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Abstract

Given a probability measure � with infinite support on the unit circle �D = {z : |z| = 1}, we consider a
sequence of paraorthogonal polynomials hn(z, �) vanishing at z = � where � ∈ �D is fixed. We prove that
for any fixed z0 /∈ supp(d�) distinct from �, we can find an explicit � > 0 independent of n such that either
hn or hn+1 (or both) has no zero inside the disk B(z0, �), with the possible exception of �.

Then we introduce paraorthogonal polynomials of the second kind, denoted sn(z, �). We prove three
results concerning sn and hn. First, we prove that zeros of sn and hn interlace. Second, for z0 an isolated
point in supp(d�), we find an explicit radius �̃ such that either sn or sn+1 (or both) have no zeros inside
B(z0, �̃). Finally, we prove that for such z0 we can find an explicit radius such that either hn or hn+1 (or
both) has at most one zero inside the ball B(z0, �̃).
© 2007 Elsevier Inc. All rights reserved.

Keywords: Paraorthogonal polynomials; Second kind paraorthogonal polynomials; Interlacing zeros; Zeros of
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1. Introduction

Suppose we are given a probability measure � on the unit circle �D = {z ∈ C : |z| = 1} with
infinite support. We form the inner product 〈, 〉 and the norm in L2(d�) as follows:

〈f, g〉 =
∫
�D

f (z)g(z) d�(z), ‖f ‖ = 〈f, f 〉1/2. (1.1)
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By the Gram–Schmidt process, we then obtain a sequence of monic orthogonal polynomials
(�n)

∞
n=1, the normalized sequence being (�n)

∞
n=1, such that �n is an nth degree polynomial with

the property:

〈�m, �n〉 = �mn. (1.2)

These orthogonal polynomials satisfy the Szegő recursion relation:

�n(z) = z�n−1(z) − �n−1�
∗
n−1(z), (1.3)

where �∗
m(z) = zm�m(1/z).

The family of �n’s are known as the Verblunsky coefficients. There are a few important prop-
erties of orthogonal polynomials and Verblunsky coefficients which are relevant to this paper:

|�n| < 1, (1.4)

‖�n‖ = (1 − |�n−1|2)1/2‖�n−1‖ =
n−1∏
j=0

(1 − |�j |2)1/2, (1.5)

|�n(z)| = |�∗
n(z)| ⇔ z ∈ �D, (1.6)

�n(z) has all its zeros inside D, (1.7)

〈�n(z), z
k〉 = 0 for k = 0, . . . , n − 1, (1.8)

〈�∗
n(z), z

k〉 = 0 for k = 1, . . . , n. (1.9)

Paraorthogonal polynomials were introduced at least as early as in [5]. An nth degree
paraorthogonal polynomial is of the form (up to multiplication with a constant)

Hn(z, �n−1) = z�n−1(z) − �n−1�
∗
n−1(z) (1.10)

with �n−1 ∈ �D; �∗
n−1(z) = zn−1�n−1(1/z).

Paraorthogonal polynomials have a lot in common with orthogonal polynomials on the real
line (pn)

∞
n=0. For instance, a paraorthogonal polynomial has simple zeros on the unit circle while

pn has simple zeros on the real line. Besides, for a specific family of paraorthogonal polynomials
(hn)

∞
n=0 that we shall consider, it has been proven in [1,4] that zeros of hn and hn+1 strictly

interlace, this interlacing property is also shared by pn and pn+1.
In this paper we shall prove three results concerning this specific family of paraorthogonal

polynomials (hn)
∞
n=0, namely Theorems 5.1–5.3. These results are in parallel with those proven

for orthogonal polynomials of the real line pn.
Theorems 5.1 and 5.3 are analogues of the following results by Denisov–Simon [3]:

Theorem 1.1. Let � = dist(x0, supp(d�)) > 0. Suppose an+1 is the recursion coefficient as
given by xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x). Let rn = �2/(� + √

2an+1). Then
either pn or pn+1 (or both) has no zeros in (x0 − rn, x0 + rn).

