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Abstract

It is shown that every positive strictly singular operator T on a Banach lattice satisfying certain conditions is AM-compact and
has invariant subspaces. Moreover, every positive operator commuting with T has an invariant subspace. It is also proved that on
such spaces the product of a disjointly strictly singular and a regular AM-compact operator is strictly singular. Finally, we prove that
on these spaces the known invariant subspace results for compact-friendly operators can be extended to strictly singular-friendly
operators.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

Read [14] presented an example of a strictly singular operator with no (closed non-zero proper) invariant subspaces.
It remains an open question whether every positive strictly singular operator on a Banach lattice has an invariant
subspace. The present paper contains several results in this direction.

Recall that a bounded operator T on a Banach space X is said to be strictly singular if its restriction to any
infinite-dimensional subspace is not an isomorphism. We say that T is �2-singular if the preceding definition is
true for every subspace isomorphic to �2. Furthermore, if X is a Banach lattice, we say that T is disjointly strictly
singular if the preceding is true for every subspace spanned by a pairwise disjoint infinite sequence. Disjointly strictly
singular operators were introduced in [9] as a lattice version of strictly singular operators. Unlike strictly singular
operators, they do not form an operator ideal. Clearly, every strictly singular operator is �2-singular and disjointly
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strictly singular. An operator between Banach spaces is called Dunford–Pettis if it takes weakly null sequences to
norm null sequences. An operator from a Banach lattice to a Banach space is AM-compact if it takes order intervals
into relatively compact sets. If E is a Banach lattice and T ∈ L(E), we say that T is regular if it can be written as the
difference of two positive operators. We write L(E) for the space of all (linear bounded) operators on E, and Lr (E)

and L(E)+ for the collections of all regular or positive operators on E.
Throughout this paper, E will be a fixed order continuous Banach lattice with a weak order unit. We can assume

by [11, Proposition 1.b.14] that there is a probability space (Ω,Σ,μ) such that E is an order ideal of L1(μ) such
that L∞(μ) ⊆ E and ‖x‖1 � ‖x‖E � 2‖x‖∞. We fix (Ω,Σ,μ) throughout the paper. We will also make use of
the following fact due to Weis [17, Theorem 2.2]: every regular operator T :E → E can be extended to a bounded
operator T̃ :L1(μ) → L1(μ).

Consider a sequence (fn) in E which is bounded in ‖ · ‖∞ and which, viewed as a sequence in L1(μ), is equivalent
to the unit vector basis of �2. We say that E satisfies the R-condition if every such sequence has a subsequence which
remains equivalent to the unit vector basis of �2 when viewed as a sequence in E. We show in Section 1 that every p-
concave Banach lattice with 1 � p < ∞ satisfies the R-condition. In particular, if E contains Lp(μ), then E satisfies
the R-condition.

In Section 2 we establish certain connections between various special classes of operators on Banach lattices. We
show that a regular operator T on E is AM-compact iff its extension to L1(μ) is a Dunford–Pettis operator. We prove
that the product of a disjointly strictly singular and a regular AM-compact operators is strictly singular. We also show
that if E satisfies the R-condition, then every regular �2-singular operator is AM-compact. In Section 3 we use the
results of Section 2 to show that certain strictly singular operators as well as many other operators related to them
have invariant subspaces.

In [2] the authors introduced the concept of a compact-friendly operator, and proved the existence of invariant
subspaces for these operators under certain additional assumptions. In Section 4 we define strictly singular-friendly
operators in a similar fashion, and show that under the same assumptions plus the R-condition strictly singular-friendly
operators have invariant subspaces.

We will also use the following standard notations. We say that E contains a copy of �1 if there is a subspace Z

of E such that Z is isomorphic to �1. If, in addition, Z is a sublattice of E, we say that Z is a lattice copy of �1 in E.
It is well known that E contains a copy of �1 if and only if it contains a lattice copy of �1 if and only if E∗ is not
order continuous [3, pp. 190, 238]. We say that an operator T ∈ L(E) preserves a (lattice) copy of �1 if E contains a
(lattice) copy of �1 such that the restriction of T to this subspace is an isomorphism. For more information on Banach
lattices we refer the reader to [1,3,11,12].

1. R-condition

We will say that E satisfies the R-condition if every bounded sequence (fn) in L∞(μ) which is equivalent in
L1(μ) to the unit basis of �2, has a subsequence which is equivalent in E to the unit basis of �2. In this section we
show that many Banach lattices enjoy the R-condition.

