-

-+
View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Elsevier - Publisher Connector

An Analysis of the HR Algorithm
for Computing the Eigenvalues of a Matrix

A. Bunse-Gerstner

Fakultdt fiir Mathematik
Universitdt Bielefeld

Postfach 8640

4800 Bielefeld 1, West Germany

Submitted by Richard A. Brualdi

ABSTRACT

The HR algorithm, a method of computing the eigenvalues of a matrix, is
presented. It is based on the fact that almost every complex square matrix A can be
decomposed into a product A=HR of a so-called pseudo-Hermitian matrix H and an
upper triangular matrix R. This algorithm is easily seen to be a generalization of the
well-known QR algorithm. It is shown how it is related to the power method and
inverse iteration, and for special matrices the connection between the LR and HR
algorithms is indicated.

1. INTRODUCTION

A certain class of algorithms for the computation of the eigenvalues of a
nonsingular square matrix A is based on the fact that almost every matrix can
be decomposed into a product of two matrices of a special form, usually one
of them being upper triangular. An algorithm of this kind can be described
in the following way: Let G be a subset of the nonsingular square matrices
and T be a subset of the nonsingular upper triangular matrices. Starting with
the first iterate

A=A,
at the ith step the decomposition
A,=SR,, S,€G, R€T,
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is computed. Then the next iterate is
Ai1=RS;.

Among other possibilities of choosing G, Della-Dora [5] mentioned the group
O, of the pseudo-orthogonal matrices which are nonsingular real matrices H
with the property HJH=] for a given diagonal matrix J having +1 and —1
entries in the diagonal. Unfortunately this nice group O, is not suitable for
such an algorithm, because the set of real square matrices which split up into
a product of an HEO; and an upper triangular matrix is too small. Brebner,
Grad, and Vrecko [1, 2] proposed the set G; of all real square matrices H
with the property that there exists a permutation matrix P such that
HTJH=PTJP for a given J as defined above. Elsner [6] has shown that the
direct product of G; and the set of real upper triangular matrices with
positive diagonal elements is dense in the set of all real square matrices, that
is to say, almost every real square matrix A has a decomposition A= HR, the
so-called HR decomposition with respect to J, where HEG, and R is an
upper triangular matrix with positive diagonal elements.

In this paper we study the algorithm which is based on the HR decom-
position of an arbitrary complex matrix. The aim is to point out the
connection between this algorithm and some well-known methods for the
computation of matrix eigenvalues.

In Sec. 2 we briefly discuss the existence, uniqueness, and construction of
the HR decomposition of a complex matrix and introduce the HR algorithm
with respect to J. It is easily seen that for the choice J equal to the identity
we get the QR algorithm as a special case.

In Sec. 3 we give a short proof of convergence for the HR algorithm in its
basic form and point out that the algorithm can be interpreted as a modified
power method. It is shown that the HR algorithm with shifts contains a
modified inverse iteration method.

In Sec. 4 we examine how the HR algorithm acts on the special class of
pseudo-Hermitian matrices which are matrices A with the property A*J=JA
for a given J. The pseudo-Hermitian form is invariant under the HR
algorithm. This yields in particular that after a slight modification the
tridiagonal form of a real matrix can be preserved throughout the algorithm
even for nonsymmetric matrices. Finally we show that for pseudo-Hermitian
matrices the LR and HR algorithms are very closely related. The (2i+ 1)th
iterate of the LR algorithm and the (i+ 1)th iterate of the HR algorithm
differ only by a similarity transformation with a diagonal matrix.
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We denote

by GL,,(C) and GL,(R) the set of all nonsingular complex and real nXn
matrices respectively,

by T,(C) and T,(R) the set of all nonsingular complex and real upper
triangular n X n matrices respectively, and

by T} (C) and T (R) all matrices of T,(C) and T, (R) respectively which
in addition have a real positive diagonal.

By diag?(+ 1) we denote the set of all nXn diagonal matrices with +1
and —1 entries on the diagonal where k is the exact number of negative
entries.

