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Abstract
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1. Introduction

In studying the theory of functions of several variables, Loo-Keng Hua (1910–1985) discovered
a matrix identity and showed some elegant determinantal inequalities on contractive matrices in
1955 [7]. The results were soon reviewed by Shiing-shen Chern (1911–2004) [4]. Similar types
of matrices were also used in Hua’s research on automorphic functions of a matrix variable [5,
p. 476] and on harmonic functions [5, pp. 1045–1088]. Both Hua and Chern were distinguished
mathematicians and influential figures in modern Chinese history. Motivated by Hua’s work,
Marcus [8], Bellman [2] and Ando [1] continued the research on the topic and showed more results
on contractive matrices. The purpose of this paper is to revisit these inequalities with our remarks
and comments and to present some related inequalities. Our results are analogous or complement to
Hua’s; we will also show some results on contractive matrices that may be compared respectively
to Marcus’, Bellman’s, and Ando’s. To be precise, we show that the matrix ((I − u∗

i uj )
−1) and the

matrix ((tr(I − A∗
i Aj ))

−1) are positive semidefinite, where ui are complex row vectors having
norm less than 1, and Ai are strictly contractive matrices.

Let H be a square complex matrix of finite dimension. As usual, we write H � 0 if H is
positive semidefinite and H > 0 if H is positive definite. For Hermitian matrices A and B of the
same size, we write A � B if A − B � 0. For a complex matrix A, we denote by A∗ the conjugate
transpose of A.

An m × n complex matrix A is said to be strictly contractive if In − A∗A > 0, where In, or
simply I , is the identity matrix. Equivalently, A is a strict contraction if the largest singular value
of A is less than 1. From now on, by writing A ∈ SCm×n, we mean that A is an m × n strictly
contractive matrix. If I − A∗A � 0, we say that A is a contraction and denote it by A ∈ Cm×n.

We begin by citing Hua’s main results in [7] with our remarks.

Theorem 1 (Theorems 1 and 2 in [7]). Let A, B ∈ SCn×n. Then

(I − B∗B) + (A − B)∗(I − AA∗)−1(A − B)

= (I − B∗A)(I − A∗A)−1(I − A∗B). (1)

The matrix identity (1) implies the determinantal inequalities

det(I − A∗A) det(I − B∗B) + | det(A − B)|2 � | det(I − A∗B)|2 (2)

and

det(I − A∗A) det(I − B∗B) � | det(I − A∗B)|2. (3)

Equality in (2) or (3) holds if and only if A = B.

Since for positive semidefinite matrices M and S, det(M + S) � det(M) + det(S) (Lemma 1
in [7]), we see that (1) ⇒ (2) ⇒ (3). Actually the main goal of the first part of the Hua’s paper
was to show the determinantal inequality (3), which obviously follows from (2). In order to show
(2), Hua proved the matrix identity (1) in the proof of his Theorem 1. In addition, the identity (1)
yields

I − B∗B � (I − B∗A)(I − A∗A)−1(I − A∗B), (4)

which also gives (3). Notice that (3) is equivalent to(
det(I − A∗A)−1 det(I − A∗B)−1

det(I − B∗A)−1 det(I − B∗B)−1

)
� 0. (5)
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Since (1) is the key to all his inequalities (2)–(5), we have singled it out.
Note that the contractiveness of B is not needed in the Hua’s proof of (1). The original proof

of (1) by Hua, though neat, is purely algebraic and rather technical. In a recent paper [9], two new
proofs for Hua’s matrix identity and inequality by using Schur complements and a generalization
of Sylvester’s law of inertia are given. In next section, we shall generalize the Hua’s matrix identity,
through which we will present a determinantal (upper bound) inequality that is complement to
the Hua’s determinantal (lower bound) inequality (2).

The second part of the Hua’s paper was devoted to the positive semidefiniteness of a square
matrix involving the determinants of contractive matrices.