Theorem 1.2. Let x0 be an isolated point of supp(d�) on the real line. Then there exists d0 > 0
so that if �n = d2

0/(d0 + √
2an+1), then at least one of pn and pn+1 has no zeros or one zero in

(x0 − �n, x0 + �n).

Theorem 5.2, which proves that first and second kind paraorthogonal polynomials of the same
degree have interlacing zeros, is an analogue of the following well-known fact about first and
second kind orthogonal polynomials on the real line, pn and qn:
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Theorem 1.3. Zeros of pn and qn strictly interlace.

For a more comprehensive introduction to orthogonal polynomials and paraorthogonal poly-
nomials, the reader should refer to Refs. [6,7,9].

2. Properties of paraorthogonal polynomials

A major difference between orthogonal polynomials and paraorthogonal polynomials lies in
the fact that �n ∈ D is determined uniquely by the measure, while �n ∈ �D could be chosen
arbitrarily on the unit circle. These differences give rise to the following properties of Hn which
are not shared by �n:

1. Zeros on �D: Unlike orthogonal polynomials which have zeros strictly inside the unit disk,
paraorthogonal polynomials have zeros in �D. To see that it suffices to note that∣∣∣∣z�n(z)

�∗
n(z)

∣∣∣∣ = 1 ⇔ z ∈ �D. (2.1)

2. Orthogonality: An nth degree paraorthogonal polynomial is orthogonal to {z, z2, . . . , zn−1}
because of the orthogonal properties of �n−1 and �∗

n−1 as in (1.8) and (1.9). However, we note
that Hn is never orthogonal to 1 or zn because

〈Hn, 1〉 = (�n−1 − �n−1)‖�n−1‖2 
= 0, (2.2)

〈Hn, z
n〉 =

(
1 − �n−1�n−1

)
‖�n−1‖2 
= 0. (2.3)

3. Representation: Suppose � is a zero of Hn(z, �n−1). We prove that Hn could be represented
using the reproducing kernel Kn(z, �) = ∑n

j=0 �j (z)�j (�) and a constant C as follows:

Hn(z, �n−1) = C(z − �)

n−1∑
j=0

�j (z)�j (�) = C(z − �)Kn−1(z, �). (2.4)

The argument is related to Szegő [9] when he proved the Christoffel–Darboux formula. It goes
as follows: since � is a zero of Hn, Hn(z) = (z − �)h(z) for some polynomial h of degree n − 1.
By the orthogonality of Hn against {z, . . . , zn−1}, 〈zh, zm〉 = 〈�h, zm〉 for 1�m�n − 1, which
implies that �〈h, zm−1〉 = 〈h, zm〉. Applying this formula recursively, we conclude that

〈h, zm〉 = �m〈h, 1〉 for 0 < m�n − 1. (2.5)

When m = 0 the argument is trivial. If �s(z) = ∑s
j=0 aj z

j , then for 0�s�n − 1,

〈h, �s〉 = 〈h, 1〉
s∑

j=0

aj�
j = 〈h, 1〉�s(�). (2.6)

If we express h using Fourier series,

h(z) =
n−1∑
j=0

〈h, �j 〉�j (z) =
n−1∑
j=0

〈h, 1〉�j (�)�j (z) = 〈h, 1〉Kn−1(z, �). (2.7)
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4. Simple zeros: Let � and h be defined as above. By (2.7), 〈h, 1〉 = 0 implies h = 0, hence
〈h, 1〉 
= 0. In addition, �0 = 1 implies Kn−1(�, �) > 0. Therefore h(�) = 〈h, 1〉Kn−1(�, �) 
= 0.
This shows that zeros of paraorthogonal polynomials are simple.

5. Linear independence: The argument for property (3) above also tells us that a paraorthogonal
polynomial could vanish at one arbitrary point on the unit circle, and that particular zero fixes
the remaining ones. Therefore, two paraorthogonal polynomials of the same degree are linearly
independent if and only if all their zeros are distinct.

The reader could refer to [1,7] for more properties of paraorthogonal polynomials.

