
J. Math. Anal. Appl. 370 (2010) 270–283

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

A new approach to the 2-variable Subnormal Completion Problem

Raúl E. Curto a,∗,1, Sang Hoon Lee b,2, Jasang Yoon c,3

a Department of Mathematics, The University of Iowa, Iowa City, IA 52242, United States
b Department of Mathematics, Chungnam National University, Daejeon, 305-764, Republic of Korea
c Department of Mathematics, The University of Texas-Pan American, Edinburg, TX 78539, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 October 2009
Available online 7 May 2010
Submitted by M. Milman

Keywords:
Subnormal Completion Problem
Subnormal pair
2-Variable weighted shift
Moment problems
k-Hyponormal pairs

We study the Subnormal Completion Problem (SCP) for 2-variable weighted shifts. We use
tools and techniques from the theory of truncated moment problems to give a general
strategy to solve SCP. We then show that when all quadratic moments are known
(equivalently, when the initial segment of weights consists of five independent data points),
the natural necessary conditions for the existence of a subnormal completion are also
sufficient. To calculate explicitly the associated Berger measure, we compute the algebraic
variety of the associated truncated moment problem; it turns out that this algebraic variety
is precisely the support of the Berger measure of the subnormal completion.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

We present a new approach to the Subnormal Completion Problem (SCP) for 2-variable weighted shifts. It employs the
localizing matrices introduced and studied in [11] in the context of the truncated K -moment problem (K -TMP). This helps
identify potential candidates for weights, and makes the problem more accessible.

We first give a general strategy to solve SCP, and we later apply it to solve the SCP with quadratic data. That is, given
an initial set of weights Ω1 consisting of five independent data points (α00, β00, α10, α01 and β01), we prove that the natural
necessary condition for the existence of a subnormal completion is also sufficient. Concretely, associated to the five given
weights is a 3 × 3 moment matrix M(Ω1), whose positive semi-definiteness is a necessary condition for the existence of
a subnormal completion; in symbols, M(Ω1) := (γu+v)u,v∈Z

2+, |u|,|v|�1, where γ00 := 1, γ10 := α2
00, γ01 := β2

00, γ20 := α2
10α

2
00,

γ11 := α2
01β

2
00, and γ02 := β2

01β
2
00. We prove that the necessary condition M(Ω1) � 0 turns out to be sufficient for the

existence of a representing measure μ supported in R
2+ and satisfying the property suppμ ∩ (0,+∞)2 �= ∅; the measure μ

then gives rise to a subnormal completion of Ω1. Once we know that a representing measure exists, we use techniques
from the theory of truncated moment problems to find a concrete expression for it.

As a first step, we build new weights α20, α11, α02 and β02, and we use them to construct the localizing matrices
Mx(Ω̂3) and M y(Ω̂3), where Ω̂3 is a proposed extension of Ω1. The positive semi-definiteness of M(Ω1) is then used
to establish that the localizing matrices Mx(Ω̂3) and M y(Ω̂3) can be made positive semi-definite for suitable choices of
the new weights α20, α11, α02 and β02. That is, the condition M(Ω1) � 0 triggers the two conditions Mx(Ω̂3) � 0 and
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M y(Ω̂3) � 0 for appropriate values of α20, α11, α02 and β02. Once that happens, we prove that a flat (i.e., rank-preserving)
extension M(Ω̂3) of M(Ω1) exists, thereby giving rise to a unique representing measure μ for Ω̂3, which is the Berger
measure of the subnormal completion. The explicit form of μ can be obtained by first determining the support of μ, which
agrees with the algebraic variety of Ω̂3.

In one variable, SCP was stated and solved in [7] and [8]:

Problem 1.1 (One-variable Subnormal Completion Problem). Given m � 0 and a finite collection of positive numbers Ωm ≡
{αk}m

k=0, find necessary and sufficient conditions on Ωm to guarantee the existence of a subnormal weighted shift whose
initial weights are given by Ωm .

Since subnormality implies hyponormality, the condition α0 � α1 � α2 � · · · � αm is obviously necessary; moreover, it is
easy to dispose of the case when αk = αk+1 for some 0 � k � m − 1, so one can always assume that α0 < α1 < · · · < αm .

The cases m = 0 and m = 1 are straightforward, with canonical completions given by α0,α0,α0, . . . and α0,α1,α1, . . . ,
respectively. The solution of the case m = 2 is based on the positivity of the moment matrix H(1) := ( γ0 γ1

γ1 γ2

)
and of the lo-

calizing matrix Hx(2) := ( γ1 γ2
γ2 γ3

)
; the explicit calculation of the subnormal completion requires recursively generated weighted

shifts [7, Example 3.12].
In the general (1-variable) case, the Subnormal Completion Criterion (SCC) [7, Theorem 3.5] states that a subnormal

completion exists if and only if an �-hyponormal completion exists, where � := [m
2 ] + 1.

Theorem 1.2 (One-variable Subnormal Completion Criterion). (Cf. [7, Theorem 3.5].) Let Ωm ≡ {αk}m
k=0 be a finite collection of positive

numbers, let k := [m+1
2 ] and � := [m

2 ]+ 1, and let H(k) ≡ H(Ωm) := (γi+ j)0�i, j�k, Hx(�− 1) ≡ Hx(Ωm) := (γi+ j+1)0�i, j��−1 and
v(i, j) := (γi γi+1 · · · γi+ j)

T . The following statements are equivalent.

(i) Ωm admits a subnormal completion;
(ii) Ωm admits an �-hyponormal completion;

(iii) H(k) � 0, Hx(� − 1) � 0, and v(k + 1,k) ∈ Ran H(k) if m is even (v(� + 1, � − 1) ∈ Ran Hx(� − 1) if m is odd);
(iv) H(Ωm) admits a positive flat (i.e., rank-preserving) extension H(Ω̂m+1) such that Hx(Ω̂m+1) � 0.

We now formulate the 2-variable SCP:

Problem 1.3 (2-variable Subnormal Completion Problem). Given m � 0 and a finite collection of pairs of positive numbers Ωm ≡
{(αk, βk)}|k|�m satisfying (2.1) for all |k| � m (where |k| := k1 + k2), find necessary and sufficient conditions to guarantee
the existence of a subnormal 2-variable weighted shift whose initial weights are given by Ωm .

While the research in [7] provided a complete solution to SCP in one variable, the 2-variable version requires new tools
and techniques. At present, no general solution exists, and the problem appears to be quite difficult. When m = 0, in one
variable the canonical subnormal completion of α0 is the weighted shift α0,α0,α0, . . . , with Berger measure μ := δα2

0
; in

two variables, the canonical subnormal completion of (α00, β00) is the 2-variable weighted with weight sequences αi j := α00
and βi j := β00 (all i, j � 0) and Berger measure μ := δα2

00
× δβ2

00
.