Theorem 2 (Theorem 3 in [7]). Let A1, . . . , Am ∈ SCn×n. Then for any integer k � n − 1,⎛
⎜⎜⎜⎜⎝

1
det(I−A∗

1A1)
k

1
det(I−A∗

1A2)
k . . . 1

det(I−A∗
1Am)k

1
det(I−A∗

2A1)
k

1
det(I−A∗

2A2)
k . . . 1

det(I−A∗
2Am)k

. . . . . . . . . . . .
1

det(I−A∗
mA1)

k
1

det(I−A∗
mA2)

k . . . 1
det(I−A∗

mAm)k

⎞
⎟⎟⎟⎟⎠ � 0. (6)

Apparently this is the main result of [7]. The proof of (6) by Hua is quite lengthy and the
theory of group representation along with the complex variable functions is heavily used. Using
integral representation of determinants, Bellman [2, Theorem 4] proved that (6) holds for all
positive integers k. Notice that if A and B are positive semidefinite matrices of the same size,
so are the Hadamard (also known as Schur or entrywise) product A ◦ B and the Hadamard
power A[k] = (ak

ij ) for every positive integer k (see our remark below). Thus Bellman’s result is
equivalent to saying⎛

⎜⎜⎜⎝
1

det(I−A∗
1A1)

1
det(I−A∗

1A2)
. . . 1

det(I−A∗
1Am)

1
det(I−A∗

2A1)
1

det(I−A∗
2A2)

. . . 1
det(I−A∗

2Am)

. . . . . . . . . . . .
1

det(I−A∗
mA1)

1
det(I−A∗

mA2)
. . . 1

det(I−A∗
mAm)

⎞
⎟⎟⎟⎠ � 0. (7)

We shall present an analog to (7) with determinant replaced by trace.
In his Theorem 4 in [7], Hua stated that if H = (hij ) > 0, then for any positive integer r ,

H [r] = (hr
ij ) > 0. We point out that this follows immediately from a 1911 result of I. Schur

which states that if A, B > 0 then A ◦ B > 0 (see, e.g., [6] or [10]). Hua continued to assert
in his Theorem 5 that if H = (Hij ) > 0 is a partitioned matrix, where all Hij are square, then
(det(Hij )) > 0. In view of this, together with (5) and (7), it is natural and attempting to ask
whether the matrix

Hm = (Hij ), where Hij = (I − A∗
i Aj )

−1, i, j = 1, 2, . . . , m

is positive semidefinite. If so, then Bellman’s result (7), thus Hua’s (6), would follow at once.
Ando [1] considered the question with i, j switched for A’s in Hij and answered it in the negative
for three strictly contractive matrices. We shall discuss Hm in Section 3.

2. Generalizing Hua’s matrix identity

The Hua determinant inequality (2) provides a lower bound for | det(I − A∗B)|2, while the
Hua matrix identity (1) is pivotal to obtaining the lower bound. In this section we generalize
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Hua’s matrix identity to arbitrary matrices without contractiveness, from which not only will
Hua’s matrix identity follow but also an (known) upper bound for | det(I − A∗B)|2 is immediate;
the upper bound is as strong as the lower bound in the Hua’s determinantal inequality.

Let G =
(

C D

E F

)
be a partitioned matrix. If C is square and nonsingular, then F − EC−1D

is called the Schur complement of C in G, denoted by G/C. A celebrated theorem on the inverse
of a partitioned matrix, known as the Banachiewicz inversion formula (see, e.g., [12, pp. 10–14]),
is that if G and C are both invertible, then the inverse of G takes the form

G−1 =
(× ×

× (G/C)−1

)
,

where × denotes irrelevant entries in our following discussions.
Now we are in the position to present a matrix identity that generalizes Hua’s matrix identity

and determinantal inequalities that are analogous to Hua’s.

Theorem 3. Let X and Y be m × n matrices, and Z and W be n × m matrices. If I + WY is
nonsingular (equivalently, WY has no eigenvalues −1), then

(I + XZ) − (X + Y )(I + WY)−1(W + Z) = (I − XW)(I + YW)−1(I − YZ). (8)

Proof. Let I represent identity matrices of appropriate sizes and let

M =
(

I W

X I

) (
I Z

Y I

)
=

(
I + WY W + Z

X + Y I + XZ

)
.