3. Equivalent definitions of hn

Fix � ∈ �D. We define the family of paraorthogonal polynomials (hn(z, �))n as follows:

hn(z, �) := (1 − �z)Kn−1(z, �). (3.1)

We will soon see that there are three equivalent definitions of hn by the Christoffel–Darboux
formula. The formula says that for yz 
= 1, the reproducing kernel Kn−1(z, y) could be expressed
in the following ways:

Kn−1(z, y) = �∗
n(y)�∗

n(z) − �n(y)�n(z)

1 − yz
(3.2)

= �∗
n−1(y)�∗

n−1(z) − yz�n−1(y)�n−1(z)

1 − yz
. (3.3)

Hence, we have the following three equivalent definitions of hn(z, �):

hn(z) = (1 − �z)

n−1∑
j=0

�j (z)�j (�) (3.4)

= �∗
n(�)�∗

n(z) − �n(�)�n(z) (3.5)

= �∗
n−1(�)�∗

n−1(z) − z��n−1(�)�n−1(z). (3.6)

By rewriting (3.6) in the form of (1.10),

hn(z) = −��n−1(�)

(
z�n−1(z) − �

�∗
n−1(�)

�n−1(�)
�∗

n−1(z)

)
(3.7)

we see that the coefficient �n−1 of this particular family of paraorthogonal polynomials are

�n−1(hn) = �
�∗

n−1(�)

�n−1(�)
. (3.8)

4. Paraorthogonal polynomials of the second kind sn

Paraorthogonal polynomials of the second kind arise from orthogonal polynomials of the sec-
ond kind, namely 	k(z), which are orthogonal polynomials associated to the measure 
 with
Verblunsky coefficients

�n(d
) = −�n(d�). (4.1)
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The existence of the measure is guaranteed by Verblunsky’s theorem which says that for any given
sequence of complex numbers inside D, there corresponds a measure on the unit circle with such
as Verblunsky coefficients.

With the same � as we used to define hn(z, �), we define our paraorthogonal polynomials of
the second kind sn as follows:

sn(z) = �∗
n−1(�)	∗

n−1(z) + z��n−1(�)	n−1(z). (4.2)

If we rewrite (4.2) in the form of (3.7)

sn(z) = ��n−1(�)

(
z	n−1(z) + �

�∗
n−1(�)

�n−1(�)
	∗

n−1(z)

)
(4.3)

we see that the �n coefficient of this family of paraorthogonal polynomials (sn)n is given by

�n(sn) = −�n(hn). (4.4)

As in the case of hn, we shall see that there are three equivalent definitions of sn by means of
the mixed Christoffel–Darboux formulae, which state that

�∗
n−1(y)	∗

n−1(z) + zy�n−1(y)	n−1(z) = �∗
n(y)	∗

n(z) + �n(y)	n(z), (4.5)

n−1∑
j=0

�j (y)	j (z) = 2 − �∗
n(y)	∗

n(z) − �n(y)	n(z)

1 − yz
for y 
= z. (4.6)

The reader should refer to [7, Chapter 3.2] for the proof.
By (4.5) and (4.6), sn(z, �) has the following three equivalent definitions:

sn(z) = �∗
n−1(�)	∗

n−1(z) + z��n−1(�)	n−1(z) (4.7)

= �∗
n(�)	∗

n(z) + �n(�)	n(z) (4.8)

= −(1 − �z)

n−1∑
j=0

�j (�)	j (z) + 2. (4.9)

5. Results

We prove four results concerning hn, hn+1, sn and sn+1. Some related results will be discussed.

Theorem 5.1. Suppose z0 ∈ �D distinct from � and � = dist(z0, supp(d�)) > 0. Then in the
open disk around z0 with radius

� = �3

8 + �2
(5.1)

either hn or hn+1 (or both) has no zero inside, with the possible exception of �.
Furthermore, if L = dist(�, supp(d�)) > 0, then the radius could be taken as

�′ = �2L

8 + �L
. (5.2)

Note that when L > �, �′ > �, hence (5.2) improves (5.1).
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There is a related conjecture concerning double limit points which was proposed in [4] and
proven in [2]. The result says that the set of double limit points of hn coincides with supp(d�),
except at most the point �. In other words, if dist(z0, supp(d�)) > 0, then for any sequence of
integers I, there exists a subsequence I ′ ⊂ I and �I > 0 such that for n ∈ I ′, either hn or hn+1
(or both) has no zero in the open disk B(z0, �I ).