When m = 1, the 1-variable case is still straightforward; i.e., the canonical subnormal completion is α0,α1,α1, . . . , with

Berger measure (1 − α2
0

α2
1
)δ0 + α2

0
α2

1
δα2

1
. In two variables, however, the problem becomes highly nontrivial. For the singular

case, and using the results in [9, Section 6], C. Li gave in [21] a solution, which seems a bit ad hoc and unmotivated,
with extensive calculations using Mathematica. The proof in [9, pages 39 and 40] establishes the existence of a representing
measure μ for SCP with quadratic moment data (this is the case m = 1 in two variables); however, the ensuing statement
that suppμ ⊆ R

2+ is made without a proof, and it does not appear to follow easily from the comments preceding it. It is
indeed true, as we show in the present paper using the tools and techniques from [11].

In Section 5 below, we shall apply our general strategy to solve SCP to the case m = 1 and prove that a representing
measure always exists if the associated moment matrix M(1) is positive semi-definite. In Section 6 we shall calculate the
Berger measure using canonical column relations in the flat extension M(2) of M(1). The reader will note how effective the
theory of truncated moment problems can be in detecting the location of the atoms of the unique representing measure
for M(2); this is in sharp contrast with the ad hoc techniques and extensive symbolic manipulation presented in [21].

The case m = 2, in full generality, remains open; however, in Example 4.4 below we solve SCP whenever the associated
moment matrix M(1) is singular. For m � 3, the results in [7] and [8] show that, in the 1-variable case, it is not always
possible to build a subnormal completion; of course the same is true in two variables: indeed, if α0,α1,α2,α3 is a collection
of weights admitting no subnormal completion, it suffices to consider the 2-variable collection given by αk := αk1 and
βk := 1 (|k| � 3) in order to produce such an example.

Problem 1.3 is closely related to truncated moment problems. Given real numbers γ ≡ γ (2n) := γ00, γ01, γ10, γ02, γ11, γ20,

. . . , γ02n, . . . , γ2n0 with γ00 > 0, the truncated real moment problem for γ entails finding conditions for the existence of a
positive Borel measure μ, supported in R

2, such that
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γi j =
∫

yi x j dμ, 0 � i + j � n.

Given γ ≡ γ (2n) , we can build an associated moment matrix M(n) ≡ M(n)(γ ) := (M[i, j](γ ))n
i, j=0, where

M[i, j](γ ) :=

⎛
⎜⎜⎜⎝

γ0,i+ j γ1,i+ j−1 · · · γ j,i

γ1,i+ j−1 γ2,i+ j−2 · · · γ j+1,i−1
...

...
. . .

...

γi, j γi+1, j−1 · · · γi+ j,0

⎞
⎟⎟⎟⎠ .

We denote the successive rows and columns of M(n)(γ ) by

1, X, Y , X2, Y X, Y 2, . . . , Xn, . . . , Y n.

Observe that each block M[i, j](γ ) is of Hankel form, i.e., constant in cross-diagonals. (For basic results about truncated
moment problems we refer to [9–11].)

We conclude this section by stating a result from [14], which we will need in Section 3. Recall that a commuting pair
(T1, T2) is 2-hyponormal if the 5-tuple (T1, T2, T 2

1 , T1T2, T 2
2 ) is hyponormal (cf. Section 2 below). For 2-variable weighted

shifts, this is equivalent to the condition

Mu(2) := (γu+(m,n)+(p,q))0�m+n�2
0�p+q�2

� 0
(
all u ∈ Z

2+
) (

cf. [14, Theorem 2.4]
)
,

that is,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γu γu+(0,1) γu+(1,0) γu+(0,2) γu+(1,1) γu+(2,0)

γu+(0,1) γu+(0,2) γu+(1,1) γu+(0,3) γu+(1,2) γu+(2,1)

γu+(1,0) γu+(1,1) γu+(2,0) γu+(1,2) γu+(2,1) γu+(3,0)

γu+(0,2) γu+(0,3) γu+(1,2) γu+(0,4) γu+(1,3) γu+(2,2)

γu+(1,1) γu+(1,2) γu+(2,1) γu+(1,3) γu+(2,2) γu+(3,1)

γu+(2,0) γu+(2,1) γu+(3,0) γu+(2,2) γu+(3,1) γu+(4,0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0
(
all u ∈ Z

2+
)
. (1.1)

An entirely similar formulation exists for �-hyponormality (� � 1), i.e., one requires

Mu(�) := (γu+(m,n)+(p,q))0�m+n��

0�p+q��

� 0
(
all u ∈ Z

2+
) (

cf. [14, Theorem 2.4]
)
. (1.2)

2. Notation and preliminaries

Let H be a complex Hilbert space and let B(H) denote the algebra of bounded linear operators on H. We say that
T ∈ B(H) is normal if T ∗T = T T ∗ , subnormal if T = N|H , where N is normal and N(H)⊆ H, and hyponormal if T ∗T � T T ∗ .
For S, T ∈ B(H) let [S, T ] := ST − T S . We say that an n-tuple T = (T1, . . . , Tn) of operators on H is (jointly) hyponormal if
the operator matrix

[
T∗,T

] :=

⎛
⎜⎜⎜⎝

[T ∗
1 , T1] [T ∗

2 , T1] · · · [T ∗
n , T1]

[T ∗
1 , T2] [T ∗

2 , T2] · · · [T ∗
n , T2]

...
...

. . .
...

[T ∗
1 , Tn] [T ∗

2 , Tn] · · · [T ∗
n , Tn]

⎞
⎟⎟⎟⎠

is positive semi-definite on the direct sum of n copies of H (cf. [1,5,15]). The n-tuple T is said to be normal if T is commuting
and each Ti is normal, and T is subnormal if T is the restriction of a normal n-tuple to a common invariant subspace. Clearly,
normal ⇒ subnormal ⇒ hyponormal.

The Bram–Halmos criterion for subnormality states that an operator T ∈ B(H) is subnormal if and only if∑
i, j

(
T ix j, T jxi

)
� 0

for all finite collections x0, x1, . . . , xk ∈ H [3,4]. Using Choleski’s algorithm for operator matrices [22], it is easy to see that
this is equivalent to asserting that the k-tuple (T , T 2, . . . , T k) is hyponormal for all k � 1.