If I − XW and I − YZ are both nonsingular, then M is nonsingular, and

M−1 =
(

I Z

Y I

)−1 (
I W

X I

)−1

=
( × ×

−(I − YZ)−1Y (I − YZ)−1

) (× −W(I − XW)−1

× (I − XW)−1

)

=
(× ×

× (I − YZ)−1(I + YW)(I − XW)−1

)
.

On the other hand, since I + WY is nonsingular, we have

M−1 =
(× ×

× [M/(I + WY)]−1

)
,

where

M/(I + WY) = (I + XZ) − (X + Y )(I + WY)−1(W + Z).

Equating the lower right corners in the two expressions of M−1 yields (8).
If I − XW (and/or similarly I − YZ) is singular, we may replace X with εX in our discussions,

where ε is a positive number such that det(I − εXW) /= 0. A continuity argument by letting ε → 1
shows that (8) still holds. �

Corollary 1. Let X, Y and Z be any three m × n complex matrices. Then

(I + XZ∗) − (X + Y )(I + Y ∗Y )−1(Y + Z)∗ = (I − XY ∗)(I + YY ∗)−1(I − YZ∗).

Proof. Note that I + Y ∗Y is never singular. Putting W = Y ∗ and replacing Z with Z∗ in (8)
results in the desired identity. �
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When Y is a strictly contractive matrix, then I − Y ∗Y and I − YY ∗ are nonsingular. Setting
W = −Y ∗ and Z = −X∗ in (8) reveals

(I − XX∗) + (X + Y )(I − Y ∗Y )−1(X∗ + Y ∗) = (I + XY ∗)(I − YY ∗)−1(I + YX∗),
which gives immediately the Hua matrix identity (1) by replacing Y with −Y .

Corollary 2. Let A and B be any two m × n complex matrices. Then

I + A∗A = (A + B)∗(I + BB∗)−1(A + B)

+ (I − A∗B)(I + B∗B)−1(I − A∗B)∗. (9)

Consequently, when m = n,

| det(I − A∗B)|2 � det(I + A∗A) det(I + B∗B) − | det(A + B)|2. (10)

We note that (9) has appeared in the literature, see, e.g., [11, p. 184], and it can also be proved
in a similar manner as for (8) by taking

N =
(

I A

B∗ I

)∗ (
I A

B∗ I

)
=

(
I + BB∗ A + B

A∗ + B∗ I + A∗A

)
.

Combining (10) with Hua’s determinantal inequalities, when A and B are square,

det(I − A∗A) det(I − B∗B) + | det(A − B)|2
� | det(I − A∗B)|2
� det(I + A∗A) det(I + B∗B) − | det(A + B)|2. (11)

The first inequality in (11) is Hua’s, it is valid only when A or B is (strictly) contractive, while
the second inequality holds for all square matrices A and B. When A and B are m × n matrices,
the weaker determinantal inequalities hold:

det(I − A∗A) det(I − B∗B)

� | det(I − A∗B)|2
� det(I + A∗A) det(I + B∗B). (12)

Note that the inequalities (11) generalize the scalar identity

(1 − |α|2)(1 − |β|2) + |α − β|2 = |1 − ᾱβ|2 = (1 + |α|2)(1 + |β|2) − |α + β|2,
which is just the m = n = 1 case of (11).

For equality cases in (11) and (12), we assume m = n > 1. As Hua showed, the first equality
holds in (12) if and only if the first equality holds in (11) if and only if A = B. We remark that
the second equality in (11) holds if and only if A = −B or A∗B = I , while the second equality
in (12) holds if and only if A = −B. For this, write I + A∗A = M + S, where

M = (A + B)∗(I + BB∗)−1(A + B)

and

S = (I − A∗B)(I + B∗B)−1(I − A∗B)∗.
Since M + S = I + A∗A is positive definite, equality occurs in (11) if and only if M = 0 or

S = 0, that is, if and only if A = −B or A∗B = I .
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If the second equality in (12) holds, then the second equality in (11) holds, so A = −B or
A∗B = I . On the other hand, I + A∗A and I + B∗B are always positive definite. Thus A∗B /= I .
Therefore A = −B.