Lemma 1.1. Suppose that the inclusion i :L∞(μ) ↪→ E factorizes through Lp(ν) for some probability measure ν and
1 � p < ∞ with positive factors. Then E satisfies the R-condition.

Proof. Let (fn) be a bounded sequence in L∞(μ) which is equivalent in L1(μ) to the unit vector basis of �2. By
hypothesis, we have the following factorization:

L∞(μ)
i

T1

E

Lp(ν)

T2

Since (fn) viewed as a sequence in L1(μ) is equivalent to the unit vector basis of �2, it is weakly null in L1(μ). Since
(fn) is order bounded in E, (fn) is weakly null in E by Amemiya’s Theorem [12, 2.4.8].
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The sequence (T1fn) has a subsequence which converges weakly to some g ∈ Lp(ν); therefore T2g = 0. Consider
the sequence yn = T1fn − g; it has a weakly null subsequence. It cannot be null in Lp(ν) because (fn) is not null
in E.

Therefore, by passing to a subsequence, we may assume that (yn) is weakly null, seminormalized, and (yn) ⊂
[−y, y] for some y in Lp(ν). Since Lp(ν) has an unconditional basis, we can extract a subsequence (ynk

) which is
unconditional with constant K . For every n ∈ N, let rn : [0,1] → [−1,1] be the nth Rademacher function rn(t) =
sign sin 2nπt . By [11, Theorem 1.d.6], there exists C > 0 such that∥∥∥∥∥

m∑
k=1

akynk

∥∥∥∥∥
p

� K

1∫
0

∥∥∥∥∥
m∑

k=1

rk(s)akynk

∥∥∥∥∥
p

ds � KC

∥∥∥∥∥
(

m∑
k=1

|akynk
|2

) 1
2
∥∥∥∥∥

p

� KC‖y‖p

∥∥(ai)
∥∥

�m
2

for all (ak)
m
k=1. Then, for some c > 0 we have

c
∥∥(ai)

∥∥
�m

2
�

∥∥∥∥∥
m∑

k=1

akfnk

∥∥∥∥∥
1

�
∥∥∥∥∥

m∑
k=1

akfnk

∥∥∥∥∥
E

=
∥∥∥∥∥

m∑
k=1

akT2ynk

∥∥∥∥∥
E

� ‖T2‖
∥∥∥∥∥

m∑
k=1

akynk

∥∥∥∥∥
p

� KC‖T2‖‖y‖p

∥∥(ai)
∥∥

�m
2
.

Therefore (fnk
) is equivalent in E to the unit vector basis of �2. �

We claim that if Lp(μ) ⊆ E for some 1 � p < ∞, then E satisfies R-condition. This is a special case of a more
general fact: if E is p-concave for some 1 � p < ∞, then E has R-condition. This follows from Lemma 1.1 together
with Krivine’s factorization theorem [11, Theorem 1.d.11] since the inclusion map i :L∞(μ) → E is p-convex (an
inspection of the proof of [11, Theorem 1.d.11] reveals that in our setting the factors are positive).

The last statement can be extended as follows: we will show that if E has property (U2), then it satisfies R-
condition. Property (U2) was introduced by Räbiger in [13]: a Banach lattice F has property (U2) if for every
seminormalized weakly null order bounded sequence (xn) in F there is a subsequence (xni

) and a constant C > 0
such that∥∥∥∥∥

m∑
i=1

aixni

∥∥∥∥∥ � C
∥∥(ai)

∥∥
�m

2

for any coefficients a1, . . . , am. It was proved in [13] that every Banach lattice which is p-concave for some 1 � p < ∞
has property (U2). However, the following example shows that the converse is false.

Example. The Banach lattice �2(�
2n

∞) has property (U2) but it is not p-concave for any 1 � p < ∞.

Proof. Let us write every element x ∈�2(�
2n

∞) as a sequence (xi)
∞
i=1, with x1 ∈�1∞, (x2, x3)∈�2∞, (x4, x5, x6, x7)∈�4∞,

and so on. Therefore,

‖x‖ =
( ∞∑

n=0

max
2n�i<2n+1

|xi |2
) 1

2

.