For k � 1, we say that a commuting pair T ≡ (T1, T2) is k-hyponormal if T(k) := (T1, T2, T 2
1 , T2T1, T 2

2 , . . . , T k
1, T2T k−1

1 ,

. . . , T k
2) is hyponormal (cf. [14]). Clearly, subnormal ⇒ (k + 1)-hyponormal ⇒ k-hyponormal for every k � 1, and of course

1-hyponormality agrees with the usual definition of joint hyponormality. The multivariable Bram–Halmos criterion was
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obtained in [14], and its formulation is essentially identical to the 1-variable one: T is subnormal if and only if T(k) is
hyponormal for all k � 1.

For α ≡ {αn}∞n=0 a bounded sequence of positive real numbers (called weights), let Wα : �2(Z+) → �2(Z+) be the as-
sociated unilateral weighted shift, defined by Wαen := αnen+1 (all n � 0), where {en}∞n=0 is the canonical orthonormal basis
in �2(Z+). The moments of α are given as

γk ≡ γk(α) :=
{

1 if k = 0

α2
0 · · ·α2

k−1 if k > 0

}
.

It is easy to see that Wα is never normal, and that it is hyponormal if and only if α0 � α1 � · · · . Similarly, consider
double-indexed positive bounded sequences α ≡ {αk}, β ≡ {βk} ∈ �∞(Z2+), k ≡ (k1,k2) ∈ Z

2+ := Z+ × Z+ and let �2(Z2+) be
the Hilbert space of square-summable complex sequences indexed by Z

2+ . (Recall that �2(Z2+) is canonically isometrically
isomorphic to �2(Z+) ⊗ �2(Z+).) We define the 2-variable weighted shift T ≡ (T1, T2) by

T1ek := αkek+ε1 ,

T2ek := βkek+ε2 ,

where ε1 := (1,0) and ε2 := (0,1). Clearly,

T1T2 = T2T1 ⇔ βk+ε1αk = αk+ε2βk
(
all k ∈ Z

2+
)
. (2.1)

In an entirely similar way one can define multivariable weighted shifts.
Given k ∈ Z

2+ , the moment of (α,β) of order k is

γk ≡ γk(α,β) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if k = 0

α2
(0,0) · · ·α2

(k1−1,0)
if k1 � 1 and k2 = 0

β2
(0,0)

· · ·β2
(0,k2−1)

if k1 = 0 and k2 � 1

α2
(0,0) · · ·α2

(k1−1,0)
· β2

(k1,0)
· · ·β2

(k1,k2−1)
if k1 � 1 and k2 � 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

We remark that, due to the commutativity condition (2.1), γk can be computed using any nondecreasing path from (0,0)

to (k1,k2).
We also recall a well-known characterization of subnormality for multivariable weighted shifts [20], due to C. Berger (and

independently to R. Gellar and L.J. Wallen [19]) in the 1-variable case: T ≡ (T1, . . . , Tn) is subnormal if and only if there is
a probability measure μ (called the Berger measure of T) defined on the n-dimensional rectangle R = [0,a1] × · · · × [0,an]
where ai = ‖Ti‖2 such that γk = ∫

R tk dμ(t) := ∫
R tk1

1 · · · tkn
n dμ(t), for all k ∈ Z

n+ .
Consider now a subnormal 1-variable weighted shift Wα , with Berger measure ξ , and let h � 1. If we let

Mh :=
∨

{en: n � h} (2.2)

denote the invariant subspace obtained by removing the first h vectors in the canonical orthonormal basis of �2(Z+), then
the Berger measure of Wα |Mh is 1

γh
th dξ(t).

An important class of subnormal weighted shifts is obtained by considering measures μ with exactly two atoms t0
and t1. These shifts arise naturally in the Subnormal Completion Problem [7,8] and in the theory of truncated moment
problems (cf. [6,9]). For t0, t1 ∈ R+ , t0 < t1, and ρ0,ρ1 > 0, the moments of the 2-atomic measure μ := ρ0δt0 + ρ1δt1 (here
δp denotes the point-mass probability measure with support the singleton {p}) satisfy the 2-step recursive relation

γn+2 = ϕ0γn + ϕ1γn+1 (n � 0); (2.3)

at the weight level, this can be written as α2
n+1 = ϕ0

α2
n

+ ϕ1 (n � 0). The atoms t0 and t1 are the zeros of the generating

function

g(t) := t2 − ϕ1t − ϕ0. (2.4)

More generally, any finitely atomic Berger measure corresponds to a recursively generated subnormal weighted shift (i.e.,
one whose moments satisfy an r-step recursive relation); in fact, r = card suppμ. In the special case of r = 2, the theory
of recursively generated weighted shifts makes contact with the work of J. Stampfli in [23], in which he proved that given
three positive numbers α0 < α1 < α2, it is always possible to find a subnormal weighted shift, denoted W (α0,α1,α2)^, whose
first three weights are α0,α1 and α2. The shift T ≡ W (α0,α1,α2)^ received special attention in [8], and has a 2-atomic Berger
measure as above; letting a := α2

0 , b := α2
1 and c := α2

2 , we often refer to this shift as the abc shift. We will have occasion
to use these shifts in Section 6.
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3. Statement of the Subnormal Completion Problem

Definition 3.1. Given m � 0 and a finite family of positive numbers Ωm ≡ {(αk, βk)}|k|�m , we say that a 2-variable
weighted shift T ≡ (T1, T2) with weight sequences αT

k and βT
k is a subnormal completion of Ωm if (i) T is subnormal,

and (ii) (αT
k, βT

k) = (αk, βk) whenever |k| � m.

Remark 3.2. Note that since a subnormal 2-variable weighted shift is necessarily commuting, Ωm in Definition 3.1 satisfies
the commutativity condition in (2.1). When a family of positive numbers has this property, we say that it is commutative.

Definition 3.3. Given m � 0 and a finite family of positive numbers Ωm ≡ {(αk, βk)}|k|�m , we say that Ω̂m+1 ≡
{(α̂k, β̂k)}|k|�m+1 is an extension of Ωm if (α̂k, β̂k) = (αk, βk) whenever |k| � m. The degree of Ωm , degΩm , is m + 1.
When m = 1, we say that Ω1 is quadratic. For m = 2� + 1, the moment matrix of Ωm is

M(�) ≡ M(Ωm) ≡ M0(Ωm) := (γ(i, j)+(p,q))0�i+ j�m
0�p+q�m

.

Observe that if Ω̂m+1 is commutative, then so is Ωm . For m odd, M(Ω̂m+2) is an extension of M(Ωm).