However, Theorem 5.1 is clearly stronger because we found an explicit radius � for which the
double zero result holds (5.1) and the result does not depend on n.

Theorem 5.2. The zeros of hn and sn strictly interlace, that is, between any two zeros of hn (or
sn), there is one and only one zero of sn (or hn, respectively) in between.

At the same time that this result was proven, Simon [8] demonstrated another way of proving the
result using the theory of rank one perturbations of unitary operators. He made the observation that
the CMV matrix associated to sn is just the original one with the signs of �j and �n−1 reversed,
and it is unitarily equivalent to one where the signs are not reversed but the first column has
opposite sign.

The main tools of the proof are the two real-valued functions �n and 
n which we will define
in (7.3) and (7.4). They were used in Ref. [1] to prove that zeros of hn and hn+1 interlace, but the
method employed in our proof is different.

The remaining two results are:

Lemma 5.1. Suppose z0 is an isolated point in supp(d�). Then

�̃ = dist(z0, supp(d
)) > 0 (5.3)

and in the ball around z0 with radius

�̃ = �̃
2|z0 − �|

8 + |z0 − �|�̃ (5.4)

either sn or sn+1 (or both) has no zeros inside.

Theorem 5.3. Suppose z0 is an isolated point of supp(d�) and �̃ is as defined in (5.3). Then in
the open disk around z0 with radius

�̃ = �̃
2|z0 − �|

8 + |z0 − �|�̃ (5.5)

either hm or hn+1 (or both) has at most one zero inside.

6. Proof of Theorem 5.1

Before we start the proof, we refer to a theorem about zeros of hn in a gap of the measure:

Theorem 6.1 (Cantero et al. [1, Corollary 2], Golinskii [4, Theorem 2], Simon [8, Theorem 2.3]).
Let an arc � = (�, �) on �D be a gap in supp(d�), that is, supp(d�) ∩ � = ∅ and � goes to
� counterclockwise. Then for each n, the paraorthogonal polynomial hn has at most one zero in
� = [�, �].
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If � is in a gap �, since � is zero of all hn, by Theorem 6.1 there are no other zeros of hn or
hn+1 in �. In other words, if z0 and � are in the same gap, in a radius � = dist(z0, supp(d�))

around z0 there could be no zeros other than �. Since � > �, Theorem 5.1 holds. Hence if � is
in a gap, it suffices to look at the case when z0 that sits in gaps other than �. In such a situation,
|z0 − �|�dist(z0, supp(d�)).

However, if � is not in a gap, that is, � is in the support of a measure, then clearly |z0 −
�|�dist(z0, supp(d�)).

Without loss of generality, we may assume that |z0 − �|�� in this section.
We shall divide the proof into two lemmas:

Lemma 6.1.∣∣∣∣ hi(z0)

Kn−1(z0, z0)1/2

∣∣∣∣ � 1

4
|�n(�)|�2 (6.1)

where

i =
{

n if |hn+1(z0)|� |hn(z0)|,
n + 1 if |hn(z0)|� |hn+1(z0)|.

Proof. Suppose |hn+1(z0)|� |hn(z0)|.
First, we give a bound for the L2(�) norm of ‖(z0 − ·)Kn−1(z0, ·)‖.
By the parallelogram equality and the fact that |�∗

n(z0)| = |�n(z0)|,
‖(z0 − ·)Kn−1(z0, ·)‖2 = ‖�∗

n(·)�∗
n(z0) − �n(·)�n(z0)‖2

�2|�∗
n(z0)|2 + 2|�n(z0)|2 = 4

∣∣∣∣∣hn+1(z0) − hn(z0)

(z0 − �)�n(�)

∣∣∣∣∣
2

� 4|hn+1(z0)|2 + 4|hn(z0)|2 + 8|hn+1(z0)hn(z0)|
|�n(�)|2|z0 − �|2 � 16|hn(z0)|2

|�n(�)|2|z0 − �|2 . � (6.2)

Remark. Note that hn+1(z0) − hn(z0) = (1 − �z0)�n(�)�n(z0), so it is impossible that both
hn+1(z0) and hn(z0) are zero because � has zeros inside the unit circle.

