JOURNAL OF MULTIVARIATE ANALYSIS 35, 308-313 (1990)

(1/a)-Self Similar a-Stable Processes with Stationary Increments*

GENNADY SAMORODNITSKY

Cornell University

AND

MURAD S. TAQQU

Boston University

Communicated by the Editors

In this note we settle a question posed by Kasahara, Maejima, and Vervaat. We show that the α -stable Lévy motion is the only $(1/\alpha)$ -self-similar α -stable process with stationary increments if $0 < \alpha < 1$. We also introduce new classes of $(1/\alpha)$ -self-similar α -stable processes with stationary increments for $1 < \alpha < 2$. © 1990 Academic Press, Inc.

1. INTRODUCTION

A stochastic process $\{X(t), t \ge 0\}$ is called α -stable, $0 < \alpha \le 2$, if its finitedimensional distributions are α -stable, and it is called *H*-self-similar, H > 0, if for every c > 0, $\{X(ct), t \ge 0\} \stackrel{d}{=} \{c^H X(t), t \ge 0\}$ in the sense of equality of the finite-dimensional distributions. The class of α -stable *H*-self-similar processes with stationary increments (*H*-sssi processes) has been extensively studied in recent years. (Kasahara, Maejima, and Vervaat [4], Cambanis and Maejima [1], Samorodnitsky and Taqqu [9], Takenaka [10]. An extensive list of references can be found in Taqqu [11], and Maejima [7]). It is known in particular that the self-similarity parameter *H* can never exceed max $(1, 1/\alpha)$ [6]. Much of the research in this area has been concentrated on constructing examples of α -stable *H*-sssi processes with (α, H) in the feasible region. One major problem is to show that two such stochastic

Received February 16, 1990; revised May 16, 1990.
AMS 1980 subject classifications: primary 60E07, 60G99.
Keywords and phrases: stable distributions, self-similar processes, stable Lévy motion.
* This research was supported at Boston University by ONR Grant N00014-90-J-1287.

0047-259X/90 \$3.00 Copyright © 1990 by Academic Press, Inc. All rights of reproduction in any form reserved. 308

processes are really different, i.e., that they do not satisfy $\{X_1(t), t \ge 0\} \stackrel{d}{=} \{cX_2(t), t \ge 0\}$ for some constant c.

The first goal of this note is to solve the problem posed by Kasahara, Maejima, and Vervaat [4], namely, to show that the only α -stable $(1/\alpha)$ -sssi process with $0 < \alpha < 1$ is the α -stable Lévy motion. This is done in Section 2.

The second goal, achieved in Section 3, is to obtain new classes of $(1/\alpha)$ -sssi processes with $1 < \alpha < 2$. This is done by considering classes of α -stable *H*-sssi processes, 0 < H < 1, related to multiparameter processes described in Takenaka [10]. We use a new technique developed by Samorodnitsky and Taqqu [8] to show that these classes are disjoint. The technique is based on the properties of the conditional distributions of α -stable processes.

2. α -stable (1/ α)-sssi Processes with $0 < \alpha < 1$

It is easy to see that strictly α -stable Lévy motions (i.e., processes with stationary independent increments having a strictly α -stable distribution) are $(1/\alpha)$ -sssi processes. Are there any others? In the Gaussian case $\alpha = 2$, the answer is easily seen to be negative. The answer is positive when $1 < \alpha < 2$ (see [4] and Section 3 for more details). The answer is positive for $\alpha = 1$ as well, because if X(1) has a 1-stable law then the linear function with random slope X(t) = tX(1), $t \ge 0$, is 1-sssi [4]. The problem has been open in the case $0 < \alpha < 1$. We settle it through the following result.

THEOREM 2.1. The only non-degenerate α -stable $(1/\alpha)$ -sssi processes with $0 < \alpha < 1$ are the strictly α -stable Lévy motions.

Proof. Let $\{X(t), t \ge 0\}$ be a non-degenerate (i.e., $X(1) \ne 0$ a.s.) α -stable $(1/\alpha)$ -sssi process with $0 < \alpha < 1$. It follows from Theorem A of [4] that $\{X(t), t \ge 0\}$ must be strictly α -stable. Let σ_t denote the scaling parameter of the α -stable random variable X(t). Then $\sigma_t = t^{1/\alpha}\sigma_1$ by $(1/\alpha)$ -self-similarity. Fix arbitrary $0 \le s_1 < s_2 \le t_1 < t_2$. The random variables $X(s_1)$, $X(s_2)$, $X(t_1)$, and $X(t_2)$ are jointly strictly α -stable, and thus there are functions $f_{s_1}, f_{s_2}, f_{t_1}$, and f_{t_2} in $L^{\alpha}([0, 1])$ such that