DeriniTioNn 2.1, Let ], J, Ediagi(+1). Then HEGL (C) is called
(J1; Jo)-unitary if H*J,H=],.
By U,(J;, ;) we denote the set of all (J;, J;)-unitary matrices.

Remark 2.2. If J, Ediagi(+1), J, Ediagh(*+ 1), and k*m, then obvi-
ously, by a version of Sylvester's law of inertia for Hermitian forms [9],
U,(J,, );) is empty. For k=m it is easy to verify that U,(J;, ;)N T,*(C)
contains only the identity matrix I if J;=J,, and that it is empty if J, #J,.
Also, U (I, I)=U,(—1, —1I) is the set of all unitary matrices.

The following theorem shows that for almost every matrix there exists a
decomposition into a product HR where RET,(C) and HEU,(J,, J,) for a
given J; and a suitable J,. This decomposition is uniquely determined if in
addition we demand RET,* (C).

TueoreM 2.3. Let AEGL,(C) and I, J, Ediagg(*1).

(i) There exist HEU,(],, J,) and R ET,(C) with A=HR if and only if no
principal minor of A*J;A vanishes and the product of the first i diagonal
elements of ], coincides with the sign of the ith principal minor of A*]| A for
adlie{l,...,n).

(i) Let H,, H,€U,(],, ), R;, R, €T, *(C). If A=H,R,=H,R,, then
H,=H, and R, =R,

Proof. (i): A*J; A has all principal minors nonzero if and only if it has an
LR decomposition A*J;A=LR, where R, L*€T,(C) and L has a unit
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diagonal. The product of the first i diagonal elements of R coincides with the
ith principal minor of A*J A for all i€{1,...,n} [14, pp. 201-205].

As A*], A is Hermitian, all its principal minors are real, and therefore it is
easily seen that all diagonal elements of R are real. Let J, be a diagonal
matrix with +1 and — 1 entries on the diagonal such that for allie {1,...,n}
the product of the first i diagonal elements is just the sign of the ith principal
minor of A*];A. Then obviously the ith diagonal element of J, is
the sign of the ith diagonal element of R, and we can find a real diagonal
matrix D such that R=D'J,D 'R has a unit diagonal. As A*J,A is
Hermitian, we have

A*],A=LR=LDJ,DR=R*DJ],DL*,

and the uniqueness of the LR decomposition of A*J;A implies L=R*.
Defining R=DR, we have now

A*J,A=R*J,R. (2.3.1)

[Note that by Sylvester’s law of inertia J, Ediagy(=*1).] From (2.3.1) we get
A=]J,AT*RL,R, and for H=J, A" *R*], we find HEU,(J,, J,).

On the other hand, if A=HR with RET,(C) and HEU,(],, J,), then
A*JA=R*H*] HR=R*], R, which means that A*J;A has an LR decom-
position. By examining the principal minors of R*J,R it is easily seen that
the ith principal minor of J; is just the sign of the ith principal minor of

A*TLA.
(ii): From H\R,=H,R, we get R,R;'=H;'H,€U,(J,, I,)NT7(C).
From Remark 2.2 it follows that R,R; '=H; 'H,=1. ]

By this theorem we are justified in defining the following.

DerFmviTiON 24, Let AEGL (C) and J, €diagp(=*1). Let A*J; A have
no vanishing principal minor, and let J,Ediagi(*1) such that for all
i€{1,..., n} the product of the first i diagonal elements of J, coincides with
the sign of the ith principal minor of A*J; A. The factorization A=HR with
HeU,(],, ];), RET,; (C) is called the HR decomposition of A with respect
to J;.

REMARK 2.5.

(i) For Jy=Ior J;= —I we get the QR decomposition of A. By Theorem
2.3 the condition for this decomposition to exist is that no principal minor of
A*A vanishes, which is always true.
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(ii) As the ith principal minor of (A —sI)*J,(A—sl) is a polynomial in s
of degree 2i there are at most n(n+ 1) values § for which (A —3I) has no HR
decomposition with respect to J;. Therefore a nondecomposable matrix can
always be shifted into a decomposable one even if we confine ourselves to
real shifts.

