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Abstract Glycogen synthase kinase 3 (GSK-3) has previously
been shown to play an important role in the regulation of
apoptosis. However, the nature of GSK-3 effector pathways that
are relevant to neuroprotection remains poorly defined. Here, we
have compared neuroprotection resulting from modulation of
GSK-3 activity in PC12 cells using either selective small
molecule ATP-competitive GSK-3 inhibitors (SB-216763 and
SB-415286), or adenovirus overexpressing frequently rearranged
in advanced T-cell lymphomas 1 (FRAT1), a protein proposed as
a negative regulator of GSK-3 activity towards Axin and
LL-catenin. Our data demonstrate that cellular overexpression
of FRAT1 is sufficient to confer neuroprotection and correlates
with inhibition of GSK-3 activity towards Tau and LL-catenin,
but not modulation of glycogen synthase (GS) activity. By
comparison, treatment with SB-216763 and SB-415286 proved
more potent in terms of neuroprotection, and correlated with
inhibition of GSK-3 activity towards GS in addition to Tau and
LL-catenin. ß 2001 Federation of European Biochemical Soci-
eties. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Glycogen synthase kinase-3 (GSK-3) is a ubiquitously ex-
pressed serine/threonine protein kinase which was discovered
by its ability to phosphorylate and inactivate glycogen syn-
thase (GS) [1^5]. It is clear, however, that GSK-3 is important
not only in the regulation of glycogen synthesis, but also
modulates several other cellular processes including apoptosis
(reviewed in [6]). Pharmacological analysis of GSK-3 activity
has been possible through the use of lithium, a relatively spe-
ci¢c but weak inhibitor of GSK-3. Recently we have demon-
strated that ATP-competitive and selective small molecule
GSK-3 inhibitors, SB-216763 and SB-415286 [7], protect pri-
mary neurones from cell death [8]. This has strengthened our
understanding of the role of GSK-3 in metabolism and neuro-
nal death, but as general inhibitors of all GSK-3 activities,

functions of speci¢c e¡ector pathways in such cellular process-
es are not addressed by such routes.

GSK-3 is active in resting cells, but its activity is physio-
logically inhibited by two distinct signalling pathways. Insulin
and/or growth factors stimulate a relatively well characterised
phosphatidylinositide 3-kinase/protein kinase B-dependent
pathway that results in inhibition of GSK-3 activity by phos-
phorylation of speci¢c N-terminal serine residues (Ser-9 in
GSK-3L and Ser-21 in GSK-3K [9]). However, GSK-3 can
also be inhibited in response to Wnt signalling, in which a
role for frequently rearranged in advanced T-cell lymphomas
1 (FRAT1) has been implicated. Wnt molecules control nu-
merous developmental processes by altering speci¢c gene ex-
pression patterns [10], and deregulation of Wnt signalling can
contribute to tumorigenesis [11,12]. Wnt signalling during em-
bryogenesis inhibits GSK-3-catalysed phosphorylation of
L-catenin. Since phosphorylated L-catenin is targeted for ubiq-
uitin-dependent proteolysis, GSK-3 inhibition results in accu-
mulation of L-catenin in the nucleus where it regulates gene
expression via interactions with the TCF/LEF family of tran-
scription factors (reviewed in [13]).

It is presently unclear how Wnt signalling results in an in-
hibition of GSK-3 towards L-catenin, but it appears to be
independent of protein kinase B, and instead involves the
regulation of a signalling complex which includes Dishevelled
(Dvl), FRAT1, GSK-3, Axin and L-catenin. Axin, itself a
substrate of GSK-3 [14], acts as a sca¡old to facilitate the
phosphorylation of L-catenin by GSK-3. Axin also interacts
with Dvl to form a quaternary complex. [15^19]. Wnt-induced
changes to the signalling complex cause dissociation of the
GSK-3/Axin/L-catenin complex, and hence prevent GSK-3-
mediated phosphorylation of L-catenin, resulting in L-catenin
stabilisation. Precisely how this occurs is still unclear. How-
ever, GSK-3 binding protein (GBP)/FRAT1 has been impli-
cated.