$$(X(s_1), X(s_2), X(t_1), X(t_2)) = \frac{d}{dt} \left(\int_0^1 f_{s_1}(x) M(dx), \int_0^1 f_{s_2}(x) M(dx), \int_0^1 f_{t_1}(x) M(dx), \int_0^1 f_{t_2}(x) M(dx) \right),$$

where M is an independently scattered α -stable measure on ([0, 1], \mathscr{B}) with Lebesgue control measure and skewness intensity $\beta \equiv 1$ [3]. We have

$$t_{2}\sigma_{1}^{\alpha} = \sigma_{t_{2}}^{\alpha} = \int_{0}^{1} |f_{t_{2}}(x)|^{\alpha} dx$$

$$\leq \int_{0}^{1} |f_{s_{1}}(x)|^{\alpha} dx + \int_{0}^{1} |f_{s_{2}}(x) - f_{s_{1}}(x)|^{\alpha} dx$$

$$+ \int_{0}^{1} |f_{t_{1}}(x) - f_{s_{2}}(x)|^{\alpha} dx + \int_{0}^{1} |f_{t_{2}}(x) - f_{t_{1}}(x)|^{\alpha} dx \qquad (2.1)$$

$$= \sigma_{s_{1}}^{\alpha} + \sigma_{s_{2}-s_{1}}^{\alpha} + \sigma_{t_{1}-s_{2}}^{\alpha} + \sigma_{t_{2}-t_{1}}^{\alpha}$$

$$= s_{1}\sigma_{1}^{\alpha} + (s_{2}-s_{1})\sigma_{1}^{\alpha} + (t_{1}-s_{2})\sigma_{1}^{\alpha} + (t_{2}-t_{1})\sigma_{1}^{\alpha} = t_{2}\sigma_{1}^{\alpha}.$$

Here we have used the stationarity of the increments of $\{X(t), t \ge 0\}$. Thus the inequality in (2.1) is, actually, an equality, implying

$$(f_{s_2}(x) - f_{s_1}(x))(f_{t_2}(x) - f_{t_1}(x)) = 0$$
 a.e.

It follows from Theorem 2.3 of [3] that $X(s_2) - X(s_1)$ and $X(t_2) - X(t_1)$ are independent for any $0 \le s_1 < s_2 \le t_1 \le t_2$, and since for jointly stable random variables pairwise independence is equivalent to total independence, we conclude that $\{X(t), t \ge 0\}$ has independent increments. That is, $\{X(t), t \ge 0\}$ is a strictly α -stable Lévy motion.

3. New Classes of α -stable *H*-sssi Processes

Let $n \ge 2$, $0 < \alpha < 2$, and let M be an independently scattered α -stable random measure on $(\mathbb{R}^n, \mathscr{B}^n)$ with (*n*-dimensional) Lebesgue control measure and constant skewness intensity β . In the case $\alpha = 1$, we assume $\beta \equiv 0$. Let $\|\cdot\|$ be the Euclidean norm on \mathbb{R}^n (any other norm will do as well). For a fixed $H \in (0, 1)$, set

$$X_{n,\alpha,H}(t) = \int_{\mathbf{R}^n} \left(\|\mathbf{x} - t\mathbf{1}\|^{H - (n/\alpha)} - \|\mathbf{x}\|^{H - (n/\alpha)} \right) M(d\mathbf{x}), \ t \ge 0.$$
(3.1)

Here $\mathbf{x} = (x_1, ..., x_n)$, and $\mathbf{1} = (1, ..., 1) \in \mathbf{R}^n$. It is easy to check that the integrand in (3.1) is in $L^{\alpha}(\mathbf{R}^n)$, and thus $\{X(t), t \ge 0\}$ is a well-defined strictly α -stable process. It is a matter of simple algebra to check that $\{X(t), t \ge 0\}$ is an *H*-sssi process. The process (3.1) is a natural extension of an α -stable fractional Lévy motion [5]. It is related to the processes introduced by Takenaka [10, Theorem 2].

Our goal is to prove that the processes $\{X_{n,\alpha,H}(t), t \ge 0\}$ and $\{X_{m,\alpha,H}(t), t \ge 0\}$ are different if $m \ne n$ in the sense that there is no constant c such that $\{X_{n,\alpha,H}(t), t \ge 0\} \stackrel{d}{=} \{cX_{m,\alpha,H}(t), t \ge 0\}$. They therefore form new families of α -stable H-sssi processes.

THEOREM 3.1. For any $m, n \ge 2, m \ne n$, any $0 < \alpha < 2, 0 < H < 1$, the processes $\{X_{n,\alpha,H}(t), t \ge 0\}$ and $\{X_{m,\alpha,H}(t), t \ge 0\}$ are different.