(iii) If A€GL_(R) and A=HR is the HR decomposition of A with
respect to J;, then it can be shown that both matrices H and R are real. This
becomes more evident by looking at the construction of such a decomposi-
tion.

For given A€GL,(C) and J€&diagi(+1) the HR decomposition with
respect to J can be constructed by computing H ™, the matrix which
reduces A to upper triangular form, as a product of elementary elimination
matrices and permutation matrices. To eliminate an element in position
(m, i), i<m, we can use matrices H, =(h,') defined by

h,=e'*cos¢, h,, =e’sing,

h,,=—e *#sing, h

-, i . .
mi mm — € cos ¢, if 5i =lm

hpp=1 for p#i,m, hpq=0 otherwise

and

h,, =e'**cosh¢, h,,, =e'fsinh¢,

h,,=e *#*sinh¢ Rpm =€ **coshe, if j=-j

mm

hpp=1 for p#i,m, hpq=0 otherwise

To eliminate all elements of a whole column but the first, we can use
matrices H, defined by

H,=I-2]vv* where veC”, v*Jv=1.

In any case we have H,€U,(J, J).
In [1] and [2] these transformations are discussed for real matrices, and in
[3] Brebner and Grad discuss the danger of severe cancellation errors when
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calculating elements of these transformation matrices. In the ith step of
reduction using the second class of elimination matrices we proceed as
follows: Let AY'=H,_,--- H,A already be a matrix for which all elements
below the diagonal in the first i—1 columns vanish and H,_,---H,€
U,(J, J- l) If J,_, =diag(j,..., j,). then we denote J=diag(j,..., 1,,) Let
a€C" **! be the vector formed by the last n—i+1 elements of the ith
column of A¥), and assume a*Ja0. Let j,, €{j,,...,j,} be chosen so that
jma*Ja is positive, and let P be the (n —i+ 1)-dimensional permutation matrix
Wthh mterchanges row 1 and m—i+1. Then for b=Pa and I Pjp=
diag(f1, -+ fn_s41) We have i1b*/b>0.
Now

H- —I—%(b—zel)(b—zel)*f
with
z=—sgn(b,)(j;b*/b) Y2 and K= z2(z—b,)

[b, is the first component of b, and sgnb,=b,/|b,|; e, is the (n—i+1)-
dimensional first unit vector] is a (J, J)-unitary matrix with the property

H 'Pa=H 'b=ze,.

H™'P is enlarged to give an n-dimensional matrix

I| o
H,= — .
o| H'P

Defining J,=H}J,_,H,, we get HH,_,---H,€U,(J,]), and in A%*?) =
H,A") we have one more column with zero elements below the diagonal. For
the special case J=1I the reduction using the first class of elimination
matrices is just Givens’s method, and the reduction using the second class of
elimination matrices is just Householder’s method to compute the QR
decomposition of a matrix.

An algorithm based on the HR decomposition can now be defined. Let
A EGL,(C) and JEdiagi(=+1). The HR algorithm with respect to J produces
a sequence of matrices {A;},cy in such a way that, starting with

A

A1=A, ]1=]9
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in the ith step the HR decomposition of A, with respect to J; is computed:

A,=H,R,.

Subsequently A, , is constructed and ], , is defined by

Ao =RH;, Jis1=H}!J,H;.

RemMark 2.6.

(i) For all iEN, it is easily shown that:
(2) A; =H;'A;H;=R,A,R;".
(b) A..'+1=(H1' -~ H,)T'A(H,- - - H,
(c) A'=H,---H,R; - R,.
(d) From the second equality in (b) it follows that for an upper Hessenberg
A all A, are upper Hessenberg.

(ii) Obviously we have, for all iEN, and all me{l,...,i—1}, that
(H,, - H)*I.(H, - H;)=I_ . Therefore all J; produced in the algorithm
are contained in diag;(+1).