On the other hand, we observe that

‖Kn−1(z0, ·)‖ =
(∫

�D
Kn−1(z0, y)Kn−1(z0, y) d�(y)

)1/2

= Kn−1(z0, z0)
1/2. (6.3)

Hence

‖(z0 − ·)Kn−1(z0, ·)‖2 �dist(z0, supp(d�))2Kn−1(z0, z0). (6.4)

As a result,

dist(z0, supp(d�))2Kn−1(z0, z0)�
16|hn(z0)|2

|�n(�)|2|z0 − �|2 . (6.5)

This proves the case when |hn+1(z0)|� |hn(z0)|.
Now suppose |hn+1(z0)|� |hn(z0)|. The proof could be carried out in a similar manner, only

that after (6.2) all appearances of hn will be replaced by hn+1. �
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Lemma 6.2. Suppose � is a zero of hn which is distinct from �. Let T = dist(�, supp(d�)), then

|z0 − �|� |hn(z0)|
Kn−1(z0, z0)1/2‖hn‖T . (6.6)

Proof. Since � is a zero of hn, g(z) = hn(z)
(z−�) is a polynomial of degree n − 1, so we can express

it as

hn(z)

(z − �)
=
∫
�D

Kn−1(z, y)g(y) d�(y). (6.7)

By the Schwarz inequality,∣∣∣∣ hn(z0)

(z0 − �)

∣∣∣∣ �‖Kn−1(z0, ·)‖‖g‖ = Kn−1(z0, z0)
1/2‖g‖. (6.8)

Also note that ‖g‖ =
∥∥∥ hn(z)

(z−�)

∥∥∥ � ‖hn‖
T

. Therefore,

|z0 − �|� |hn(z0)|
Kn−1(z0, z0)1/2‖hn‖T . � (6.9)

Proof of Theorem 5.1. Notice that either one of the following must be true:

|hn+1(z0)|� |hn(z0)|, (6.10)

|hn(z0)|� |hn+1(z0)|. (6.11)

We observe that

‖hn‖ = ‖�∗
n(�)�∗

n(y) − �n(�)�n(y)‖L2(d�(y)) �2|�n(�)|. (6.12)

If (6.10) is true, combining this with Lemmas 6.1 and 6.2, we obtain that

|z0 − �|�
(

�2|�n(�)|
4

1

2|�n(�)|

)
T = �2T

8
. (6.13)

Finally, by the triangle inequality,

T = dist(�, supp(d�))�dist(z0, supp(d�)) − |z0 − �| = � − |z0 − �|. (6.14)

This gives

|z0 − �|� �2(� − |z0 − �|)
8

(6.15)

and the result follows.
On the other hand, if (6.11) is true, then instead of (6.12) we use the definition of hn+1 in (3.6)

which will give the same bound of ‖hn+1‖ as in (6.12). Hence the same argument applies to hn+1.
Now consider the special case where L = dist(�, supp(d�)) > 0. Without loss of generality,

suppose (6.10) is true. Since � and � are distinct zeros of hn, we could apply a similar argument
as in Lemma 6.2 to hn(z)

(z−�)(z−�)
and obtain the following:

|z0 − �||z0 − �|� |hn(z0)|
Kn−2(z0, z0)1/2‖hn‖T L. (6.16)
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Since Kn−2(z0, z0)
1/2 �Kn−1(z0, z0)

1/2, the desired inequality follows. Now we combine (6.16)
with Lemma 6.1. The |z0 − �| term cancels on both sides and it gives us

|z0 − �|� �LT

8
. (6.17)

Again, we use the triangle inequality on T and the result follows. Clearly, if (6.11) is true, we
could still apply the same argument to hn+1. �

7. Proof of Theorem 5.2

Proof. According to the definitions of �∗
n and 	∗

n,

sn(z) = �nzn�n(�)	n(z) + �n(�)	n(z), (7.1)

hn(z) = �nzn�n(�)�n(z) − �n(�)�n(z). (7.2)

If we define for z ∈ �D

�n(z) := sn(z)

(�z)n/2
, (7.3)


n(z) := hn(z)

i(�z)n/2
(7.4)

with Arg((�z)1/2) ∈ [0, �), then �n and 
n are real-valued C∞ functions and they have the same
zeros as sn and hn, respectively.