Proof. The idea of the proof is to show that the two-dimensional distributions of the two processes have different properties. Formally, suppose that there is a c such that $\{X_{n,\alpha,H}(t), t \ge 0\} \stackrel{d}{=} \{cX_{m,\alpha,H}(t), t \ge 0\}$. Letting $\{X_{n,\alpha,H}^{(i)}(t), t\ge 0\}$ and $\{X_{m,\alpha,H}^{(i)}(t), t\ge 0\}$, i=1, 2, be independent copies of $\{X_{n,\alpha,H}(t), t\ge 0\}$ and $\{X_{m,\alpha,H}^{(i)}(t), t\ge 0\}$, respectively, and setting $Y_{n,\alpha,H}(t) = 2^{-1/\alpha}(X_{m,\alpha,H}^{(1)}(t) - X_{m,\alpha,H}^{(2)}(t)), t\ge 0$, $Y_{m,\alpha,H}(t) = 2^{-1/\alpha}(X_{m,\alpha,H}^{(1)}(t) - X_{m,\alpha,H}^{(2)}(t)), t\ge 0$, and $\{Y_{m,\alpha,H}(t), t\ge 0\}$ are $S\alpha S$ H-sssi processes having a representation (3.1), where now M is a symmetric α -stable (S α S) random measure with Lebesgue control measure; that is, its skewness intensity β is identically zero. Moreover, $\{Y_{n,\alpha,H}(t), t\ge 0\} \stackrel{d}{=} \{cY_{m,\alpha,H}(t), t\ge 0\}$. In particular,

$$(Y_{n,\alpha,H}(1), Y_{n,\alpha,H}(2)) \stackrel{d}{=} (cY_{m,\alpha,H}(1), cY_{m,\alpha,H}(2)).$$
(3.2)

We shall use

LEMMA 3.1. Let (X_1, X_2) be a SaS random vector with two integral representations:

$$(X_1, X_2) \stackrel{d}{=} \left(\int_{E_i} f_1^{(i)}(x) M_i(dx), \int_{E_i} f_2^{(i)}(x) M_i(dx) \right), i = 1, 2,$$

where M_1 and M_2 are $S \propto S$ random measures on (E_1, \mathscr{E}_1) and (E_2, \mathscr{E}_2) , respectively, whose corresponding control measures are m_1 and m_2 , and $f_j^{(i)} \in L^{\infty}(m_i), j = 1, 2, i = 1, 2$. Then for every v > 0,

$$\int_{E_1^+} \frac{|f_2^{(1)}(x)|^{\alpha+\nu}}{|f_1^{(1)}(x)|^{\nu}} m_1(dx) < \infty$$
(3.3)

if and only if

$$\int_{E_2^+} \frac{|f_2^{(2)}(x)|^{\alpha+\nu}}{|f_1^{(2)}(x)|^{\nu}} m_2(dx) < \infty,$$
(3.4)

where $E_i^+ = \{x \in E_i : f_1^{(i)}(x)^2 + f_2^{(i)}(x)^2 \neq 0\}, i = 1, 2.$

Proof. Both (3.3) and (3.4) are equivalent to $\int_{S_2} (\Gamma(ds)/|s_1|^{\nu}) < \infty$, where S_2 is the unit circle and Γ is the spectral measure of (X_1, X_2) . (See Samorodnitsky and Taqqu [8].)

Applying (3.3) to (3.2), we obtain

$$\int_{\mathbf{R}^{n}} \frac{|(\sum_{i=1}^{n} (x_{i}-2)^{2})^{(H/2)-(n/2\alpha)} - (\sum_{i=1}^{n} x_{i}^{2})^{(H/2)-(n/2\alpha)}|^{\alpha+\nu}}{|(\sum_{i=1}^{n} (x_{i}-1)^{2})^{(H/2)-(n/2\alpha)} - (\sum_{i=1}^{n} x_{i}^{2})^{(H/2)-(n/2\alpha)}|^{\nu}} dx_{1} \cdots dx_{n} < \infty$$
(3.5)

if and only if

$$\int_{\mathbf{R}^m} \frac{|(\sum_{i=1}^m (x_i-2)^2)^{(H/2)-(m/2\alpha)} - (\sum_{i=1}^m x_i^2)^{(H/2)-(m/2\alpha)}|^{\alpha+\nu}}{|(\sum_{i=1}^m (x_i-1)^2)^{(H/2)-(m/2\alpha)} - (\sum_{i=1}^m x_i^2)^{(H/2)-(m/2\alpha)}|^{\nu}} dx_1 \cdots dx_m < \infty.$$

It is now a matter of algebra to check that the left-hand side of (3.5) is finite if and only if

$$0 < v < \frac{\alpha H}{2/\alpha - H} \wedge 1$$
 if $n = 2$

and

$$0 < v < \frac{\alpha H}{n/\alpha - H}$$
 if $n \ge 3$.