3. Marcus and Ando’s results and new results

Motivated by Hua’s work, Marcus [8] showed an inequality for a general inner product vector
space and extended the Hua’s determinantal inequality (3) to a family of eigenvalue inequalities.

Lemma 1 (Lemma in [8]). If u and v are complex vectors and ‖u + v‖ < 2, then

|1 − 〈u, v〉|2 � (1 − ‖u‖2)(1 − ‖v‖2). (13)

Marcus proved (13) by means of the Grassmann exterior product of vectors. We shall generalize
this inequality to multiple complex vectors u1, u2, . . . , um.

Theorem 4 (Theorem in [8]). Let A, B ∈ Cn×n and let λi, αi and βi be respectively the eigenvalues
of I − A∗B, A∗A and B∗B so indexed that

|λi | � |λi+1|, αi � αi+1, βi � βi+1, i = 1, 2, . . . , n − 1.

Then for each integer k, 1 � k � n,

k∏
j=1

|λn−j+1|2 �
k∏

j=1

(1 − αj )(1 − βj ). (14)

The set of eigenvalue inequalities (14) gives a generalization of (3) which is the case where
k = n. To prove (14), Marcus first used the above lemma to derive the inequality

|〈(I − A∗B)x, x〉|2 � 〈(I − A∗A)x, x〉 〈(I − B∗B)x, x〉, (15)

then employed a theorem of Schur’s to I − A∗B and a theorem of Fan’s to both I − A∗A and
I − B∗B to convert (15) in vectors to (14) in terms of eigenvalues. What follows is a more general
version of Theorem 4 with an elementary proof.

Theorem 5. Let X, Y and Z be n-square complex matrices having eigenvalues xj , yj and zj ,

respectively, and so indexed that |sj | � |sj+1|, j = 1, . . . , n, where sj is xj , yj or zj . If Y >

0, Z � 0 and X∗Y−1X � Z, then
k∏

j=1

|xn−j+1|2 �
k∏

j=1

yn−j+1zn−j+1.

Proof. Without loss of generality, we may assume that X is in the upper-triangular form with
xn, xn−1, . . ., x1 on the main diagonal; otherwise we can replace X by X = U∗DU in the
discussion, where U is unitary and D is upper-triangular. Notice that for the upper-triangular X,

X
(

Ik 0
0 0

)
=

(
X(k) 0

0 0

)
, where X(k) denotes the k-square leading principal submatrix of X. In

addition, det X(k) = ∏k
j=1 xn−j+1. To extract the k-square leading principal submatrices from

X∗Y−1X � Z, we pre- and post-multiply both sides with
(

Ik 0
0 0

)
to get
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(
X∗(k) 0

0 0

)
Y−1

(
X(k) 0

0 0

)
�

(
Z(k) 0

0 0

)
.

This yields

X∗(k)Y−1(k)X(k) � Z(k).

By taking the determinants of both sides, we have
k∏

j=1

|xn−j+1|2 det(Y−1(k)) � det(Z(k)).

Notice that, by the eigenvalue interlacing theorem (see, e.g., [11, p. 222]),

det(Z(k)) =
k∏

j=1

λj (Z(k)) �
k∏

j=1

λn−j+1(Z) =
k∏

j=1

zn−j+1

and

det(Y−1(k)) =
k∏

j=1

λj (Y
−1(k)) �

k∏
j=1

λj (Y
−1)

=
k∏

j=1

λ−1
n−j+1(Y ) =

⎛
⎝ k∏

j=1

yn−j+1

⎞
⎠−1

.

The desired inequalities follow at once. �

An application of Theorem 5 to (4) reveals the inequalities (14). We point out that under the
condition of Theorem 5, some inequalities for unitarily invariant norms (see, e.g., [12, p. 105])
can also be obtained.

Ando continued the research on contractive matrices and generalized (14) to an inequality in
matrix form.

Theorem 6 (In Abstract of [1]). If A, B ∈ Cn×n, then

H(I − A∗B) � 2−1[(I − A∗A) + (I − B∗B)], (16)

where H(X) = 1
2 (X∗ + X) denotes the Hermitian part of the square matrix X.