For x ∈ �2(�
2n

∞) we consider x = (xi)
∞
i=1, defined by xi = max{|xj |: 2n � j < 2n+1} whenever 2n � i < 2n+1. Clearly,

‖x‖ = ‖x‖, and x belongs to the closed linear span of (en), where

en
k =

{
1 if 2n � k < 2n+1,

0 otherwise.
Note that (en) is equivalent to the unit vector basis of �2.

Let (x(n)) be a seminormalized order bounded weakly null sequence in �2(�
2n

∞). For each n, put y(n) = x(n). We

can write y(n) = ∑∞
i=1 αn,ie

i . Since (x(n)) is weakly null, both (x(n)) and (y(n)) converge to zero coordinate-wise,
hence limn αn,i = 0 for every i. It follows from [10, Proposition 1.a.12] that there is a subsequence (y(nk)) equivalent
to the unit vector basis of �2. Therefore, we have:
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∥∥∥∥∥
∞∑

k=1

akx
(nk)

∥∥∥∥∥ �
∥∥∥∥∥

∞∑
k=1

|ak|y(nk)

∥∥∥∥∥ � C

( ∞∑
k=1

|ak|2
) 1

2

for some constant C > 0 independent of the sequence (ak)
∞
k=1. Therefore, �2(�

2n

∞) has property (U2). On the other
hand, this space contains �n∞’s uniformly, so that it is not p-concave for any 1 � p < ∞. �
Proposition 1.2. If E has property (U2), then it satisfies the R-condition.

Proof. Let (xn) be a bounded sequence in L∞(μ) equivalent in L1(μ) to the unit vector basis of �2. Again, (xn) is
weakly null in E. By property (U2), there exists a constant C > 0 such that, after passing to a subsequence, we have∥∥∥∥∥

m∑
i=1

aixni

∥∥∥∥∥
E

� C
∥∥(ai)

∥∥
�m

2

for any (ai)
m
i=1. On the other hand, by our choice of (xn) there exists another constant c such that

c
∥∥(ai)

∥∥
�m

2
�

∥∥∥∥∥
m∑

i=1

aixni

∥∥∥∥∥
1

�
∥∥∥∥∥

m∑
i=1

aixni

∥∥∥∥∥
E

for any coefficients a1, . . . , am. Hence (xni
) is also equivalent to the unit vector basis of �2 in E. �

2. Strictly singular and AM-compact operators

We start by showing that a regular operator T on E is AM-compact iff its extension T̃ to L1(μ) is Dunford–Pettis.
This result is related to Theorem 19.18 of [3] which asserts that a regular operator from E to L1(μ) is Dunford–Pettis
iff it maps order intervals onto norm compact sets. We will use the following observation of Uhl [5,16].

Theorem 2.1 (Uhl). An operator T :L1(μ) → L1(μ) is Dunford–Pettis iff its restriction to L∞(μ) is compact as an
operator from L∞(μ) to L1(μ).

Theorem 2.2. Let T be a regular operator on E. Then T is AM-compact iff T̃ :L1(μ) → L1(μ) is Dunford–Pettis.

Proof. Suppose that T̃ is Dunford–Pettis. It suffices to show that if (xn) is a sequence in [0, x] for some x ∈ E+,
then (T xn) has a convergent subsequence. Without loss of generality we can take (xn) normalized. Since order in-
tervals in L1(μ) are weakly compact, there exists a subsequence (xnk

) which converges weakly to some g in L1(μ).

We then have T xnk
= T̃ xnk

‖·‖1−−→ T̃ g because T̃ is Dunford–Pettis. Since T is regular, then (T xn) is contained in
[−|T |x, |T |x]. Also, T̃ g ∈ [−|T |x, |T |x] since order intervals are closed. By Amemiya’s Theorem [12, 2.4.8] it fol-
lows that T̃ g ∈ E and T xnk

→ T̃ g in E.
Conversely, suppose that T is AM-compact. Then T is AM-compact as an operator from L∞(μ) to L1(μ), because

L∞(μ) is an ideal in E and the inclusion E ↪→ L1(μ) is continuous. Since the unit ball in L∞(μ) is an order interval,
it follows that this operator is in fact compact. Now Theorem 2.1 implies that T̃ is Dunford–Pettis. �
Remark 2.3. It was shown in [16] that an operator S :L1(μ) → L1(μ) is Dunford–Pettis iff it is �2-strictly singular.
Moreover, if S is not Dunford–Pettis, then one can find a sequence (fn) bounded in L∞(μ) such that (fn) viewed as
a sequence in L1(μ) is weakly null and equivalent to the unit vector basis of �2, and the restriction of S to the span
of (fn) in L1(μ) is an isomorphism.