Since $m \neq n$, this contradicts (3.2), and thus completes the proof of the theorem.

Remarks. 1. The relations $0 < \alpha < 2$ and 0 < H < 1 imply $\alpha H/((n/\alpha) - H) < 1$ if $n \ge 3$.

2. Let *M* be an independently scattered S α S random measure with Lebesgue control measure. The log-fractional α -stable motion, $1 < \alpha < 2$, is the process $\int_{-\infty}^{+\infty} (\ln |t-x| - \ln |x|) M(dx)$, $t \ge 0$, discovered by Kasahara, Maejima, and Vervaat [4]. It is $(1/\alpha)$ -sssi. Cambanis and Maejima [1] show that the linear combinations

$$\Delta_{a,b,\alpha}(t) = a \int_0^t M(dx) + b \int_{-\infty}^{+\infty} (\ln|t-x| - \ln|x|) M(dx), \qquad t \ge 0, \qquad (3.6)$$

of the Lévy-stable motion and the log-fractional α -stable motion, define essentially different processes parametrized by $-\infty < a$, $b < \infty$, |a| + |b| > 0. These are "moving-average"-type processes, as are the processes (3.1). It is easy to check that the processes (3.6) satisfy (3.3) for any $\nu > 0$ if $b \neq 0$ and they satisfy it only for $\nu = 0$ if b = 0. Therefore, the classes of processes (3.1) with $H = 1/\alpha$ and (3.6) are different.

3. The supremum of v > 0 for which the integrals in (3.3) are finite is related to the existence of conditional moments of the type $E(|X_2|^p | X_1)$ (Samorodnitsky and Taqqu [8]). Therefore, the argument used in the

312

proof of Theorem 3.1 shows that the dependence structure of the processes $\{X_{n,\alpha,H}(t), t \ge 0\}$ for different *n*'s is very different. For example, it follows from Theorems 3.1 and 4.1 of Samorodnitsky and Taqqu [8] that if $1 < \alpha < 2$, then $E(X_{n,\alpha,H}(t)^2 | X_{n,\alpha,H}(s)) < \infty$ a.s. for any 0 < s < t if $n \le 2H/(2/\alpha - 1)$, and it follows from Theorem 1 of Cambanis and Wu [2] that the conditional second moment above is a.s. infinite if $n > 2H/(2/\alpha - 1)$.

REFERENCES

- CAMBANIS, S., AND MAEJIMA, M. (1989). Two classes of self-similar stable processes with stationary increments. *Stochastic Process Appl.* 32 305-329.
- [2] CAMBANIS, S., AND WU, W. (1989). Conditional variance of symmetric stable variables. Technical Report 270, Center for Stochastic Processes, University of North Carolina, Chapel Hill.
- [3] HARDIN, C. D., JR. (1984). Skewed Stable Variables and Processes. Technical Report 79, Center for Stochastic Processes, University of North Carolina, Chapel Hill.
- [4] KASAHARA, Y., MAEJIMA, M., AND VERVAAT, W., (1988). Log-fractional stable processes. Stochastic Process Appl. 30 329–339.
- [5] MAEJIMA, M. (1983). A self-similar process with nowhere bounded sample paths. Z. Wahrsch. Verw. Gebiete 62 235-245.
- [6] MAEJIMA, M. (1986), A remark on self-similar processes with stationary increments. Canad. J. Statist. 14 81-82.
- [7] MAEJIMA, M. (1989). Self-similar processes and limit theorems. Sugaku Expositions 2 103-123.
- [8] SAMORODNITSKY, G., AND TAQQU, M. S. (1989). Conditional moments and linear regression for stable random variables. Preprint.
- [9] SAMORODNITSKY, G., AND TAQU, M. S. (1989). The various linear fractional Lévy motions. In Probability, Statistics and Mathematics: Papers in Honor of Samuel Karlin (K. B. Athreya, T. W. Anderson, and D. L. Iglehart, Eds.), pp. 261–270. Academic Press, Boston.
- [10] TAKENAKA, S. (1989). Integral-geometric construction of self-similar stable processes. Preprint.
- [11] TAQU, M. S. (1986). A bibliographical guide to self-similar processes and long-range dependence. In *Dependence in Probability and Statistics* (E. Eberlein and M. S. Taqqu, Eds.), pp. 137-162. Birkäuser, Boston.