GBP was ¢rst identi¢ed in Xenopus as a protein that inhib-
its GSK-3 in vivo, appearing to act as a positive regulator of
the Wnt signalling pathway by stabilising L-catenin [20]. Fur-
ther studies performed in Xenopus showed that GBP inhibited
GSK-3 activity towards L-catenin, at least in part, by prevent-
ing Axin binding to GSK-3 [21]. GBP is homologous to the
mammalian FRAT1 protein, which may co-operate with on-
cogenes to promote tumorigenesis in T-cells [22]. Transfection
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studies in mammalian cells have con¢rmed the role of FRAT1
in the stabilisation of L-catenin and have shown the presence
of FRAT1 in complexes with Dvl, GSK-3 and Axin [23].
Taken together, these ¢ndings suggest that Wnt signalling
causes a recruitment of FRAT1 into such complexes, leading
to FRAT1-mediated dissociation of GSK-3 from Axin.

A 39-residue peptide from the C-terminus of FRAT1,
termed FRATtide, has been shown to be su¤cient to bind
GSK-3 and prevent binding of Axin in vitro [24]. In addition,
FRATtide was also shown to selectively inhibit phosphoryla-
tion of Axin and L-catenin in vitro, but did not inhibit GSK-3
activity towards peptides derived from eIF2B or GS. The
selective nature of FRAT/GBP-mediated inhibition of GSK-
3 activity is also supported by the observation that GBP com-
plexed with GSK-3 isolated from Xenopus oocytes does not
inhibit phosphorylation of a CREB-derived peptide substrate
by GSK-3 [21]. Hence FRAT1 provides a potentially useful
tool to discriminate between substrates of GSK-3 that may be
important in the regulation of apoptosis. By contrast, ATP-
competitive compounds are likely to act against all substrates
of GSK-3, and so do not facilitate the dissection of neuro-
protective GSK-3 e¡ector pathways.

Here, we have used binding assays performed in vitro to
de¢ne the a¤nity of FRATtide for GSK-3 and have used such
assays to investigate the possibility of overlap between binding
of FRATtide and ATP-competitive small molecule selective
GSK-3 inhibitors. To investigate the cellular e¡ects of both
methods of GSK-3 inhibition, we compared the neuroprotec-
tive properties of treatment with ATP-competitive GSK-3 in-
hibitors and adenoviral FRAT1 overexpression in PC12 cells.
Recombinant adenoviral vectors were used rather than micro-
injection or conventional cell transfection, since the e¤ciency
of adenoviral infection facilitates biochemical analysis of the
selective nature of GSK-3 inhibition by FRAT1. Conse-
quently, the e¡ects on substrates of GSK-3 that may play a
role in the regulation of apoptosis (namely L-catenin, Tau and
GS) were examined, and correlated to neuroprotection.

2. Materials and methods

2.1. Fluorescence binding assay for FRATtide/GSK-3 interactions
in vitro

A binding assay using FRATtide labelled by TAMRA-X-SE (Mo-
lecular Probes) on the N-terminal amine group (TAMRA-FRATtide)
was employed to investigate FRATtide binding to GSK-3. TAMRA-
FRATtide (10 nM) was incubated with varying concentrations of
GSK-3L to determine binding a¤nity. To determine if ATP-compet-
itive small molecule GSK-3 inhibitors or GSK-3 interacting domain
(GID, a 25-amino acid sequence in Axin that binds GSK-3) peptide
were antagonists of the GSK-3/FRATtide interaction, GSK-3L (120
nM) and TAMRA-FRATtide (10 nM) were incubated with a series of
concentrations of SB-415286 or SB-216763 or increasing concentra-
tions of GID peptide. All experiments were performed in a bu¡er
composed of 50 mM HEPES, pH 7.5, 1 mM CHAPS, 10 mM MgCl2,
and in a ¢nal volume of 10 Wl. The £uorescence anisotropy of the
TAMRA-FRATtide was measured using a commercial plate reader
(LJL Acquest).

