JOURNAL OF COMBINATORIAL THEORY 4, 198-200 (1968)

Permanents by Möbius Inversion

HENRY H. CRAPO

Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada Communicated by H. J. Ryser

ABSTRACT. Möbius inversion techniques developed by Rota [1] are used to justify Ryser's calculation [2, 3] of the permanent of a matrix, and to establish an alternative method of calculation (Proposition 4).

Let A be a matrix with m rows, n columns, and $m \le n$. For any subset E of the set C of columns of A, let $A \mid E$ be the $m \times \mid E \mid$ matrix formed by deleting all columns not in E. For any partition σ of the set R of rows of A, with rank $r(\sigma) = \mid R \mid - \mid \sigma \mid$, let A/σ be the $\mid \sigma \mid \times n$ matrix having a row for each part of σ , formed by multiplying, columnwise, all rows in that part. For example:

	1	4		$A \mid \{ e$	c_{1}, c_{3}	$A/(r_1r_3)(r_2)$				
1	3	0	-2	1 0 -2						
1	2	1	0	1	1	0	1	2	1	0
1	0	4	1	1	4	1	1	0	0	-2

Each function f from the set of rows to the set of columns of A has a weight $w(f) = \prod_i A(i, f(i))$. For any matrix A, let $\phi(a) = \sum_f w(f)$, summed over all functions $f \in C^R$, and let p(A) be the permanent of A.

PROPOSITION 1. $\phi(A)$ is equal to the product of the row-sums of A.

PROOF: Each term in the expansion of the product of row-sums is the weight of a function $f \in C^R$, and conversely. Q.E.D.

PROPOSITION 2 (Ryser). If m = n

$$p(A) = \sum_{E \subseteq C} (-1)^{|C-E|} \phi(A \mid E).$$

PROOF: Each function $f \in C^R$ has some range $E \subseteq C$. p(A | E) is the weight-sum for functions with range equal to E, while $\phi(A | E)$ is the weight-sum for functions with range contained in E. Thus

$$\phi(A \mid E) = \sum_{D; D \subseteq E} p(A \mid D)$$

and, by Möbius inversion on the Boolean algebra 2^c ,

$$p(A \mid E) = \sum_{D; D \subseteq E} (-1)^{|E-D|} \phi(A \mid D).$$

Set E = C.

If the matrix A is rectangular, with $m \leq n$, form a new matrix A' with n - m additional rows of ones. Applying proposition 2 to A', we obtain:

PROPOSITION 3. If $m \leq n$,

$$p(A) = \frac{1}{(n-m)!} \sum_{E \subseteq C} (-1)^{|C-E|} |E|^{n-m} \phi(A | E).$$

If a partition σ has b_i parts of cardinality *i*, for i = 1, 2, ..., m, then

$$\mu(0,\sigma) = \prod_{i=1}^{m} (-1)^{b_i(i-1)} ((i-1)!)^{b_i} = (-1)^{r(\sigma)} \prod_{i=1}^{m} ((i-1)!)^{b_i}.$$

O.E.D.

PROPOSITION 4.1 $p(A) = \sum_{\pi} \mu(0, \pi) \phi(A/\pi)$, the summation being over all partitions π of the set R of rows of A.

PROOF: Each function from rows to columns has a partition of R as kernel. $\phi(A/\sigma)$ gives the weight-sum of functions with kernels having σ as a refinement. $p(A/\sigma)$ is the weight-sum for functions with kernel equal to σ . Thus

$$\phi(A/\sigma) = \sum_{\pi;\sigma \leqslant \pi} p(A/\pi)$$

and, by Möbius inversion on the lattice P of all partitions of the set R,

$$p(A/\sigma) = \sum_{\pi; \sigma \leqslant \pi} \mu(\sigma, \pi) \phi(A/\pi).$$

Set $\sigma = 0$, the discrete partition.

O.E.D.

Q.E.D.

¹ In privately circulated notes, J. E. Graver has applied Proposition 4 to matrices of roots of unity, and remarks that he and W. Gustin jointly obtained the formula.

CRAPO

If J is the $n \times n$ matrix, each entry of which is equal to 1, and I is the $n \times n$ identity matrix, then p(J - I) is the derangement number D_n . Proposition 4 gives the following identity:

$$D_n = \sum_{\sigma} (-1)^{r(\sigma)} \prod_{i=1}^n ((n-i)(i-1)!)^{b_i}.$$

REFERENCES

- 1. G.-C. ROTA, On the Foundations of Combinatorial Theory, I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340-368.
- 2. H. J. RYSER, Combinatorial Mathematics, Wiley, New York, 1963.
- 3. H. J. RYSER, Permanents and Systems of Distinct Representatives, Conference on Combinatorial Mathematics and Its Applications, Chapel Hill, N. C., April, 1967.