Proposition 2.4. Suppose that E satisfies the R-condition and T ∈ Lr (E) is �2-strictly singular. Then T is AM-
compact.

Proof. In view of Theorem 2.2 it suffices to show that T̃ :L1(μ) → L1(μ) is Dunford–Pettis. Suppose it is not. Let
(fn) be as in Remark 2.3 for S = T̃ . Since E satisfies the R-condition, after passing to a subsequence we have the
following chain of inequalities with appropriate constants:



J. Flores et al. / J. Math. Anal. Appl. 343 (2008) 743–751 747
∥∥∥∥∥T

( ∞∑
n=1

αnfn

)∥∥∥∥∥
E

�
∥∥∥∥∥T

( ∞∑
n=1

αnfn

)∥∥∥∥∥
1

� C1

∥∥∥∥∥
∞∑

n=1

αnfn

∥∥∥∥∥
1

� C2
∥∥(αn)

∥∥
2 � C3

∥∥∥∥∥
∞∑

n=1

αnfn

∥∥∥∥∥
E

for any
∑∞

n=1 αnfn in E. This contradicts T being �2-singular. �
Corollary 2.5. Suppose that X is an arbitrary Banach lattice, T :X → X is strictly singular and factors with positive
factors through E, and E satisfies the R-condition. Then T 3 is AM-compact.

Proof. Suppose that we can factor T = RS where X
S−→ E

R−→ X and S,R � 0. Then ST R :E → E is positive and
strictly singular, hence AM-compact by Proposition 2.4. Since AM-compact operators form an algebraic ideal among
regular operators, it follows from T 3 = R(ST R)S that T 3 is AM-compact �
Theorem 2.6. Suppose that S,T ∈ L(E) such that S is disjointly strictly singular and T is regular and AM-compact.
Then ST is strictly singular.

The proof of this theorem will be based on the following two facts. The first one is an observation which follows
easily from the results of [6].

Theorem 2.7. Let T be an operator on an order continuous Banach lattice. If T preserves a copy of �1, then T

preserves a lattice copy of �1.

Proof. If T preserves a copy of �1, then there is a normalized sequence (xn) such that (xn) and (T xn) are both
equivalent to the unit vector basis of �1. Therefore, (T xn) has no weakly Cauchy subsequence. Thus, T is not weakly
sequentially precompact (see [6, Section 1]) and the required conclusion follows from [6, Theorem 1.1]. �

The second fact needed for the proof of Theorem 2.6 is related to the well-known Kadec–Pełczyński sets. Recall
that, given ε > 0, the Kadec–Pełczyński set M(ε) is defined as follows:

M(ε) = {
x ∈ E: μ

(
σ(x, ε)

)
� ε

}
where σ(x, ε) = {t ∈ Ω: |x(t)| � ε‖x‖E}. It is known [11, Proposition 1.c.8] that ‖x‖1 � ε2‖x‖E for all x ∈ M(ε);
hence the norms ‖ · ‖E and ‖ · ‖1 are equivalent on every subspace of E contained in M(ε) for some ε > 0. On the
other hand, if a normalized sequence (xn) in E is not contained in any M(ε), then there is a subsequence (xnk

) and a
normalized disjoint (unconditional basic) sequence (yk) in E equivalent to (xnk

) with ‖xnk
− yk‖E → 0.

Lemma 2.8. Suppose that T ∈ Lr (E) is AM-compact and (xn) is a normalized weakly null sequence in E such
that (T xn) is not null. Then there is a subsequence (xnk

) and a disjoint seminormalized basic sequence (yk) in E

equivalent to (T xnk
) and ‖T xnk

− yk‖E → 0.