2.2. Generation of recombinant adenovirus
A full-length human FRAT1 cDNA tagged at the N-terminus with

the myc epitope was generated by RT-PCR and veri¢ed by sequence
analysis. This cDNA was cloned into the shuttle vector pAdTrack-
CMV to generate recombinant adenoviruses using the AdEasy system
as described previously [25]. Adenoviruses made in this way overex-
press green £uorescent protein in addition to the gene of interest.

Hence, two adenoviruses were made: AdFRAT, which overexpresses
both myc-tagged FRAT1 and green £uorescent protein (GFP), and as
a control for adenoviral infection, AdGFP, which overexpresses GFP
alone. Adenoviral titres from high-titre CsCl gradient-puri¢ed prepa-
rations were determined by plaque assay on HEK293 cells.

2.3. Culture and infection of PC12 cells
PC12 cells were cultured in DMEM (Gibco, high glucose) contain-

ing 10% heat-inactivated foetal bovine serum, 5% heat-inactivated
horse serum and 2 mM glutamine. Cells were routinely infected at a
multiplicity of infection (MOI) of 50 which resulted in the infection of
the vast majority of cells (s 90%, as assessed by GFP expression 32 h
after infection). In agreement with other reports of PC12 infection
with adenovirus [26], this MOI did not result in toxicity as measured
by cell death assays below (data not shown). For all studies, cells were
infected with either AdFRAT or AdGFP in a minimal volume of
medium for 1 h at 37³C. Growth medium was then added to increase
the volume, and cells were left for approximately 32 h before further
treatments.

For cell death assays, cells were placed into medium containing LY-
294002 (50 WM) in the presence or absence of SB-415286 (30 WM) and
SB-216763 (3 WM) [12]. Cell death was then measured 24 h after
treatment with compounds.

For GS assays and immunoblotting studies, cells were placed into
serum-free medium for 2 h before treatment with SB-415286 (30 WM)
or SB-216763 (3 WM). Lysates were prepared after 1.5 h and 4 h of
compound treatment for GS assays and immunoblotting studies re-
spectively. Control cells were treated with dimethylsulfoxide (DMSO).
DMSO concentrations did not exceed 0.1%.

2.4. Cell death assays
PC12 cells were seeded into wells of collagen I-coated 48-well plates

at a density of 1.5U105 cells per well. Cells were infected as described
in Section 2.3. Apoptosis was measured using an ELISA that detects
the enrichment of mono- and oligonucleosomes that occurs in apo-
ptotic cells (Roche). Data are expressed relative to the apoptosis ob-
served on LY-294002 treatment of cells infected with AdGFP.