Notation 3.4. When m = 1, we shall let a := α2
00, b := β2

00, c := α2
10, d := β2

01, e := α2
01 and f := β2

10. To be consistent with
the commutativity of a 2-variable weighted shifts whose weight sequences satisfy (2.1), we shall always assume af = be.
The moments of Ω1 are⎧⎨

⎩
γ00 := 1,

γ01 := a, γ10 := b,

γ02 := ac, γ11 := be, γ20 := bd,

and the associated moment matrix is

M(Ω1) :=
⎛
⎝1 a b

a ac be

b be bd

⎞
⎠ .

In this case, solving the SCP consists of finding a probability measure μ supported on R
2+ such that

∫
R

2+ yi x j dμ(x, y) = γi j

(i, j � 0, i + j � 2).

Associated with the measure μ of a subnormal completion is the moment matrix

M(2)[μ] :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ00 γ01 γ10 γ02 γ11 γ20

γ01 γ02 γ11 γ03[μ] γ12[μ] γ21[μ]
γ10 γ11 γ20 γ12[μ] γ21[μ] γ30[μ]
γ02 γ03[μ] γ12[μ] γ04[μ] γ13[μ] γ22[μ]
γ11 γ12[μ] γ21[μ] γ13[μ] γ22[μ] γ31[μ]
γ20 γ21[μ] γ30[μ] γ22[μ] γ31[μ] γ40[μ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
cf. (1.1)

)
.

The (quartic) moments of μ give rise to an extension Ω̂3 of Ω1, so that M(2)[μ] = M(Ω̂3). It is thus clear that a necessary
condition for the existence of a measure μ is the positivity of M(Ω̂3), which in turn implies the positivity of M(Ω1). If we
now let p := α̂2

20, q := α̂2
11, r := α̂2

02 and s := β̂2
02, we see that

M(Ω̂3) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a b ac be bd

a ac be acp beq bdr

b be bd beq bdr bds

ac acp beq γ04[μ] γ13[μ] γ22[μ]
be beq bdr γ13[μ] γ22[μ] γ31[μ]
bd bdr bds γ22[μ] γ31[μ] γ40[μ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The localizing matrices Mx(Ω̂3) and M y(Ω̂3) (cf. [11, Introduction]) are

Mx(Ω̂3) =
⎛
⎝ a ac be

ac acp beq

⎞
⎠ and M y(Ω̂3) =

⎛
⎝ b be bd

be beq bdr

⎞
⎠ .
be beq bdr bd bdr bds
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(The matrix Mx(Ω̂3) is the compression of M(Ω̂3) to the first three rows and to the columns indexed by monomials
containing X , that is, X , X2 and Y X ; the matrix M y(Ω̂3) is defined similarly.) Observe that Mx(Ω̂3) = M(0,1)(1) and
M y(Ω̂3) = M(1,0)(1) (cf. (1.1)). For the existence of a measure μ supported in R

2+ , it is necessary to have Mx(Ω̂3) � 0

and M y(Ω̂3) � 0.
In this paper we prove that starting with the positivity of M(Ω1) alone, it is possible to choose new weights p, q, r

and s to ensure the positivity of Mx(Ω̂3) and M y(Ω̂3). We can do this while simultaneously building a positive flat moment
matrix extension M(Ω̂3) of M(Ω1). Once we establish the simultaneous positivity of M(Ω̂3), Mx(Ω̂3) and M y(Ω̂3), the
existence of a representing measure μ follows from the main result in [11]. We prove this in Section 5. In Section 6 we give
a concrete description of μ in terms of the initial data a, b, c, d and e and the new weights p, q, r and s. First, we present
in Section 4 an abstract solution to SCP, which uses our new approach, involving localizing matrices and the results in [11].

While the flat extension approach is successful in the case m = 1, it will not lead to a solution of SCP in all cases. Indeed,
it is possible to build a moment matrix M(2) ≡ M(Ω3) admitting a representing measure, but with no flat extension M(3)

(cf. Section 7 below). This shows that our approach, while very general, will not yield subnormal completions merely by one-
step flat extension techniques. In many instances, solving SCP will require a finite sequence of rank-increasing extensions
followed by a flat extension; this is despite the fact that for SCP one looks for a measure with support in the nonnegative
quarter-plane. As a matter of fact, the “translation of support” technique we use in Section 7 shows that solving SCP is
equivalent to solving K -TMP, where K is a compact set satisfying K ⊆ R

2+ and K ∩ (0,+∞)2 �= ∅. Thus, SCP is a special case
of K -TMP, and it is natural to expect that qualitative aspects of TMP theory will be appropriately reflected in SCP.

4. Abstract solution of SCP

In this section we will give an abstract solution of Problem 1.3. We first consider the main theorem in [11]. Although
[11, Theorem 1.6] deals with truncated complex moment problems, there is an entirely equivalent version for the case of
two real variables, which we now state.

Theorem 4.1. Let P ≡ {p1, . . . , pN } ⊆ C[x, y] and define ki by deg pi = 2ki or deg pi = 2ki −1 (1 � i � N). There exists a rank M(n)-
atomic representing measure for γ (2n) supported in K P := {(x, y) ∈ R

2: pi(x, y) � 0, 1 � i � N} if and only if M(n) � 0 and there
is some flat extension M(n + 1) for which M pi (n + ki) � 0 (1 � i � N). In this case, the representing measure for M(n + 1) is
rank M(n)-atomic, supported in K P , and with precisely rank M(n)− rank M pi (n +ki) atoms in Z(pi) := {(x, y) ∈ R

2: pi(x, y) = 0}
(1 � i � N).

With the aid of Theorem 4.1, we can now state and prove a result which gives a sufficient condition for the solubility
of SCP in two variables. Our version does not completely match the conditions listed on Theorem 1.2, and we now explain
why. In one variable, building a flat moment matrix extension of a Hankel matrix entails adding an extra row and an extra
column, and checking that the rank is preserved. This entails checking the range condition in Theorem 1.2(iii) and ensuring
that the new lower right-hand corner entry satisfies the requirement in Smul’jan’s Lemma [22]:

Lemma 4.2. (Cf. [9, Proposition 2.2].) Consider the 2 × 2 block matrix D := ( A B
B∗ C

)
. Then

D � 0 ⇔ A � 0, B = AW for some W , and C � W ∗ AW .

In two variables, what one adds is not a row and a column but instead a block of rows and a block of columns; while
it is still possible to preserve the range condition, the new lower right-hand corner is not a number but a square matrix,
which must necessarily be Hankel for the extension to be a moment matrix. One easily finds out that �-hyponormality (cf.
Theorem 1.2(ii)), while necessary, is no longer sufficient to prove the hankelicity of the new lower right-hand block. Thus,
our result avoids mention of �-hyponormality. Moreover, solving the SCP admits two structurally different cases: m odd and
m even. In the former case, degΩm (= m + 1) is even, so we have enough moments to build the moment matrix M(Ωm).

