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Research problems

The Research Problems section presents unsolved problems in discrete mathematics.
In issues devoted to particular conferences, these typically are problems collected by
the guest editors. In regular issues, the Research Problems generally consist of problems
submitted on an individual basis.
Older problems are acceptable if they are not as widely known as they should be or if

the exposition features a new partial result. Concise de,nitions and commentary (such
as motivation and known partial results) should be provided to make the problems
accessible and interesting to a broad cross-section of the readership. Problems are
solicited from all readers. Ideally, they should be presented in the style below, occupy
at most one journal page, and be sent to

Douglas B. West, west@math.uiuc.edu
Mathematics Department, University of Illinois, 1409 West Green Street, Urbana IL
61801-2975, USA

Comments and questions of a technical nature about a particular problem should
be sent to the correspondent for that problem. Other comments and information about
partial or full solutions should be sent to Professor West (for possible later updates on
the status of published problems).

PROBLEM 412. Steiner extension of undirected graphs

Vaclav Chv4atal
Rutgers University, New Brunswick, NJ, USA
E-mail address: chvatal@cs.rutgers.edu

A Steiner extension of a ,nite undirected graph G is a Steiner triple system S such
that the points of S are the vertices of G and such that each triple in S contains a
unique edge of G. Note that if a graph with n vertices and m edges has a Steiner
extension, then the Steiner extension is a Steiner triple system with n points and m
triples, and so n is congruent to 1 or 3 modulo 6 and m= n(n− 1)=6.

Conjecture 1. No ,nite graph with more than three vertices has a unique Steiner
extension.
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Conjecture 2. Every ,nite graph with more than three vertices has an even number of
Steiner extensions.

Comment. The stronger Conjecture 2 has been veri,ed, by a computer search, for all
graphs with seven vertices and all graphs with nine vertices.

Reference

V. Chv4atal, Sylvester-Gallai theorem and metric betweenness, DIMACS Technical Report 2002-19,
http://www.cs.rutgers.edu/∼chvatal/sg.ps

PROBLEM 413. Fibonacci index of natural numbers

Tam4as D4enes
Marosv6as6arhely u. 13.a., Budapest, Hungary

A Fibonacci-type sequence is a sequence satisfying the Fibonacci recurrence an =
an−1 + an−2 for some initial values a1 and a2 that are natural numbers. Every natural
number appears in some such sequence (it may be the initial term).

Question. Given a natural number m, let g(m) be the maximum n such that m is the
nth term in some Fibonacci-type sequence. What is the behavior of g(n)?

Comment. Note that the maximum index for the appearance of m occurs in a sequence
with a1¿ a2. Among all Fibonacci-type sequences, the nth term is smallest when a1 =
a2=1, which is the Fibonacci sequence itself where an=Fn. Since Fn is approximately
	n=

√
5, where 	= (1+

√
5)=2, always g(m)6 log	(

√
5m), approximately. How much

smaller than this can it be, and when?
The values for small m are listed below. It appears that the greatest deviations from

the upper bound occur immediately after Fibonacci numbers. Also, g(Fn)=n for n¿ 2.
Furthermore, g(Fn + Fn−2) = n, using the sequence with a1 = 2 and a2 = 1. Is this the
only value of m between Fn and Fn+1 such that g(m) = n?
The data suggest further conjectures. The question has applications in crypto-

graphy.

m 1 2 3 4 5 6 7 8 9 10 11 12

g(m) 2 3 4 4 5 4 5 6 4 5 6 5

m 13 14 15 16 17 18 19 20 21 22 23 24

g(m) 7 5 5 6 6 7 6 6 8 6 6 6

http://www.cs.rutgers.edu/~chvatal/sg.ps
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PROBLEM 414. Permutations with many patterns

Herbert Wilf
Mathematics Department, University of Pennsylvania, Philadelphia, PA, USA
E-mail address: wilf@math.upenn.edu

The pattern formed by k positions in a permutation is the permutation of {1; : : : ; k}
specifying the relative order of the elements in those positions. Recent problems and
results about patterns in permutations are discussed in [1].
Let f(n) denote the largest number of diIerent patterns that can occur in a permu-

tation of n letters. When n= 2, the permutation (12) has one pattern of length 1 and
one of length 2, as does the permutation (21), so f(2) = 2. For n up to 7, the values
of f are 1; 2; 4; 8; 15; 28; 55, and examples of maximizing permutations of those lengths
are (1), (12), (132), (2413), (25314), (253614), (2574163).
Evidently, a permutation of n letters cannot contain more than 2n diIerent patterns,

one for each subset of its letters. Also it cannot contain more than k! diIerent patterns
of length k, for each k. Hence we have the upper bound

f(n)6
n∑
k=1

min

(
k!;

(
n

k

))
:

To ,nd a lower bound, consider the permutation

pn = (n; 1 ; n− 1; 2; n− 2; 3; : : :)

of n letters. We claim that pn contains exactly Fn+1 distinct patterns, where Fn is the
nth Fibonacci number. Letting gn be the number of distinct patterns in pn, it suLces
to show that gn = gn−1 + gn−2 for n¿ 3, with g1 = 1 and g2 = 2.
For every pattern in the permutation pn, the ,rst letter is either the largest letter of

the pattern or the smallest letter of the pattern. Let S be the set of distinct patterns
that occur in the last n− 1 letters of pn. Note that |S|= gn−1. Pre,x each such pattern
with a new highest letter. This gives a set S ′ of gn−1 diIerent patterns, each contained
in pn. Likewise, when T is the set of distinct patterns occurring among the last n− 2
letters of pn, we have |T | = gn−2. Pre,x each such pattern with a new lowest letter.
This gives a set T ′ of gn−2 diIerent patterns, each contained in pn. The only pattern
in both S ′ and T ′ is (1). The only pattern contained in pn that is not in S ′ or T ′ is
the empty pattern. Therefore gn = gn−1 + gn−2.