(iii) For J=I or J= —1 this is just the well-known QR algorithm in its
basic form.

(iv) For J#I and J# —I it may occur that an iterate A, has no HR
decomposition with respect to J;. Then we say that the HR algorithm with
respect to J (without shifts) is not constructible for A.

(v) If A is a real matrix, then so are all matrices occurring in the

algorithm.

)=(R; - R))A(R; -- Ry)™".

1

3. CONVERGENCE PROPERTIES

For matrices with eigenvalues of distinct moduli we give a proof of
convergence for the HR method similar to the proofs known for the LR and
QR algorithms in this case.

Taeorem 3.1. Let AEGL, (C), JEdiagi(*1), YEGL,(C), and D=
diag(A,,..., A,), where |A{|>|Ag|>-- >|A,| and A=YDY ", Let Y !
have an LR decomposition, and let Y have an HR decomposition with respect
to J. Let the HR algorithm with respect to ] be constructible for A. If
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A= (aﬁ‘;)) denotes the sth iterate in the algorithm, then

lim afy)=0  for i<j, i,j€(1,...,n},

§—>00

and

lim a{y)=\;, forall i€{l,...,n}.

§—>00

Proof. LetY ~!=LyR, denote the LR decomposition of Y ~%, Y=H,R
the HR decomposition of Y with respect to J, and Ly =(I;;), '=H*JH. For
sEN the matrix D°L,D ~* is lower triangular with a unit diagonal. As
(A /A,)°L is the (i, j)th element for i <j, there exists a sequence of matrices
{E,),en Which tends to the zero matrix for s—>c0 and D°LyD~* =I+E,.

Because the HR decomposition is unique and continuous and hm,_m
(I+R,E, RY )y=1I, for sufﬁcwntly large s there exists the HR decomposition
with respect to J": I+R,E,Ry' =H,R, with H"‘]’H =J and lim_, _H, =1I.
Therefore for sufficiently large s we have

A*=YD*Y "' =YD’L,D~*D°Ry =Y(I+E,)D*Ry =H,R,(I+E,)D'Ry
=Hy(I+R,E,Ry")RyD°Ry =H,H,R,R,D'R,.
Let D be a unitary diagonal matrix such that D,R,R,D’Ry €T,* (C). Now

H D,~' €U,(J, J,) and with Remark 2.6(i) (c) we fmd two HR decomposi-
tlons with respect to J of A”:

~

A =H,A DD R,K,D'R, and A’=H, --HR, - R,.

Because of uniqueness H Yﬁs D;'=H, -+ H, must hold, and with Remark
2.6 (i) (b) this yields

As+l=(HYﬁSD~s_l)—1AHYﬁsD~s—l
=D,H;'A;'YDY 'H, H, D *=D*A; 'R, DRy 'H,D;*.

As h'ms_,wH =1 and D,, D;! are bounded, we get the statement of the
theorem by this last equation. [ ]
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According to this theorem the diagonal elements a{j’ converge to the
eigenvalues A; of A essentially as fast as (A;/A,,)° converges to 0 for s—o0.
But this is just the rate of convergence we get when using the power method
for computing A,. Parlett and Poole [10] pointed out how the QR algorithm
is connected to the power method. The following lemma proves that the HR
algorithm can likewise be interpreted as a nested sequence of n power
methods starting with the subspaces spanned by {e,}, {e;,e;},...,
{ey,...,e,}, where e; denotes the ith unit vector.

For A€GL,_(C) let @ denote the operator on C" defined by A. For an
nX g matrix X let X denote the subspace of C" spanned by the q columns of
X.

Starting with an nX g matrix X, corresponding to the subspace X, the
power method creates a sequence of subspaces X;=@&X,_,. For each
kEN, the subspace X, is represented by a suitable n X g matrix X;, which
means that in each step X, is gained by suitably normalizing AX, _,. Under
certain conditions the sequence {X;};cn “converges” to the dominant
g-dimensional invariant subspace of & [10].