The same is not true, however, when m = 2k, since we have moments up to degree 2k + 1, and this does not allow
us to build a complete moment matrix. In the terminology of Lemma 4.2, we have A := M(Ωm−1), and also the B block
(consisting of moments up to degree m + 1), but no C block. Since we are seeking a moment matrix M(Ωm+1), with
moments up to degree 2m + 2, we can certainly require that Ran B ⊆ Ran A ≡ Ran M(Ωm−1), but that in itself does not
generate the additional moments. One could attempt to define the C block as W ∗ AW (where W solves the equation
AW = B), but this in general does not produce a Hankel block C , as has been observed in [12]. Therefore, it becomes
necessary to postulate the existence of moments of degree m + 1 that, together with the initial data Ωm , allows us to build
a moment matrix, which we will call M(Ωm+1).

Theorem 4.3. Let Ωm := {(αk, βk): |k| � m} be an initial set of positive weights satisfying the commutativity condition βk+ε1αk =
αk+ε2βk (all k ∈ Z

2+ with |k+εi | � m (i = 1,2)), and let m̃ := 2[m
2 ] + 1; thus m̃ = m if m is odd and m̃ = m + 1 if m is even.

Assume that M(Ωm̃) � 0, and that Ωm̃ admits a commutative extension Ω̂m̃+2 such that the moment matrix M(Ω̂m̃+2) is a flat (i.e.,
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rank-preserving) extension of M(Ωm̃), with Mx(Ω̂m̃+2) � 0 and M y(Ω̂m̃+2) � 0. Then there exists a rank M(Ωm̃)-atomic representing

measure μ supported in R
2+ , with precisely rank M(Ωm̃)− rank Mx(Ω̂m̃+2) atoms in {0}×R+ (resp. rank M(Ωm̃)− rank M y(Ω̂m̃+2)

atoms in R+ × {0}). The measure μ is the Berger measure of a subnormal completion Ω̂∞ of Ωm, provided at least one atom of μ lies
inside the positive quadrant in R

2 .

Proof. In the case at hand, the polynomials pi are p1(x, y) := x and p2(x, y) := y; thus, k1 = k2 = 1. It follows that K P = R
2+

and that M p1 (n + k1) = Mx(n + 1) and M p2 (n + k2) = M y(n + 1). Our result now follows from a straightforward application
of Theorem 4.1. �

Despite its simplicity, Theorem 4.3 is quite useful, as we will see in the next section. We conclude this section by showing
how the additional moments required in case m is even are sometimes determined by M(Ωm−1).

Example 4.4. Let m = 2 and assume that A := M(Ω1) � 0 and det A = 0. Then there exist moments γi, j (i + j = 4) such that
M(Ω3) � 0 is a flat extension of A. The case when rank A = 1 is easily disposed of, so without loss of generality we focus on
the case Y = a1 + b X in the column space of A. We are assuming that A � 0, Mx(Ω3) � 0, M y(Ω3) � 0 and Ran B ⊆ Ran A.
(Observe that Mx(Ω3) and M y(Ω3) include moments up to degree 3, so building them requires no new moments.) The
equation det A = 0 uniquely determines γ02, from which we obtain at once the weight

β01 = α2
00β

2
00α

2
10 − 2α2

00β
2
00α

2
01 + β2

00α
4
01

α2
00(α

2
10 − α2

00)
.

Since Ran B ⊆ Ran A, each column in B must be a linear combination of the columns 1 and X , and straightforward calcula-
tions using Mathematica yield unique values for α20, α11 and α02. Concretely,

α2
20 = α2

00α
4
10 − α2

00α
2
10α

2
01 + α2

00α
2
01α

2
11 − α2

10α
2
01α

2
11

α2
10(α

2
00 − α2

01)
,

α2
11 = α2

00α
2
10α

2
01 − α2

00α
4
01 − α2

00α
2
10α

2
02 + 2α2

00α
2
01α

2
02 − α4

01α
2
02

α2
01(α

2
00 − α2

01)
,

α2
02 = α2

00(β
2
00α

2
10 − β2

00α
2
01 + α2

00β
2
02 − α2

10β
2
02)

β2
00(α

2
00 − α2

01)
.

With this information at our disposal, it is now straightforward to check that the C block, defined as C := W ∗ AW (where
AW = B) is Hankel. Thus, M(Ω3) := ( A B

B∗ C

)
is a moment matrix extension of A, and moreover rank M(Ω3) = rank A = 2. It

is now clear that SCP admits a solution in this particular case.
One might wish to extend the above reasoning to the case rank A = 3, as follows. Let W := A−1 B and let C := W ∗ AW .

It is well known that C is in general not Hankel, and that one can make it Hankel by adding a rank-one positive matrix P .
Thus, M(Ω3) := ( A B

B∗ C+P

)
is a positive moment matrix, and rank M(Ω3) = 4. The solution of the Quartic Moment Prob-

lem [12] now says that there exists a flat extension M(Ω5) of M(Ω3). Unfortunately, we can’t tell whether the support of
the representing measure for M(Ω5) is contained in the first quadrant in R

2. This would require verifying that the localizing
matrices Mx(Ω5) and M y(Ω5) are positive. If we knew that they are flat extensions of Mx(Ω3) and M y(Ω3), resp., then of
course we would be done. This fact is false in general, but it might be true in the context of SCP; however, we have not
been able to prove it for SCP.

5. Localizing matrices as flat extension builders

We now specialize to the case m = 1 in two variables, and show that the condition M(Ω1) � 0 is sufficient for the
existence of a subnormal completion.

Theorem 5.1. Let Ω1 be a quadratic, commutative, initial set of positive weights, and assume M(Ω1) � 0. Then there always exists
a quartic commutative extension Ω̂3 of Ω1 such that M(Ω̂3) is a flat extension of M(Ω1), and Mx(Ω̂3) � 0 and M y(Ω̂3) � 0. As a
consequence, Ω1 admits a subnormal completion T

Ω̂∞ .

Proof. Since m = 1, we have � = 1. By Theorem 4.3, we first need to show that six new weights, α̂20, β̂20, α̂11, β̂11, α̂02
and β̂02 can be chosen in such a way that Mx(Ω̂3) � 0 and M y(Ω̂3) � 0. Once we prove this, we shall employ techniques
from truncated moment problems to establish the existence of a flat extension M(Ω̂3) of M(Ω1). We will then appeal to the
main result in [11]; the existence of a flat extension will readily imply the existence of a representing measure μ for M(1),
and the positivity of the localizing matrices Mx(2) and M y(2) means that suppμ ⊆ R

2+ . Thus, μ will be the Berger measure
of a subnormal 2-variable weighted shift TΩ∞ , which will be the desired subnormal completion of Ω1.
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Fig. 1. The initial family of weights Ω1.