2.5. Immunoblotting
PC12 cells were seeded into wells of collagen I-coated 6-well plates

at a density of 1U106 cells per well. Cells were infected and treated as
described in Section 2.3, and harvested by washing in ice-cold phos-
phate-bu¡ered saline prior to scraping and lysis (for Tau immuno-
blots, lysis bu¡er contained: 25 mM Tris^HCl, 3 mM EDTA, 3 mM
EGTA, 50 mM NaF, 2 mM sodium orthovanadate, 0.27 M sucrose,
10 mM sodium L-glycerophosphate, 5 mM sodium pyrophosphate,
0.5% (v/v) Triton X-100, 0.1% (v/v) L-mercaptoethanol, Boehringer
`Complete' protease inhibitors, pH 7.5; Boehringer, Lewes, UK; for
immunoblots of cytoplasmic L-catenin, hypotonic lysis bu¡er con-
tained; 50 mM Tris^HCl, 3 mM EDTA, 3 mM EGTA, 0.5 mM
NaF, 1 mM sodium orthovanadate, 10 mM L-glycerophosphate,
5 mM sodium pyrophosphate, 0.1% (v/v) L-mercaptoethanol, Boehr-
inger `Complete' protease inhibitors, pH 7.5). Cell lysates were cen-
trifuged at 15 000Ug for 15 min at 4³C. Equal amounts of protein
lysate were subjected to sodium dodecylsulphate polyacrylamide gel
electrophoresis, electrophoretically transferred to nitrocellulose mem-
branes and immunoblotted for: myc-tagged FRAT1 (clone 9E10;
Autogen Bioclear, Calne, UK), L-tubulin (Autogen Bioclear), Tau
phosphorylated on Ser-396 and Ser-404 (clone AD2 [27]), Tau de-
phosphorylated on the epitope Ser-189^206 (clone Tau-1; Boehringer
Mannheim) and L-catenin (Transduction Laboratories, Oxford, UK).
Blots were developed using an Enhanced Chemiluminescence kit
(Amersham-Pharmacia, Little Chalfont, UK).

2.6. GS assays
PC12 cells were seeded into 10-cm collagen coated dishes at a den-

sity of 5U106 cells per dish. Cells were infected and treated as de-
scribed in Section 2.3, and harvested by lysis as detailed above for
preparation of lysates for immunoblotting to detect Tau phosphory-
lation. Lysates were assayed for GS activity in bu¡er (67 mM Tris^
HCl pH 7.5, 5 mM dithiothreitol, 6.7 mM EDTA, 13 mg/ml glycogen,
8.9 mM [14C]UDP-glucose) in the presence or absence of 20 mM
glucose 6-phosphate as described previously [28]. Data are expressed
as GS activity ratios.
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3. Results

3.1. FRATtide binding to GSK-3 is displaced by GID but not
by ATP-competitive small molecule inhibitors SB-415286
and SB-216763

Studies performed in vitro using FRATtide have shown
that this peptide binds GSK-3 and is su¤cient to prevent
binding of Axin [24]. However, the a¤nity of such interac-
tions is not known. To this end, we developed a £uorescence-
based ligand displacement assay of peptide binding to GSK-3
(Fig. 1). FRATtide was labelled with TAMRA on the N-ter-
minal amine and the increase in £uorescence anisotropy upon

binding to GSK-3 was monitored. These measurements re-
vealed that FRATtide bound GSK-3 with a Kd of 26 þ 12
nM (Fig. 1A). Displacement of the labelled 39-mer FRATtide
by unlabelled 39-mer (Kd 39 þ 7 nM) or a 30-mer that lacks
nine N-terminal residues (Kd 52 þ 6 nM) indicated that £uo-
rophore had not greatly a¡ected binding and the essential
interactions were preserved in the shorter peptide (Fig. 1C).
Moreover, it was demonstrated that GID peptide [29] (Kd

3.2 þ 1.1 WM) could displace labelled 39-mer FRATtide, indi-
cating mutually exclusive binding sites (Fig. 1B). In addition,
FRATtide binding to GSK-3 was not displaced by ATP-com-
petitive compounds, providing evidence that the mechanisms
by which ATP-competitive compounds and FRAT1 inhibit
GSK-3 activity di¡er (Fig. 1C).