To prove the interlacing condition of Theorem 5.2, it suffices to prove the following:

d
n(e
i�)

d�
�n(e

i�) < 0 at every zero ei� of 
n(z). (7.5)

We shall prove condition (7.5) for n + 1.
Suppose � is a zero of hn+1. By (2.4), hn+1 could be expressed by the reproducing kernel.

Hence 
n+1 can be represented as


n+1(z) = 1

i(�z)(n+1)/2

−��n(�)

�n(�)
(z − �)

n∑
j=0

�j (z)�j (�). (7.6)

The constant −��n(�)

�n(�)
is obtained by comparing the leading coefficients of the right-hand side of

(7.6) and that of hn+1 when expressed in terms of (3.6).
As a result, the derivative of 
n+1 at � is

d
n+1

dz
(�) = lim

z→�


n+1(z) − 
n+1(�)

z − �
= lim

z→�


n+1(z)

z − �

= −��n(�)

i�n(�)

(
�

�

)n+1
2

Kn(�, �). (7.7)

Let � = ei� and z = ei�. By the chain rule,

d
n+1

d�
(�) = i�

d
n+1

dz
(�) = −�n(�)

�n(�)

(
�

�

)n−1
2

Kn(�, �). (7.8)
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Now we go back to
d
n(e

i�)

d�
�n(e

i�) and compute

d
n+1(e
i�)

d�
�n+1(e

i�)

= −�n(�)

�n(�)

(
�

�

)n

Kn(�, �)
(
�∗

n(�)	∗
n(�) + ���n(�)	n(�)

)
= −

(
�

�

)n

Kn(�, �)

(
|�n(�)|2

(
�

�

)n 	n(�)

�n(�)
+ ��

�n(�)

�n(�)
�n(�)	n(�)

)
. (7.9)

Recall that 
n+1(�) = 0, which implies that

�n(�)

�n(�)
= �n(�)

�n(�)

(
�

�

)n−1

. (7.10)

We then apply this onto the second part of the summand in (7.9):

(7.9) = −
(

�

�

)n

Kn(�, �)

(
|�n(�)|2

(
�

�

)n 	n(�)

�n(�)
+
(

�

�

)n �n(�)

�n(�)
�n(�)	n(�)

)

= −Kn(�, �)|�n(�)|2
(

	n(�)

�n(�)
+ 	n(�)

�n(�)

)

= −Kn(�, �)

∣∣∣∣�n(�)

�n(�)

∣∣∣∣2 (	n(�)�n(�) + �n(�)	n(�)
)

. (7.11)

Now we use a formula that relates �n and 	n (see [7, Chapter 3.2]):

	n(z)�n(z) + �n(z)	n(z) = 2 in �D. (7.12)

We apply (7.12) to (7.11). This gives us the result that at any zero � of 
n+1:

d
n+1(e
i�)

d�
�n+1(e

i�) = (7.9) = −2Kn(�, �)

∣∣∣∣�n(�)

�n(�)

∣∣∣∣2 < 0. (7.13)

The interlacing theorem is proven. �

8. Proof of Lemma 5.1

We prove Lemma 5.1 by stating several lemmas which are similar to those in the proof of
Theorem 5.1.

Lemma 8.1. Suppose �̃ = dist(z0, supp(d
)) > 0 and K̃n(x, y) =
∑n

j=0
	j (x)	j (y) is the

reproducing kernel with respect to the measure 
. Then∣∣∣∣ si(z0)

K̃n−1(z0, z0)1/2

∣∣∣∣ � 1

4
|�n(�)||z0 − �|�̃, (8.1)

where

i =
{

n if |sn+1(z0)|� |sn(z0)|,
n + 1 if |sn(z0)|� |sn+1(z0)|.
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Proof. The proof is essentially the same as the one of Lemma 6.1, except for a few differences.
The L2 norm here refers to the one taken with respect to 
 and hn is replaced by sn.