We now build M(2). To simplify the calculations, we let⎧⎪⎨
⎪⎩

a := α2
00, b := β2

00,

c := α2
10, d := β2

01,

e := α2
01, f := β2

10.

(The family Ω1 is shown in Fig. 1.)
Thus,

M(1) =
⎛
⎝1 a b

a ac be

b be bd

⎞
⎠ . (5.1)

Since M(1) � 0, it follows that det
( ac be

be bd

)
� 0, i.e.,

acd � be2. (5.2)

By the commutativity of Ω1, we have

af = be, (5.3)

and therefore

cd � ef . (5.4)

A straightforward calculation shows that

det M(1) = acbd − b2e2 − a2bd + 2ab2e − b2ac

and that

det M(1) > 0 ⇒ cd − ef > 0; (5.5)

for, if cd − ef = 0 then the rank of the 2 × 2 lower right-hand corner of M(1) is 1, and then M(1) cannot be invertible.
Inspection of (5.4) reveals that we must have c � e or d � f . Without loss of generality, we shall assume that c � e. We also
assume that a < c, since otherwise a trivial solution exists. In fact, if a = c in (5.1), the positivity of M(1) implies that a = e
and b = f � d; when b = d (resp. b < d), the point mass δ(a,b) is the Berger measure of the subnormal completion (resp.
(1 − b

d )δ(a,0) + b
d δ(a,d)). Thus, in what follows we shall always assume c � e and a < c.

To build M(2) ≡ M(Ω̂3), we first need six new weights (the quadratic weights), namely α̂20, β̂20, α̂11, β̂11, α̂02 and β̂02.
Since the extension Ω̂3 will also be commutative, two of these weights will be expressible in terms of other weights. We
thus denote α̂20 by

√
p, α̂11 by

√
q, α̂02 by

√
r, and β̂02 by

√
s (β̂20 and β̂11 can be written in terms of the other four new

weights). It follows that

M(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a b ac be bd

a ac be acp beq bdr

b be bd beq bdr bds

ac acp beq

be beq bdr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.6)
bd bdr bds
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Fig. 2. The family Ω1 augmented with the inclusion of the quadratic weights.

(with the lower right-hand 3 × 3 corner yet undetermined) and

Mx(2) =
⎛
⎝ a ac be

ac acp beq

be beq bdr

⎞
⎠ and M y(2) =

⎛
⎝ b be bd

be beq bdr

bd bdr bds

⎞
⎠ .

Now, since the zero-th row of a subnormal completion of Ω1 will be a subnormal completion of the zero-th row of Ω1,
which is given by the weights a � c, we let p := c. By one of the main results in [18], having α10 = α̂20 immediately implies
that α̂11 = √

c, that is, q := c. Thus,

Mx(2) =
⎛
⎝ a ac be

ac ac2 bce

be bce bdr

⎞
⎠ .

By Choleski’s Algorithm [2], Mx(2) � 0 if and only if bdr � (be)2

a , so that we need r � ef
d . Thus, provided we take r � ef

d ,
the positivity of Mx(2) is guaranteed. It remains to show that we can choose s in such a way that s � d and M y(2) ≡
M y(2)(s) � 0. We consider two cases.

Case 1: e = c. By (5.4) we have d � f , so we can take r := c and guarantee that Mx(2) � 0. We also let s := d. We then
have

M y(2) =
⎛
⎝ b bc bd

bc bc2 bcd

bd bcd bd2

⎞
⎠ .

It follows at once that rank M y(2) = 1, and therefore M y(2) � 0 (and of course s � d).

Case 2: e < c. We define r by this extremal value, i.e., r := ef
d . This immediately implies that β̂11 := √

f , and by propaga-

tion, β̂1 j := √
f (all j � 2) in any subnormal completion. The resulting weight diagram is shown in Fig. 2.

It remains to define s, in such a way that s � d and M y(2) � 0. Since

M y(2) ≡ M y(2)(s) =
⎛
⎝ b be bd

be bce bef

bd bef bds

⎞
⎠

and the 2 × 2 upper left-hand corner of M y(2) is invertible, we see that M y(2) � 0 if and only if det M y(2)(s) � 0. Since
det M y(2)(s) is linear in s, we pick for s the unique value that makes det M y(2)(s) = 0. A straightforward calculation shows
that

s = a2cd2 − 2abde2 + b2e3

a2d(c − e)
.

We then have

s − d = e(ad − be)2

a2d(c − e)
� 0.

Thus, this particular choice of s guarantees both s � d and M y(2) � 0.
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To complete the proof, we need to define the 3 × 3 lower right-hand corner of M(2), and then show that M(2) is a flat
extension of M(1), and therefore M(2) � 0. We consider the following two cases.

(i) rank M(1) = 2: Without loss of generality, we may assume that a < c, so that the columns 1 and X of M(1) are
linearly independent. The column Y must then be a linear combination of 1 and X , and that allows us to define Y X
and Y 2 in M(2). Moreover, since the zero-th row of T

Ω̂∞ is given by the weights
√

a,
√

c,
√

c, . . . , whose Berger measure

is ξx = (1 − a
c )δ0 + a

c δc (and thus supported in the two-point set {0, c}), it is natural to let X2 := c X in the column space
of M(2). With these definitions, one easily verifies that the truncations to the first three rows of X2, Y X and Y 2 agree with
the 3 × 3 upper right-hand corner of the matrix M(2) in (5.6). It is clear that the matrix M(2) thus defined is positive
semi-definite, but one needs to verify that M(2) is a moment matrix. This amounts to checking that the (4,6) and (5,5)

entries are equal. Now, a straightforward calculation shows that in the column space of M(1) we have

Y = b(c − e)

c − a
· 1 + f − b

c − a
X, (5.7)

so that

M(2)46 = 〈
Y 2, X2〉 = 〈

Y 2, c X
〉

= c〈Y , Y X〉 = c

〈
b(c − e)

c − a
· 1 + f − b

c − a
X, Y X

〉

= c
b(c − e)

c − a
be + c

f − b

c − a
bce

= bce
cf − be

c − a
= bcef .

On the other hand, using (5.7) we define Y X := b(c−e)
c−a X + f −b

c−a X2, so that

M(2)55 = 〈Y X, Y X〉
=

〈
b(c − e)

c − a
X + f − b

c − a
X2, Y X

〉

= b(c − e)

c − a
bce + f − b

c − a
〈c X, Y X〉

= b(c − e)

c − a
bce + c

f − b

c − a
bce

= bce
cf − be

c − a
= bcef .