Now looking at the HR algorithm with respect to JEdiagj(* 1) applied
to A, with the usual notation A, =H,R_, H*] H, =], , for the sth step and
with P,=H,- -+ H,, the following holds:

Lemma 3.2. For each s€N, and q€{1,..., n}, the first q columns of P,
span the subspace X of the power method applied to the starting subspace
spanned by the first q unit vectors.

Proof. According to Remark 2.6(i) (b) we have A, =P, 'AP, or AP,=
P_A_,,, which leads to

APSR.:+}1=P3A3+IRS_+1 PHs+le+le+l s+l (3'21)

Therefore the first g columns of P, ; are linear combinations of the first g
columns of AP,. If P, _ denotes the subspace spanned by the first g columns
of P, then

®@P, , =P,  forallsEN,

s.q

with P,=H,=AR['=AIR[ . ]

In particular, for g=1 the HR algorithm in its basic form contains the
modified power method:
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THeoREM 3.3. Let p, denote the first column of P,. The sequence
{Ps)sen is then created by the modified power method: py=e,, p,,1=
(1/7,41)Ap, with 1, =(|p*A*JAp,|)'/* for all sEN, . The scalar r,,, can
be considered as an approximation at the (s+ 1)th step to the modulus of the
dominant eigenvalue of A.

Proof. If we denote by r the first diagonal element of R, ,, then (3.2.1)
yields

1
Ps+1= 7APS

Let Asr1 be the first column of As+1' Then As+1=Hs+1Rs+l and
HE T H =], imply

1 1
’(7as+l)*ls+l(7as+l)

and therefore r*=|a%, ], ,,a,,,|. In addition, we see from A,,, =P, 'AP,
and P*JP, =], that

=1

a":+1]s+las+l = (Ps_lAps)*]s+l(Ps—1Aps) =P:A*]Aps'

Therefore r=r, , holds.

According to Theorem 3.1, under suitable conditions a_ , tends to Ae,, A
being the dominant eigenvalue of A. Hence (|la*,,J,, a,,,)|)"/? can be
considered as an approximation to |A| at the (s+1)th step, since
lim,_, (Ja*, ], 18,41 ))"/2=lim 7., ,=|A| holds for strictly dominant A.

n

To accelerate convergence, shifts can be used in the algorithm. The HR
algorithm with respect to JEdiag(+ 1) and the sequence {k,},cn, of shift
parameters reads:

A1=A, ]1=]’
(A,—k,I)=H,R, with H}J,H,=J,,, and R,eT}(C),

A, =R,H+k,1I.

For these A;, H;, R, and J; the statements of Remark 2.6 except 2.6(i) (c)
remain valid.
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Allowing shifts, we can also assure that the algorithm is constructible,
because a nondecomposable or almost nondecomposable matrix can always
be shifted away from this dangerous region.

Stewart [12] demonstrated that the QR algorithm contains a modified
inverse iteration method. We shall see how this carries over to its generaliza-
tion. If in the HR algorithm with respect to J we take the last diagonal
element of A, as shift parameter k;, with the abovementioned notation and
defining P,=H,,---, H,, we have

TueoreM 3.4. Let p, denote the last column of P,. The sequence
{p; }sen is then created by the modified inverse iteration method:

Po=¢€,, k1=PgAP0’ jr=sgn(pg/po )
and for all sEN,

Ps+1= Ps+1’s+lls+2 s+1° ks+2=i3+2P:+1]APs+l is+2=sgn(f,s*+l]i)s+l)'
with

vz

f’s+1=](A_ks+II)_*]Ps’ (lps+1]ps+1‘)

Proof. AF,=PA,,, lmplles Pyy=PH R, R =P(A -
s+lI)Rs~+l (A koo [)PR;, and therefore P Y= (A~ ks+lI)—
P,"*R},,. Together with PX ,JP. ,=J ., this yields P, ,=J(A—k,,
I)™*]JP, L+1Rs+1fs+z If we denote by r the last diagonal element of R s+1

and by j and j the last diagonal elements of J,,, and J, , respectively, then
Ps+l—](A ks+11) *]psr” follows. From (As+1 s+lI) *Rs+l —Ha:-l

we find, with an argument similar to the one used for Theorem 3.3, that
r=r,. Thatj=j , , and j=j ., is a trivial consequence of P,JP, =], , for all
iEN. B