As Ando observed, (16) is equivalent to the obvious inequality (A − B)∗(A − B) � 0 and it
implies the Marcus’ inequality (15). Inequality (16) is key to the results in [1] on contractions
with Pick functions. Ando continued his study with multiple contractive matrices and considered
the matrix with (i, j)-block (I − A∗

jAi)
−1, where A1, . . . , Am are strictly contractive matrices.

He showed that when m = 3 such a partitioned matrix is not positive semidefinite in general.
However it is true for commuting normal matrices.

Theorem 7 (Theorem 4 in [1]). Let Ai ∈ SCn×n, i = 1, 2, . . . , m. If all Ai are normal and com-
mute with each other, then H̃m = ((I − A∗

jAi)
−1) � 0.

Ando’s proof of this theorem is by induction and the Schur complement. Here we give another
proof. Since all Ai are normal and communicate with each other, there exists a unitary matrix U
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such that U∗AiU are all diagonal. Thus, without loss of generality, we may assume that all Ai

are diagonal. Let Ai = diag(ai1, ai2, . . . , ain). Then

(I − A∗
jAi)

−1 = diag((1 − āj1ai1)
−1, (1 − āj2ai2)

−1, . . . , (1 − ājnain)
−1).

By simultaneous permutation of rows and columns on H̃m, we get the block-diagonal matrix
with n-square matrices ((1 − āj t ait )

−1), t = 1, 2, . . . , m, on the main diagonal. By our later result
(20), each of these block matrices is positive semidefinite, so H̃m is positive semidefinite. The
computation of the determinant of H̃m can be done through a Cauchy matrix (see, e.g., [3, p. 30]),
since for scalars α1, α2, . . ., αn, all less than 1 in absolute value,

1

1 − αiαj

= 1

αi

· 1

λi + μj

, where λi = 1

αi

, μj = −αj .

Referring to (6) and (7), we define

Hm =

⎛
⎜⎜⎝

(I − A∗
1A1)

−1 (I − A∗
1A2)

−1 . . . (I − A∗
1Am)−1

(I − A∗
2A1)

−1 (I − A∗
2A2)

−1 . . . (I − A∗
2Am)−1

. . . . . . . . . . . .

(I − A∗
mA1)

−1 (I − A∗
mA2)

−1 . . . (I − A∗
mAm)−1

⎞
⎟⎟⎠ , (17)

where all Ai are strictly contractive matrices of the same size, p × q, say. The following example
shows that Hm is not positive semidefinite in general. Let

A1 =
(

0 1
2

0 0

)
, A2 =

( 1
2 0
0 1

2

)
, A3 =

(
0 1

2
1
2 0

)
.

Then the smallest eigenvalue of H3 in (17) is −0.0221. So H3 � 0.
Although Hm is not positive semidefinite in general, under certain circumstances its positive

semidefiniteness does hold. We first present a lemma which is of interest in its own right and then
show that Hm is positive semidefinite when Ai are vectors. At end, we give a result of Bellman’s
type. We note here that when all A∗

i Aj are scalars, Ando’s H̃m is the transpose of Hm. As is
well-known, a matrix is positive semidefinite if and only if its transpose is positive semidefinite.
Therefore H̃m and Hm are essentially the same when numerical aspects such as determinant or
trace are in the consideration. (See (7) and later Theorem 9.)

Lemma 2. Let V be a finite-dimensional inner product space over the complex number field. If
u1, u2, . . . , um are vectors in V such that ‖ui‖ < 1 for i = 1, 2, . . . , m, then

Um =

⎛
⎜⎜⎜⎜⎝

1
1−〈u1,u1〉

1
1−〈u1,u2〉 . . . 1

1−〈u1,um〉
1

1−〈u2,u1〉
1

1−〈u2,u2〉 . . . 1
1−〈u2,um〉

. . . . . . . . . . . .