Proof. By Theorem 2.2, T̃ is Dunford–Pettis. Clearly, (xn) is still weakly null viewed as a sequence in L1(μ), so that
‖T xn‖1 → 0. It follows that (T xn) cannot be entirely contained in some M(ε) as this would imply ‖T xn‖E → 0. The
conclusion follows from the preceding remark. �
Proof of Theorem 2.6. Let Y be an infinite-dimensional subspace of E such that ST is an isomorphism on Y .
Suppose first that Y contains no isomorphic copy of �1. Applying Rosenthal’s theorem [15] to any bounded sequence
in Y with no convergent subsequences, we conclude that Y contains a normalized weakly null sequence (xn). Since
T is an isomorphism on Y , we may assume by Lemma 2.8 that (T xn) is equivalent to a disjoint seminormalized
basic sequence (yn) and ‖T xn − yn‖E → 0. Since S is disjointly strictly singular, we can choose a normalized block
sequence (wn) of (yn) such that ‖Swn‖E → 0. If (vn) is the corresponding block sequence of (T xn) with the same
coefficients, then (vn) is seminormalized and ‖Svn‖E → 0. This contradicts ST being an isomorphism on Y .

Now suppose that Y contains a copy of �1. It follows that S preserves a copy of �1. Theorem 2.7 yields that S

preserves a lattice copy of �1. This contradicts S being disjointly strictly singular. �
Corollary 2.9. If T ∈ Lr (E) is disjointly strictly singular and AM-compact, then T 2 is strictly singular.
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3. Invariant subspaces of positive strictly singular operators

In this section we apply the results of the preceding sections to the Invariant Subspace Problem. Invariant subspaces
are always assumed to be non-zero and proper. A subspace is said to be hyperinvariant under an operator T if it is
invariant under every operator commuting with T . Recall that T is said to be quasinilpotent if its spectrum is {0} or,
equivalently, if limn

n
√‖T n‖ = 0. We use the following standard lemma.

Lemma 3.1. Suppose that T is an operator on a Banach space. If T is not quasinilpotent and some power of T is
strictly singular, then T has a finite-dimensional hyperinvariant subspace.

Proof. Suppose that T is an operator on a Banach space X such that T is not quasinilpotent and T n is strictly singular
for some n. Clearly, T n is not quasinilpotent.

Suppose first that X is a Banach space over C. Then T n has non-trivial eigenspaces by [1, Theorem 7.11]. Let
Z be a non-trivial eigenspace of T n. Since T n is strictly singular, we have dimZ < ∞. It is easy to see that Z is
hyperinvariant under T .

Now suppose that X is a Banach space over R. The complexification T n
C

of T n is still strictly singular by [1, p. 177].
Again, let Z be a non-trivial eigenspace of T n

C
in XC. Then dimZ < ∞ and Z is hyperinvariant under TC. Let

(x1 + iy1), . . . , (xm + iym) be a basis of Z, put M = span{x1, . . . , xm, y1, . . . , ym} in X. Clearly, 0 < dimM � 2m. We
claim that M is hyperinvariant under T . Indeed, suppose that S is an operator such that ST = T S. Then SCTC = TCSC.
Since Z in hyperinvariant under TC, for every k � m we have SC(xk + iyk) ∈ Z, so that Sxk and Syk are both in M .
Hence, S(M) ⊆ M . �

We make use of the following statement, which is a special case of Theorem 10.26 of [1].

Theorem 3.2. (See [1].) Every quasinilpotent AM-compact positive operator on a Banach lattice has an invariant
subspace.

Combining Theorem 3.2 with Lemma 3.1 we obtain the following result.

Proposition 3.3. Suppose that T is a positive AM-compact operator on a Banach lattice. If T n is strictly singular for
some n, then T has an invariant subspace.

Together with Theorem 2.4, this yields the following.

Corollary 3.4. If E satisfies the R-condition and T ∈ L(E)+ is strictly singular, then T is AM-compact and has an
invariant subspace.

Corollary 3.5. Suppose that E satisfies the R-condition and S,T ∈ L(E) are such that 0 � S � T . If T is strictly
singular, then S has an invariant subspace.

Proof. It was shown in [7] that every operator on a Banach lattice with order continuous norm which is dominated
by a strictly singular operator has strictly singular square; hence S2 is strictly singular. Theorem 2.4 yields that T is
AM-compact, hence 0 � S � T implies that S is AM-compact. The conclusion now follows from Proposition 3.3. �
Proposition 3.6. Every positive disjointly strictly singular AM-compact operator on E has an invariant subspace.

Proof. Follows from Corollary 2.9 and Proposition 3.3. �
Propositions 2.4 and 3.6 immediately yield the following result.