For real upper Hessenberg A two successive steps of the HR algorithm
can be performed together, avoiding complex arithmetic if two real or
complex conjugate shifts are used for such a two-step iteration. This is
possible because the transformation of a matrix to upper Hessenberg form
using (J, J')-unitary matrices is essentially unique:

Lemma 35. Let AEGL(C), J,, I, J; Ediag?(* 1), and H, €U,(J,, ),
Hy, €U,(],, J;). Let H *AH, and H; 'AH, be upper Hessenberg with at least
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one having all subdiagonal elements nonzero. If H, and H, have the same
first column, then there exists a unitary diagonal matrix D such that
H,=DH,.

Proof. Let B=H;'AH,= (b;;) have all subdiagonal elements nonzero.
With C=H2_1AH2=(C”~) and H=H, 'H,, we have

CH=HB. (3.5.1)

If h,, denotes the mth column of H, then h, =e,. It can now be shown by
induction using (3.5.1) and

H*L,H=], (35.2)

that h, =z.e, with |z,|=1.

From (3.5.2), 0=h%Jh,=h}],e, follows, which means that the first compo-
nent of h, vanishes. Now (3.5.1) yields Ce;=b,,e;,+byh, or h,=
(1/bgy)(c1; ~ b1ys €9150,...,0)T], which leads to b;;=c,;, hy=(cy; /by, )e,.
For z,:=¢y /by we find from (3.5.2) that |z;|= 1. Proceeding in the same
way we get the statement. |

The two-step iteration technique with complex conjugate shifts or two
real shifts is very well known for the QR algorithm, and with the foregoing
lemma the arguments there carry over to the HR algorithm. Therefore we
shall not go into further details.

Usually the shifts k,;, ;, ky; 5 are taken to be the two eigenvalues of the
2X 2 matrix in the bottom right-hand corner of the current A,,, ,. The first
column of HEU, (J5;41, Jo;+3) is computed, where HR is the HR decomposi-
tion with respect to J,,,, of the real matrix (Ay,,;—~ko, s I)(Ag;—
ko, +2I). Then a (Jy;,1, Jo;44)-unitary matrix is constructed which has just
this first column and transforms A, , into an upper Hessenberg A,;, 5. In
the following small examples the eigenvalues were computed using the HR
algorithm with respect to J in this form.,

ExampLE 3.6. We give the results computed by the HR algorithm with
respect to J for several J. For each J we list the computed eigenvalues, the
total number of two-step iterations, and the actual computing time on the
TR 440 at the University of Bielefeld.

|

[N LN
— et
Wt

6
} Eigenvalues: 3
3
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Computed Eigenvalues Iterations Time
(107° sec)
(a) J=I
6.00000000012
3.00000894629 4 37.03
2.99999105372
(b) ]=diag(—l’_1’l)
6.00000000064
3.00000000018 +i0.00000190734 4 41.09
3.00000000018 —i0.00000190734
(¢ J=diag(1, —1,1)
6.00000000006
3.00000000006 1 11.12
3.00000000000
0.00 0.07 027 -0.33 0.03
(ii) 131 —-0.36 1.21 0.41 . . 3.03
106 286 149 —1g4 | Digemvalves: Yoo
—264 —184 -024 —-2.01 —1.97—i

Before applying the HR algorithm the matrix was transformed into upper

Hessenberg form.