Question. Is limf(n)1=n ¡ 2?

Reference

[1] H. Wilf, The patterns of permutations, Discrete Math. 257 (2002) 575–583.
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PROBLEM 415. Zero-sum Ramsey numbers

Yair Caro
Mathematics Department, University of Haifa–Oranim, Tivon 36006, Israel
E-mail address: ya caro@kvgeva.org.il

Given a graph G and an integer k dividing the number of edges in G, the zero-sum
Ramsey number R(G;Zk) is the smallest n such that in every edge-coloring of Kn with
integers modulo k, there is a copy of G on which the colors sum to a multiple of k.
Let n(G) and e(G) denote the numbers of vertices and edges in G.
Of course, the parameter is not de,ned when k does not divide e(G), since one

can then assign color 1 to every edge and have no such copy. Otherwise, R(G;Zk)
is well-de,ned, because it is bounded by the ordinary k-color Ramsey number of G.
The notion of zero-sum Ramsey number was ,rst introduced in [1] for the special case
k = e(G).

Question 1. Is it true for every k that R(G;Zk) is bounded by a polynomial in n(G)?
In particular, do there exist constants ak ; bk ; ck such that R(G;Zk)6 akn(G)bk + ck
whenever k divides e(G)?

Question 2. What is the value of R(Kn;Z3) when n ≡ 7mod 9?

Comments. The value of R(G;Z2) is known exactly for every graph. The ,rst proof ap-
pears in [2], with another in [3] and related material in [4,5]. In particular, R(G;Z2)6
n(G) + 2, which motivates Question 1.
Concerning Question 2, the value of R(Kn;Z3) is already known for all other cases.

If n ≡ 2mod 3, then 3A( n2 ). If n ≡ 0mod 3, then R(Kn;Z3) = n + 4, except that
R(K3;Z3) = 11. If n ≡ 1mod 3, then R(Kn;Z3) = n + 3 when n ≡ 1mod 9 or n ≡
4mod 9. This leaves the case n ≡ 7mod 9, where the value is known to be n + 3 or
n + 4, and for n = 7 it is exactly 11. In general, zero-sum Ramsey numbers are not
monotone.
The state of the art for zero-sum Ramsey numbers is described in [6,7]. The questions

posed here would be the next step in furthering knowledge in this area. For additional
zero-sum type problems, see [8,9].
In particular, there are other ways to force zero-sum copies of desired graphs. The

appealing conjecture below concerns trees. In a sense it is trivial for k=1, since every
graph with minimum degree at least m contains every tree with m edges. Caro and
Roditty [10] proved this conjecture for k = 2.

Conjecture 3. If m is a multiple of k, T is a tree with m edges, and G is a graph
with minimum degree at least m+ k − 1, then every mod-k-coloring of E(G) contains
a copy of T on which the colors sum to a multiple of k.

References
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PROBLEM 416. Weak pancyclicity of locally connected graphs

ZdenSek Ryj4aScek
University of West Bohemia, Pilsen, Czech Republic
E-mail address: ryjacek@kma.zcu.cz

Let G be a ,nite simple undirected graph, and let g(G) and c(G) denote the girth
and the circumference of G (that is, the length of a shortest cycle in G and the length
of a longest cycle in G), respectively. We say that G is weakly pancyclic if G contains
cycles of every length ‘ such that g(G)6 ‘6 c(G). A graph G is locally connected if
for every vertex v in G, the subgraph induced by the neighborhood of v is a connected
graph.

Conjecture. Every locally connected graph is weakly pancyclic.

Comments. The concept of locally connected graphs was introduced by Chartrand and
Pippert [1]. Among other applications, it plays an important role in the closure concept
for claw-free graphs [2]. More information about weakly pancyclic graphs appears in
[3], for example.
The present conjecture is based on a result by Clark [4], who proved that every

connected, locally connected graph is vertex pancyclic (having cycles of all lengths
from 3 to |V (G)| through every vertex. Without the claw-free assumption, it is easy to
construct locally connected graphs that are non-Hamiltonian. Nevertheless, all known
examples are weakly pancyclic, and indeed [4] proved the conjecture for claw-free
graphs.
In a chordal graph, every block is locally connected, and for every cycle of length

at least 4 there is a cycle with length one less that is obtained by skipping one vertex.
Thus the conjecture holds for chordal graphs.
It is easy to show that the square of every graph is locally connected. (The square

adds edges making vertices at distance 2 in the original graph adjacent.) Fleischner [5]
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(Theorem 6) proved that the square of every graph is weakly pancyclic, thus verifying
the conjecture for squares of graphs.
The lexicographic product of graphs is another way to obtain locally connected

graphs (the lexicographic product G[H ] consists of disjoint copies of H corresponding
to the vertices of G, plus edges from every vertex of Hu to every vertex of Hv when
uv∈E(G)). Kaiser and Kriesell [6] proved that the lexicographic product G[H ] is
weakly pancyclic provided that G is connected and H has at least one edge.
Also, Kriesell [7] veri,ed the conjecture for graphs with maximum degree at most 4.
Finally, planar triangulations are locally connected. Balister [8] proved the conjecture

for this class as follows. Let C be a cycle in a planar triangulation G. By induction
on the number of faces inside, we prove that the interior (with boundary) contains
cycles of all shorter lengths. If some face inside has two edges on C, then using the
third edge yields a cycle C′ with length one less and fewer faces inside. Otherwise,
there is a face with one edge on C and the third vertex inside. Detouring from C to
include this vertex forms a longer cycle C′, but again it has fewer regions inside and
the induction hypothesis applies.
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