Theorem 3.7. If E satisfies the R-condition and T ∈ L(E)+ is �2-singular and disjointly strictly singular, then T is
AM-compact and has an invariant subspace.
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Recall that if T is a positive operator on a Banach lattice, then its left and right semi-commutants are defined as
follows:

〈T ] = {S � 0: ST � T S} and [T 〉 = {S � 0: ST � T S}.

Theorem 3.8. (See [4,8].) Suppose that T is a positive quasinilpotent operator on a Banach lattice X. Suppose that
there exists a closed ball B(x0, r) in X centered at some x0 � 0, of positive radius r < ‖x0‖ such that for every
sequence (xn) in B(x0, r) ∩ [0, x0] there exists a subsequence (xni

) and a sequence of operators (Ki) such that
0 � Ki � T for each i and (Kixni

) converges to a non-zero vector. Then 〈T ] has a (common) invariant closed order
ideal. In particular, T has an invariant subspace.

Theorem 3.9. Suppose that E satisfies R-condition and T is a positive quasinilpotent strictly singular operator on E.
Then 〈T ] has an invariant closed ideal.

Proof. Choose x0 ∈ X+ and r > 0 so that B(x0, r) ∩ kerT = ∅. Suppose that (xn) is a sequence in B(x0, r) ∩ [0, x0].
We claim that there is a subsequence (xni

) such that (T xni
) converges in norm to a non-zero vector; then the result will

follow from Theorem 3.8. We may assume without loss of generality that (xn) has no norm convergent subsequences.
Since order intervals are weakly compact in E, we may assume by passing to a subsequence that (xn) converges
weakly to some x. Since B(x0, r) is weakly closed and B(x0, r) ∩ kerT = ∅, we have x �= 0 and T x �= 0. Notice
that ‖T xn − T x‖1 → 0 since the extension T̃ :L1(μ) → L1(μ) is Dunford–Pettis by Theorem 2.2 and Corollary 3.4.
Again, since the sequence (T xn) is order bounded (T is positive) we obtain ‖T xn − T x‖E → 0 by Amemiya’s
Theorem. �

To produce a similar result for [T 〉 we use the following version of a theorem of Drnovs̆ek [1, Theorem 10.50].
We start by recalling a few definitions. Let X be a Banach lattice. An operator T on X is locally quasinilpotent at a
point x if limn

n
√‖T nx‖ = 0. A point w in X is called quasi-interior if Ew is norm dense in X, where

Ew = {
x ∈ X: |x| � λ|w| for some λ > 0

}
,

the principal ideal generated by w. Suppose that S and T are two operators on X, we say that T dominates S if
|Sx| � T |x| for every x ∈ X. Please see Section 10.4 of [1] for the other terminology used in the proof.

Theorem 3.10. Suppose that T is a positive operator on a Banach lattice X with a quasi-interior point w such that

(i) T is locally quasinilpotent at some x0 > 0, and
(ii) there is S ∈ [T 〉 such that S dominates a non-zero AM-compact operator K .

Then [T 〉 has an invariant closed ideal.

Proof. Since the null ideal NT of T is [T 〉-invariant, we may assume that NT = {0}. Let z ∈ X such that Kz �= 0.
We may assume that |Kz| � w as otherwise we can replace w with w ∨ |Kz|. By Lemma 4.16(1) of [1] there exists
an operator M dominated by the identity operator such that MKz > 0. Put K1 = MK . It follows from NT = 0 that
T K1z �= 0, hence T K1 �= 0. It is easy to see that T K1 is AM-compact and is dominated by T S.

Let J be the semigroup ideal in [T 〉 generated by T S, i.e., J = {AT SB: A,B ∈ [T 〉}. It can be verified directly
that J is finitely quasinilpotent at x0. Since T S ∈ J and T S dominates a non-zero AM-compact operator, J has an
invariant closed ideal by Theorem 10.44 of [1]. Now Theorem 10.49 of [1] yields that [T 〉 has an invariant closed
ideal. �
Corollary 3.11. Suppose that E has R-condition and T is a positive quasinilpotent strictly singular operator on E.
Then [T 〉 has an invariant closed ideal.

Proof. By Corollay 3.4, T is AM-compact. Now apply Theorem 3.10. �
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Corollary 3.12. Suppose that E has R-condition and T is a positive strictly singular operator on E. Then every
positive operator commuting with T has an invariant subspace.