Computed Eigenvalues Iterations
@ J=I
3.03000000009
—1.96999999991 =+ {1.00000000006 12
0.02999999989

(b) J=diag(1, -1, —-1,1)

3.03000000044
0.03000000113 16
—1.97000000143 * i1.00000000087

(c) J=diag(—1,1,~1,-1)

3.03000000073
- 1.97000000032 * 11.00000000023 14
0.02999999995

Time
(1075 sec)

74.79

209.19

187.19

Note that for both cases (a) the method is just the QR algorithm.
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4. PSEUDO-HERMITIAN MATRICES

The Hermitian form of a matrix is preserved under similarity transforma-
tions with unitary matrices. It is well known that advantage can be taken of
this fact for an economical application of the QR algorithm to Hermitian or
symmetric matrices. For the generalization studied here we can observe that
the so-called pseudo-Hermitian form of a matrix is invariant under similarity
transformations with (J, J’')-unitary matrices.

DerFmniTioN 4.1, Let AEGL (C) and JEdiagi(*=1). A is called

J-Hermitian if A*J=JA, and
J-symmetric if in addition A is real.

A is called pseudo-Hermitian (pseudo-symmetric) if there exista k€{1,...,n}
and a JEediag;(*1) such that A is J-Hermitian (J-symmetric).

ExampLE 4.2.

(i) For a Hermitian or symmetric nonsingular matrix B we can find a
nonsingular matrix M and a JE&diagi(+1) such that B=M*JM, where |
contains the signs of the eigenvalues of B. If we have to solve the problem
Ax=ABx where A too is Hermitian or symmetric, then we may transform
this equation to JM~"AM™'Mx=AMx or Cy=MAy, where y=Mx, and
C=JM~*AM™' is a J-Hermitian or J-symmetric matrix. Some examples for
the symmetric case are given in [1].

(ii) Specifically, for real matrices A each eigenvalue problem Ax=Ax
can be transformed into problems Ty=MAy with T pseudosymmetric and
tridiagonal. For it is known [11] that any real matrix A is similar to a real
tridiagonal matrix T, which may be obtained from A by the Lanczos method
[8] with suitable starting vectors for instance. It is easily seen that by
similarity transformation with a diagonal matrix, each T with all codiagonal
elements nonzero can be transformed into a tridiagonal T for which corre-
sponding codiagonal elements have the same absolute value. Such a T is
J-symmetric with

t t t
J=diag(1,sgn23,...,sgn(£ .. tn—l,n ))
21

n,n—1

Note that for complex matrices we have no analogous transformation into a
pseudo-Hermitian tridiagonal matrix, because A=M"'TM for a J-Hermitian
T would imply A=M"'JJTM=M"'JM~*M*JTM. So A has to be a product
of two Hermitian matrices, namely M~ LM~ * and M*JTM, which is not true
for arbitrary A €GL,,(C) but holds for arbitrary real matrices (see [7], [13]).
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Now if J, J'Ediagp(= 1) and HE U,(J, J'), then for a J-Hermitian A the
matrix H 'AH is J’-Hermitian, because

(H'AH)*J'=H*A*H™*]'= H*A*JH=H*JAH=]'H 'AH.

In particular, if we apply the HR algorithm with respect to J to a J-Hermitian
matrix A, then because

A;=H_')---H{'AH,---H,_;, and H,---H, ,€UL(JJ]),

each iterate A, is J-Hermitian.

A pseudo-Hermitian upper Hessenberg matrix is obviously tridiagonal.
Therefore, because of the invariance of the upper Hessenberg form under
the HR algorithm, we find that starting with a tridiagonal J-Hermitian or
J-symmetric matrix A, in the HR algorithm with respect to J all iterates are
tridiagonal.

This is of special interest in the case of real matrices which are tridiago-
nal but not symmetric or which can be transformed into such a matrix in a
stable manner. According to Example 4.2(ii) this tridiagonal matrix can be
easily modified to a J-symmetric tridiagonal matrix, and unlike the QR
algorithm, the HR algorithm with respect to J preserves this tridiagonal form
even if this starting matrix is not symmetric.

In the special case of tridiagonal pseudosymmetric matrices convergence
can be proved [4] under much weaker conditions than in Theorem 3.1.