It follows that M(2)46 = M(2)55, as desired. In this case, the representing measure is supported in the two-point set
{(0, y0), (c, yc)}, where

y0 := b(c − e)

c − a
(5.8)

and

yc := b(c − e)

c − a
+ f − b

c − a
c = cf − be

c − a
= f . (5.9)

(ii) rank M(1) = 3: We let B denote the upper right-hand corner of M(2), that is,

B :=
⎛
⎝ ac be bd

acp beq bdr

beq bdr bds

⎞
⎠ =

⎛
⎝ ac be bd

ac2 bce bdr

bce bdr bds

⎞
⎠ .

We also let C denote the lower right-hand corner of M(2). Since we want rank M(2) = rank M(1) = 3, we must define
C := BT M(1)−1 B . Again, we need to verify that M(2)46 = M(2)55, i.e., C13 = C22. A straightforward calculation shows that

C13 = bcdr.

When c > e, we have r = ef
d , and another calculation shows that

C22 = b2ce2

a
;

it is then immediate that C13 = C22. When c = e, we have r = c, and in this case C13 = C22 = bc2d, as desired.
The proof of the theorem is now complete. �
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6. Description of the representing measure

In this section we provide a concrete description of the Berger measure for the subnormal completion in Theorem 5.1.
We have already observed that when rank M(1) = 1, the representing measure is μ = δ(a,b) . When rank M(1) = 2 (and the
columns 1 and X linearly independent), there is a 2-atomic representing measure, with atoms (0, y0) and (c, yc) given by
(5.8) and (5.9); thus, μ = ρ(0,y0)δ(0,y0) +ρ(c,yc)δ(c,yc) . To find the densities ρ(0,y0) and ρ(c,yc) , we use the first two moments:∫

dμ = ρ(0,y0) + ρ(c,yc) = 1 and
∫

s dμ = cρ(c,yc) = a. It follows that the densities are ρ(0,y0) = 1 − a
c and ρ(c,yc) = a

c . Thus,
μ = (1 − a

c )δ(0,y0) + a
c δ(c,yc) .

We now focus on the case rank M(1) = 3. Since M(1) is invertible, the last three columns of the flat extension M(2) can
be written in terms of the first three columns; that is, the columns labeled X2, Y X and Y 2 are linear combinations of 1, X
and Y . Each of these column relations is associated with a quadratic polynomial in x and y, whose zero sets give rise to the
so-called algebraic variety of Ω̂3 [13]; concretely, V (Ω̂3) := ⋂

p(X,Y )=0, deg p�2 Z(p), where Z(p) denotes the zero set of p.
In our case, the three column relations are

X2 = c X,

Y X = f X,

Y 2 = be( f − d)

a(c − e)
X + cd − ef

c − e
Y .

The associated zero sets are{
(x, y): x = 0 or x = c

}
,{

(x, y): x = 0 or y = f
}
,{

(x, y): y2 = be( f − d)

a(c − e)
x + cd − ef

c − e
y

}
.

Let z := cd−ef
c−e and observe that z > 0 by (5.5). The algebraic variety of Ω̂3 is then V (Ω̂3) = {(0,0), (0, z), (c, f )} and these

are the three atoms of the unique representing measure for M(2). To find the densities, we use the first three moments,
γ00, γ01 and γ10:⎧⎪⎨

⎪⎩
ρ(0,0) + ρ(0,z) + ρ(c, f ) = 1,

ρ(c, f )c = a,

ρ(0,z)z + ρ(c, f ) f = b.

We obtain

ρ(c, f ) = a

c
,

ρ(0,z) = 1

z

(
b − a

c
f

)
= b(c − e)2

c(cd − ef )
,

ρ(0,0) = 1 − ρ(0,z) − ρ(c, f ) = 1

ab(cd − ef )
det M(1).

Thus, the representing measure is

μ = det M(1)

ab(cd − ef )
δ(0,0) + b(c − e)2

c(cd − ef )
δ(0,z) + a

c
δ(c, f ). (6.1)

Direct calculation shows that
∫

s2 dμ(s, t) = a
c c2 = ac,

∫
st dμ(s, t) = a

c c f = af = be, and

∫
t2 dμ(s, t) = b(c − e)2

c(cd − ef )
z2 + a

c
f 2 = b(c − e)2

c(cd − ef )

(
cd − ef

c − e

)2

+ bef

c

= b(cd − ef )

c
+ bef

c
= bd,

so that μ correctly interpolates Ω1.
Recall now that the marginal measures ν X and νY associated to a Borel measure ν on the Cartesian product X × Y are

given by ν X (E) := ν(E × Y ) and νY (F ) := ν(X × F ), for E and F Borel sets (cf. [16,17]). In the specific case of the measure μ

in (6.1), observe that the marginal measures μX and μY are (1 − a
c )δ0 + a

c δc and det M(1)
ab(cd−ef ) δ0 + b(c−e)2

c(cd−ef ) δz + a
c δ f , respectively.

While μX is always 2-atomic, μY is 3-atomic if and only if z �= f . When μY is 3-atomic, its moments (which are also
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the moments of an associated unilateral weighted shift Wη) satisfy the recursive relation γn+2 = − f zγn + ( f + z)γn+1
(all n � 1), with γ0 = 1, γ1 = b and γ2 = bd. It is easy to see that the restriction of Wη to the invariant subspace M1

defined in (2.2) has Berger measure 1
γ1

t dμY (t) = ρ(0,z)z
b δz(t) + ρ(c, f ) f

b δ f (t), whose recursive coefficients are −zf and z + f ,
respectively.

On the other hand, it is indeed possible to have z = f , which occurs precisely when d = f . In that case, the three
atoms of μ are (0,0), (0, f ) and (c, f ), and the unilateral weighted shift associated with μY is W (b,d,d,...) . The reader will
note that the location of these atoms can also be predicted by Theorem 4.3, once we observe that rank Mx(2) = 1 and
rank M y(2) = 2.

7. Flat extensions may not exist

We now present an example of a set Ω3 for which the associated moment matrix M(2) admits a representing measure,
but such that M(2) has no flat extension M(3). Thus, while Theorem 4.3 provides a general sufficient condition for solving
SCP, not all SCP will fit that framework, and their associated moment matrices M(Ωm̃) will require a sequence of moment
matrix extensions M(Ωm̃+2), . . . , M(Ωm̃+2k), with M(Ωm̃+2k) admitting a flat extension M(Ωm̃+2(k+1)).