Proof. If T is quasinilpotent, then the conclusion follows from Theorem 3.9 or Corollary 3.11. If T is not quasinilpo-
tent, then the result follows from Lemma 3.1. �
Proposition 3.13. Suppose that X is an arbitrary Banach lattice, T :X → X is strictly singular and factors with
positive factors through E, and E satisfies the R-condition. If T is locally quasinilpotent at a positive vector, then [T 〉
has an invariant closed ideal.

Proof. Corollary 2.5 yields that T 3 is AM-compact. The result now follows from Theorem 3.10. �
4. Invariant subspaces of SS-friendly operators

It is well known that compact operators enjoy good properties concerning the Invariant Subspace Problem. The
compactness properties were relaxed in [2], where the authors introduced the class of compact-friendly operators and
showed that these operators also have invariant subspaces. We present here the analogous concept for strictly singular
operators.

We call an operator B ∈ L(E)+ strictly singular-friendly if there is a positive operator that commutes with B and
dominates a non-zero operator which is dominated by a strictly singular positive operator. In particular, every operator
dominating a positive strictly singular operator is strictly singular-friendly.

Theorem 4.1. Suppose that E satisfies the R-condition. If B ∈ L(E)+ is a non-zero strictly singular-friendly operator
which is locally quasinilpotent at some x0 > 0, then B has a non-trivial closed invariant ideal. Moreover, if (Tn) is a
sequence in [B〉, then there exist a non-trivial closed ideal that is invariant under B and each Tn.

Proof. Our argument is similar to the one in [2]. We can suppose without loss of generality that ‖B‖ < 1. Pick small
enough scalars αn > 0 such that the positive operator T = ∑∞

n=1 αnTn exists and ‖B +T ‖ < 1. It is clear that T ∈ [B〉,
and (B + T )n ∈ [B〉 for every n, so that the positive operator A = ∑∞

n=0(B + T )n also belongs to [B〉.
For each x > 0, let Jx be the principal ideal generated by Ax, that is,

Jx = {
y ∈ E: |y| � λAx for some λ > 0

}
.

Since x � Ax, we have that x ∈ Jx so this is a non-zero ideal.
Note that Jx is (B + T )-invariant. Indeed, if y ∈ Jx , then |y| � λAx for some λ > 0 so

∣∣(B + T )y
∣∣ � (B + T )|y| � λ(B + T )

∞∑
n=0

(B + T )nx = λ

∞∑
n=1

(B + T )nx � λAx.

Clearly Jx is also invariant under B and T , since 0 � B , T � B + T , so it is also Tn-invariant for each n.
Therefore, for our purposes, it suffices to prove that there exists a positive x ∈ E such that the ideal Jx is not norm

dense in E. Suppose the contrary, that is, Ax is a quasi-interior point in E for each x > 0. By assumption, there exist
operators R, S, and C in L(E) such that R and S are positive, S is strictly singular, C �= 0, RB = BR, and C is
dominated by both R and S.

Since C �= 0, there exists some x1 > 0 such that Cx1 �= 0. Then A|Cx1| is a quasi-interior point satisfying A|Cx1| �
|Cx1|. By [1, Lemma 4.16] there exists an operator M1 ∈ L(E) dominated by the identity operator such that x2 =
M1Cx1 > 0. Let U1 = M1C. Note that U1 is dominated by S and by R.

Now we have Jx2 = E. Therefore, since C �= 0, there exists 0 < y < Ax2 such that Cy �= 0. Because A|Cy| is a
quasi-interior point and |Cy| � A|Cy|, then, as before, there exists M2 ∈ L(E) dominated by the identity operator such
that x3 = M2Cy > 0. Since |y| � Ax2 and Ax2 is a quasi-interior point, it follows that there is an operator M ∈ L(E)

dominated by the identity such that MAx2 = y. So x3 = M2Cy = M2CMAx2. And the operator U2 = M2CMA is
dominated by SA and by RA.
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Consider the operator U2U1. From U2U1x1 = x3 > 0, we see that U2U1 is a non-zero operator. Since both U1
and U2 are dominated by strictly singular positive operators, U2U1 is strictly singular by [7]. Moreover

|U2U1x| = |M2CMAM1Cx| � RAR|x|
for each x ∈ E.

Let V = RAR. Since A and R belong to [B〉, then V also belongs to [B〉. Observe that V dominates U2U1 which
is strictly singular, therefore AM-compact. The result now follows from Theorem 3.10. �
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