It is also worth noting that by the definition of sn in (4.9),

sn+1(z) − sn(z) = −(1 − �z)�n(�)	n(z) 
= 0 on �D. (8.2)

As a result,

|	n(z0)| =
∣∣∣∣ sn+1(z0) − sn(z0)

(z0 − �)�n(�)

∣∣∣∣ (8.3)

which allows us to proceed in the same way as in the proof of Lemma 6.1. �

Lemma 8.2. Suppose �̃ is a zero of sn. Let T̃ = dist(�̃, supp(d
)), then

|z0 − �̃|� |sn(z0)|
K̃n−1(z0, z0)1/2‖sn‖L2(d
)

T̃ . (8.4)

The proof of this lemma is omitted because it resembles that of Lemma 6.2.
Finally, we state the following lemma relating the support of � and 
:

Lemma 8.3. Suppose z0 is an isolated point in the support of �. Then

�̃ = dist(z0, supp(d
)) > 0. (8.5)

The reader could refer to [7, Chapter 3.2, p. 225] for the proof.
Next, we are going to finish the proof of Lemma 5.1.

Proof. Suppose z0 is an isolated point in the support of d� which is distinct from �. By
Lemma 8.3, dist(z0, supp(d
)) > 0.

Either |sn(z0)|� |sn+1(z0)| or |sn(z0)|� |sn+1(z0)| is true. Without loss of generality, we assume
that |sn(z0)|� |sn+1(z0)| and use Lemma 8.1.

Furthermore, we observe that

‖sn‖�2|�n(�)|‖	n‖L2(d
) = 2|�n(�)|. (8.6)

Then we combine these results to get

|z0 − �̃|� |z0 − �|�̃T̃

8
. (8.7)

Finally, we apply the triangle inequality to T̃ :

T̃ = dist(�̃, supp(d
))�dist(z0, supp(d
)) − |z0 − �̃| = �̃ − |z0 − �̃|. (8.8)

This gives us the following inequality which finishes the proof:

|z0 − �̃|� �̃
2|z0 − �|

8 + |z0 − �|�̃ . � (8.9)



Manwah Lilian Wong / Journal of Approximation Theory 146 (2007) 282–293 293

9. Proof of Theorem 5.3

Proof. By Lemma 5.1, inside the ball B(z0, �̃) either sn or sn+1 (or both) has no zero inside,
with �̃ given by (8.9). Without loss of generality, we assume that sn does not have zeros inside.
By Theorem 5.2 the zeros of hn and sn interlace, therefore hn cannot have more than two zeros
inside B(z0, �̃). �

Acknowledgments

I would like to thank Professor Barry Simon for his suggesting this problem, as well as his time
for many very helpful discussions and email communications. I would also like to thank Cherie
Galvez for her editorial advice as well as her help with LaTeX.

References

[1] M.J. Cantero, L. Moral, L. Velázquez, Measures and paraorthogonal polynomials on the unit circle, East J. Approx.
8 (4) (2002) 447–464.

[2] M.J. Cantero, L. Moral, L. Velázquez, Measures on the unit circle and unitary truncations of unitary operators,
J. Approx. Theory 139 (2006) 430–468.

[3] S.A. Denisov, B. Simon, Zeros of orthogonal polynomials on the real line, J. Approx. Theory 121 (2003) 357–364.
[4] L. Golinskii, Quadrature formula and zeros of paraorthogonal polynomials on the unit circle, Acta Math. Hungar. 96

(3) (2002) 169–186.
[5] W.B. Jones, O. Njåstad, W.J. Thron, Moment theory, orthogonal polynomials, quadrature formula, and continued

fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989) 113–152.
[6] B. Simon, OPUC on one foot, Bull. Amer. Math. Soc. (N.S.) 42 (4) (2005) 431–460.
[7] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, AMS Colloquium Series, American

Mathematical Society, Providence, RI, 2005.
[8] B. Simon, Rank one perturbations and zeros of paraorthogonal polynomials on the unit circle, J. Math. Anal. Appl.,

to appear.
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