Finally, for J-Hermitian matrices it can be shown that the HR algorithm
with respect to J converges twice as fast as the LR algorithm if no shifts are
used, because we find:

TueoreM 4.3.  For JEdiagi(*+ 1) let A€GL (C) be ]-Hermitian. Let the
HR algorithm with respect to ] be denoted by

A1=A, .’1=],
A,=H,R,,
A =R H;, Jivi=H!JH,,
and the LR algorithm by

A=A,
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If the LR algorithm is constructible, then so is the HR algorithm with respect
to J, and for each i EN there exists a diagonal matrix D, €GL_(C) such that

=D A
Ai1=D; Ay D,

Proof. 1If the LR algorithm is constructible, which means that for each
iterate the LR decomposition exists, then there also exists the LR decomposi-
tion of A™ for all m &N, namely

A™=L,---L_R, ---R,. (4.3.1)

m

We prove the statement by induction taking advantage of the fact that for
all mE€N, A™ is J-Hermitian.

By (4.3.1) the LR decomposition of A*JA =JA? exists, which according to
Theorem 2.3 yields that the HR decomposition of A;=A with respect to
J1=1T exists. Now assume that for i,€EN we have the following: for all
i€{1,..., iy} the HR decomposition of A, with respect to J, exists. Then for
i€{l,..., 4}, by (4.3.1) we find

A¥=L,--- inﬁzi’ -+ Ry,
and further
A’=H1- -+ H,R;--*R,.

Because A' is J-Hermitian and H,- - - H, € U,(], J,,.,),

JA* =A'*JA'=R%---RtJ,.,R; - R,.
Hence A% has a decomposition

A¥=]JR%-.-R¥],. R, - R,

into a product of a lower and an upper triangular matrix.

Now if D, is the diagonal matrix for which JR%- -+ R*J,, ;D; ! has a unit
diagonal, then

A*=JR}--- R],.,D7'DiR; -~ Ry,

or
A¥=L,--- L,
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is the LR decomposition of A*. Because the LR decomposition is unique,
this yields

JRY- - R?L‘HD&—I =L, - Ly,.
Therefore we have
Di_1A2i+1Di =D; 'Ly;'- - L7 ALy - - Ly, D,
=LuiR7*--- Ry *JAIRY - Rt

=J B % 'RI_*A*RT' Ry
=LAl =AL

It remains to prove that the HR decomposition of A, ., with respect to
J;+1 exists. From the last equality we get in particular A, ,,=D; DAy, 1D,
Now AT erdigr 1A 01 = L0+1A2.0+1 Jigr1Di, 1A22; +1D;,; and because

~o _ ~ ~ _ ~
A2i0+1_L2s‘0+ 1R2io+ 1L2i0+ 1R2i0+1 - L2i0+1A2i0+2R2io+1
=L2i,,+ 1L2i0+2R2i0+2R2io+1’

we find that the LR decomposition of A ,,J; 14, +, exists. According to
Theorem 2.3 this completes the proof. [ ]

In particular, for J=1I or J=—1I, i.e. for the QR algorithm applied to
Hermitian matrices, this theorem gives a generalization of the relationship
between the QR and the Cholesky LR algorithm pointed out by Wilkinson
[14, p. 545].

It is easy to construct J-Hermitian matrices for which the HR algorithm

with respect to J is constructible but the LR algorithm is not, even if J# * 1.

1 0

If for example we apply the LR algorithm to the [ 0 -1 ]-symmetric

matrix

we see that the third iterate

[0 -1
As [64 24}

has no LR decomposition.
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0 -1
works on A, we find that the first diagonal element a,,, of the (i+1)th
iterate A, satisfies

Now if we examine how the HR algorithm with respect to [ 1 0]

24(a?—24a,+64)
Y P Y,

The quantity |24a,— 64| is the absolute value of the first principal minor of
ATJ A,, and because a,=3 it can be shown by studying the recurrence
relation for a, that this value does not vanish. According to Theorem 2.3 this
means that the algorithm is constructible.
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