1
1−〈um,u1〉

1
1−〈um,u2〉 . . . 1

1−〈um,um〉

⎞
⎟⎟⎟⎟⎠ � 0. (18)

Proof. Let αij = 〈ui, uj 〉 and B = (αij ). Then B (or its transpose, to be precise) is a Gram matrix,
so B � 0. Since all ‖ui‖ < 1, we have |αij | < 1. By writing 1

1−αij
as a convergent power series

∞∑
k=0

αk
ij ,
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we see that

Um =
∞∑

k=0

B[k] � 0. �

This approach does not work for the general block matrix case (17), even though each (I −
A∗

i Aj )
−1 can be written as a convergent power series of a matrix. In addition, Marcus’ (13)

follows at once when ‖u‖ < 1 and ‖v‖ < 1. Note that in (13), the condition ‖u + v‖ < 2 is a bit
weaker.

Two variations of this lemma come handy: If a > 0 and all ‖ui‖ <
√

a, then⎛
⎜⎜⎜⎜⎝

1
a−〈u1,u1〉

1
a−〈u1,u2〉 . . . 1

a−〈u1,um〉
1

a−〈u2,u1〉
1

a−〈u2,u2〉 . . . 1
a−〈u2,um〉

. . . . . . . . . . . .

1
a−〈um,u1〉

1
a−〈um,u2〉 . . . 1

a−〈um,um〉

⎞
⎟⎟⎟⎟⎠ � 0 (19)

and if x1, x2, . . ., xm are complex numbers such that all |xi | < 1 then⎛
⎜⎜⎜⎜⎝

1
1−|x1|2

1
1−x̄1x2

. . . 1
1−x̄1xm

1
1−x̄2x1

1
1−|x2|2 . . . 1

1−x̄2xm

. . . . . . . . . . . .

1
1−x̄mx1

1
1−x̄mx2

. . . 1
1−|xm|2

⎞
⎟⎟⎟⎟⎠ � 0. (20)

Theorem 8. Let u1, u2, . . . , um be strictly contractive vectors; precisely, they are complex row
vectors of n components all having norm less than 1. Then

Vm =

⎛
⎜⎜⎝

(I − u∗
1u1)

−1 (I − u∗
1u2)

−1 · · · (I − u∗
1um)−1

(I − u∗
2u1)

−1 (I − u∗
2u2)

−1 · · · (I − u∗
2um)−1

. . . . . . . . . . . .

(I − u∗
mu1)

−1 (I − u∗
mu2)

−1 · · · (I − u∗
mum)−1

⎞
⎟⎟⎠ � 0. (21)

Proof. Notice that

(I − u∗
i uj )

−1 = I + u∗
i (1 − uju

∗
i )

−1uj = I + (1 − uju
∗
i )

−1u∗
i uj .

It follows that

Vm = Jm ⊗ I + (� ⊗ Jn) ◦ D,

where Jk is the k-square matrix all whose entries are 1, � is an m-square matrix with (i, j)-entry

(1 − uju
∗
i )

−1, i.e., the transpose of the matrix
(

1
1−〈ui ,uj 〉

)
, and D is an (mn)-square matrix with

(i, j)-block u∗
i uj . Note that u∗

i uj is an n-square matrix and that D � 0.
By Lemma 2, � is positive semidefinite. Therefore Vm � 0. �

We conclude the paper by showing a result resembling Bellman’s (7) with trace in place of the
determinant.
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Theorem 9. Let A1, A2, . . . , Am be strictly contractive p × q matrices. Then

Tm =

⎛
⎜⎜⎜⎝

1
tr(I−A∗

1A1)
1

tr(I−A∗
1A2)

. . . 1
tr(I−A∗

1Am)
1

tr(I−A∗
2A1)

1
tr(I−A∗

2A2)
. . . 1

tr(I−A∗
2Am)

. . . . . . . . . . . .
1

tr(I−A∗
mA1)

1
tr(I−A∗

mA2)
. . . 1

tr(I−A∗
mAm)

⎞
⎟⎟⎟⎠ � 0.

Proof. Since tr(I − A∗
i Aj ) = q − tr(A∗

i Aj ) and trace can be regarded as an inner product of the
matrix space, by (19) with q � 〈Ai, Ai〉 as Ai ∈ SCp×q, Tm � 0. �
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