,) # 0 for p. = 0. Since the 
kernels of To, T,, . . . . TPO are continuous on /1, it follows that 

H,-0 on n for k=O, 1, . . . . po- 1, (7.3) 

and 

HPo f O on A. (7.4) 

In view of these remarks we say that the function H(t, s; A.) has a zero at 
A, of order p. if the operator T(A) has a zero at Izo of order pO. 

THEOREM 7.1. The operator T(A) has a zero at 1, of order p. 2 0 iff 

~(t,s;lo)‘o on A 
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for k = 0, 1, . . . . p,, - 1, and 

$0, s; no) f 0 on A. 

In addition, A, E a(L) ifp,, > 0. 

Proof The main part of the theorem is a direct consequence of (7.3), 
(7.4), and (5.20). For the last part, if p0 > 0 and A, E p(L), then by (7.2) we 
would have ?“(A,,) = o(&) R,,(L) # 0, a contradiction. Q.E.D. 

There are many examples where I, E a(L) but T(i,) # 0, e.g., this is 
always the case when v(&) = 1 (see the next theorem). 

Our final theorem relates the ascent m, and the algebraic multiplicity 
v(&,) at a point A,, E o(L), the connection being made in terms of the order 
of 1, as a zero of o(A) and as a zero of H(t, S; A). This result will also be 
important in our future work [6]. 

THEOREM 7.2. Let & E o(L), and assume that A0 is a zero of order n, 3 1 

for D(d) and is a zero of order p0 > 0 for H(t, s; A). Then the ascent m, of 
L, and the algebraic multiplicity v(&) of A0 are related by the equation 

~(2,) = no = m, + po. (7.5) 

ProoJ The equation v(llo) = no is the conclusion of Theorem 4.2. For 
the second equation take x, y E L*[a, b]. Then by (7.1) we have 

(T(A)x, y)= f (A-Jo)” (TA Y) 
k = PO 

(*) 

for all A E C, while from (7.2), (6.4), and (6.1) we get 

(T(A) x, Y) = (1 -ho)“” h(l)(R,(L) x, Y) 

= (A-Ao)n”-““h(A) F (A-no)w-k (6&x, y) 
k=l 

+ (A - AoP h(A) f (A- 20)~ (R/P, Y) 
k=O 

(**I 

for all 0~ [A-- A,) cd. If porno-m,, then dividing (*) and (w) by 
(A - Ao)Po and letting A+ 1, yields 
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for all x, y~L~[u, b], contradicting the fact that T,, #O. On the other 
hand, if n, - m, < pO, then a similar argument shows that 

~(&MLox, u) = lim (T(i) x> Y) 
iej.0 (i-~o)“o~“‘o~o 

for all x, y E L2[a, b] with A(&,) ~0, which contradicts the fact that 
S,, # 0. Therefore, p0 = n, - m,. Q.E.D. 

REFERENCES 

1. L. V. AHLFORS, “Complex Analysis,” 2nd ed., McGraw-Hill, New York, 1966. 
2. E. A. CODDINGTON AND N. LEVINSON, “Theory of Ordinary DilTerential Equations,” 

McGraw-Hill, New York, 1955. 
3. N. DUNFORD AND J. T. SCHWARTZ, “Linear Operators, I, II, III,” Pure and Applied 

Mathematics, Vol. 7, Interscience, New York, 1958, 1963, 1971. 
4. P. LANG AND J. LOCKER, Denseness of the generalized eigenvectors of an H-S discrete 

operator, J. Funct. Anal. 82 (1989), 316329. 
5. P. LANG AND J. LOCKER, Spectral representation of the resolvent of a discrete operator, 

J. Funct. Anal. 79 (1988), 18-31. 
6. P. LANG AND J. LOCKER, Spectral theory of two-point differential operators determined by 

-D’. I. Spectral properties, J. Math. Anal. Appl. 140 (1989). 
7. J. LOCKER, “Functional Analysis and Two-Point Differential Operators,” Research Notes 

in Mathematics, Longman, London, 1986. 
8. M. A. NAIMARK, “Linear Differential Operators, I, 11,” GITTL, Moscow, 1954; English 

transl., Ungar, New York, 1967, 1968. 
9. W. RUDIN, “Principles of Mathematical Analysis,” 3rd ed., McGraw-Hill, New York, 

1976. 
10. M. H. STONE, A comparison of the series of Fourier and Birkhofi, Trans. Amer. Math. Sot. 

28 (1926), 695-761. 
11. A. E. TAYLOR AND D. C. LAY, “Introduction to Functional Analysis,” 2nd ed., Wiley, 

New York. 1980. 

409.‘l41!2-9 