The example is motivated by the construction in [12, Examples 1.13 and 5.6], and also by [12, Proposition 1.12], which
states that a TMP and its image under a degree-one transformation of the base space are equivalent as moment prob-
lems. In particular, the qualitative aspects of TMP are preserved under degree-one transformations; our idea is therefore to
“translate” [12, Example 1.13] three units to the right and four units up, so that the support of the 6-atomic representing
measure in [12, Example 1.13] will land in the positive quadrant. (We note that to produce a valid representing measure
for SCP, it suffices to have all atoms in the nonnegative quadrant, and at least one atom in the positive quadrant.) To effec-
tuate the above mentioned translation, we recall the definition of the Riesz functional Lγ associated to a TMP. The linear
functional Lγ acts on polynomials by L(yi x j) := γi j . Given the moments γi j , one can translate the TMP by h units in the
horizontal direction and k units in the vertical direction by letting γ̃i j ≡ L̃(viu j) := Lγ ((v + 4)i(u + 3) j). The associated
moments of degree 4 are:

γ00 = 1,

γ01 = 1, γ10 = 1,

γ02 = 2, γ11 = 0, γ20 = 3,

γ03 = 4, γ12 = 0, γ21 = 0, γ30 = 9,

γ04 = 9, γ13 = 0, γ22 = 0, γ31 = 0, γ40 = 28,

γ̃00 = 1,

γ̃01 = 4, γ̃10 = 5,

γ̃02 = 17, γ̃11 = 19, γ̃20 = 27,

γ̃03 = 76, γ̃12 = 77, γ̃21 = 97, γ̃30 = 157,

γ̃04 = 354, γ̃13 = 331, γ̃22 = 371, γ̃31 = 535, γ̃40 = 972.

For example,

γ̃21 = Lγ

(
(v + 4)2(u + 3)

) = Lγ

((
v2 + 8v + 16

)
(u + 3)

)
= Lγ

(
v2u + 8vu + 3v2 + 16u + 24v + 48

) = γ21 + 8γ11 + 3γ20 + 16γ01 + 24γ10 + 48γ00

= 0 + 8 · 0 + 3 · 3 + 16 · 1 + 24 · 1 + 48 · 1 = 97.

With the new moments at hand, we form the matrix M(2). The corresponding weights are:

α03 =
√

535√
157

,

α02 =
√

97
3
√

3
, α12 =

√
371√
97

,

α01 =
√

19√
5

, α11 =
√

77√
19

, α21 =
√

331√
77

,

α00 = 2, α10 =
√

17 , α20 = 2
√

19√ , α30 =
√

17√ ,
2 17 38
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β03 = 18
√

3√
157

,

β02 =
√

157
3
√

3
, β12 =

√
535√
97

,

β01 = 3
√

3√
5

, β11 =
√

97√
19

, β21 =
√

371√
97

,

β00 = √
5, β10 =

√
19
2 , β20 =

√
77√
17

, β30 =
√

331
2
√

19
. (7.1)

Example 7.1. Let Ω3 be given by (7.1) and let M(2) ≡ M(2)(Ω3) be its associated moment matrix, with entries built from the
data γ̃i j . Let M(3) be a positive semi-definite, recursively generated, moment matrix extension of M(2). Then rank M(3) >

rank M(2). As a consequence, M(2) admits no flat extension M(3). For, consider a moment matrix extension

M(3) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 5 17 19 27 76 77 97 157

4 17 19 76 77 97 354 331 371 535

5 19 27 77 97 157 331 371 535 972

17 76 77 354 331 371 γ̃05 γ̃14 γ̃23 γ̃32

19 77 97 331 371 535 γ̃14 γ̃23 γ̃32 γ̃41

27 97 157 371 535 972 γ̃23 γ̃32 γ̃41 γ̃50

76 354 331 γ̃05 γ̃14 γ̃23 γ̃06 γ̃15 γ̃24 γ̃33

77 331 371 γ̃14 γ̃23 γ̃32 γ̃15 γ̃24 γ̃33 γ̃42

97 371 535 γ̃23 γ̃32 γ̃41 γ̃24 γ̃33 γ̃42 γ̃51

157 535 972 γ̃32 γ̃41 γ̃50 γ̃33 γ̃42 γ̃51 γ̃06

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the moments of degree 5 and 6 are new. A direct computation shows that rank M(2) = 5, and that (X −3)(Y −4) = 0,
that is, Y X = 4X + 3Y − 12. In any positive semi-definite, recursively generated, extension M(3) this column relation would
still be valid, and it would also give rise to two new column relations, namely Y X2 = 4X2 + 3Y X − 12X and Y 2 X =
4Y X + 3Y 2 − 12Y . These three identities lead at once to the values γ̃14 = 1497, γ̃23 = 1513, γ̃32 = 1925, γ̃41 = 3172,
γ̃15 = 243 + 4γ̃05, γ̃24 = 6555, γ̃33 = 7375, γ̃42 = 10796, and γ̃51 = 1024 + 3γ̃50. Now, since the compression of M(2) to the
rows and columns indexed by 1, X , Y , X2 and Y 2 is invertible, we can find coefficients A1, A X , AY , A X2 and AY 2 such that

A1[1]B + A X [X]B + AY [Y ]B + A X2

[
X2]

B + AY 2

[
Y 2]

B = [
X3]

B, (7.2)

where [·]B denotes the compression of a column to B := {1, X, Y , X2, Y 2}. A calculation using Mathematica [24] reveals that
A1 = −25513 + 15γ̃05, A X = 13587 − 8γ̃05, AY = 1, A X2 = −1692 + γ̃05 and AY 2 = 0. If M(3) were a flat extension of M(2),
an identity similar to (7.2) should hold for the last row in M(3), that is,

A1[1]{X3} + A X [X]{X3} + AY [Y ]{X3} + A X2

[
X2]

{X3} + AY 2

[
Y 2]

{X3} = [
X3]

{X3}. (7.3)

Using Mathematica again, it is easy to check that A1[1]{X3} + A X [X]{X3} + AY [Y ]{X3} + A X2 [X2]{X3} + AY 2 [Y 2]{X3} = 7376,

while [X3]{X3} = γ̃33 = 7375. It follows that M(3) cannot be a flat extension of M(2).

Remark 7.2. The SCP in Example 7.1 does admit a solution, and the subnormal completion has a 6-atomic Berger measure.
We see this after we observe that the positive semi-definite moment matrix extension M(3), while not a flat extension
of M(2), does admit a flat extension M(4). Rather than showing the details here, we refer the reader to [12, Proposition 5.5
and Example 5.6]; the representing measure constructed there must be translated three units to the right and four units up
to give rise to the Berger measure that solves SCP in Example 7.1.
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