3.2. Adenoviral FRAT1 overexpression or treatment with
selective GSK-3 inhibitors (SB-216763 and SB-415286)
is neuroprotective

PC12 cells infected with AdFRAT or AdGFP were induced
to undergo apoptosis by treatment with LY-294002 (50 WM).
Cells were also treated with or without SB-415286 (30 WM)
and SB-216763 (3 WM). These concentrations have previously
been found to give maximal inhibition of GSK-3 activity as
assessed by GSK-3 activity assays, and assays of neuroprotec-
tion and L-catenin-dependent gene transcription [7,8]. Apo-
ptosis was measured using an ELISA that detects the enrich-
ment of mono- and oligonucleosomes occurring in apoptotic
cells (Fig. 2). ELISA readings obtained from cells that had
been induced to undergo apoptosis by LY-294002 treatment
were denoted as maximal levels of apoptosis, and hence read-
ings were ¢xed at 100%. Basal levels of apoptosis were typi-
cally found to be V25% of this maximum. In agreement with
previous ¢ndings [8], treatment of cells with small molecule
ATP-competitive GSK-3 inhibitors protected cells from apo-
ptosis induced by LY-294002. SB-415286 (30 WM) was ob-
served to inhibit apoptosis to approximately basal or sub-
basal levels of apoptosis, and treatment of cells with SB-
216763 (3 WM) was observed to inhibit apoptosis to approx-
imately 30^40% of maximum. Overexpression of recombinant
adenoviral FRAT1 in cells in the absence of ATP-competitive
inhibitors resulted in an inhibition of LY-294002-induced ap-
optosis to V60% of maximum. These experiments were per-

Fig. 1. Fluorescence anisotropy measurements of FRATtide/GSK-3
interactions. A: Anisotropy of TAMRA-labelled FRATtide (39-mer)
was measured in the presence of increasing concentrations of GSK-
3. The anisotropy of peptide increases on association with larger
protein due to the slower rotation rate of the complex. B: Anisotro-
py of TAMRA-labelled FRATtide (39-mer) bound to GSK-3 was
measured in the presence of increasing concentrations of unlabelled
GID to determine whether GID could displace TAMRA-labelled
FRATtide binding. The decrease in anisotropy observed with in-
creasing concentrations of GID indicates displacement of TAMRA-
labelled FRATtide. Increases in anisotropy at high concentrations
of GID peptide are due to scattering caused by GID insolubility.
C: Anisotropy of TAMRA-labelled FRATtide (39-mer) bound to
GSK-3 was measured in the presence of increasing concentrations
of unlabelled 39-mer FRATtide, unlabelled 30-mer FRATtide (lack-
ing nine amino acids from the N-terminus) and ATP-competitive
small molecule inhibitors. The decrease in anisotropy observed with
increasing concentrations of unlabelled 39-mer and 30-mer indicate
displacement of TAMRA-labelled FRATtide. Increasing concentra-
tions of ATP-competitive small molecule inhibitors did not have
any e¡ect on anisotropy, indicating a lack of displacement of
FRATtide.
6
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formed using an MOI of 50, which resulted in the vast ma-
jority of cells (s 90%) overexpressing FRAT1, and increasing
the MOI did not result in a greater inhibition of apoptosis
(data not shown). Hence, while FRAT1 overexpression was
observed to be neuroprotective, both small molecule inhibi-
tors proved more potent in terms of neuroprotection.

3.3. Adenoviral FRAT1 overexpression or treatment with
selective GSK-3 inhibitors (SB-216763 and SB-415286)
results in cytoplasmic L-catenin stabilisation and
dephosphorylation of Tau

As substrates of GSK-3, L-catenin and Tau have been
speculated to play a role in the regulation of apoptosis. We
decided therefore to examine whether treatment with selective
small molecule ATP-competitive inhibitors or adenoviral
FRAT1 overexpression modulated cytoplasmic L-catenin sta-
bilisation and Tau phosphorylation with a view to correlating
such e¡ects to neuroprotection.

FRAT1 overexpression in mammalian cells has previously
been shown to lead to LEF-1-dependent transcription through
stabilisation of L-catenin levels [23]. In agreement with these
¢ndings, adenoviral-mediated FRAT1 overexpression in PC12
cells resulted in elevated endogenous cytoplasmic L-catenin
levels compared to cells that had been transfected with adeno-
virus expressing GFP only (Fig. 3A). Treatment of cells with
SB-415286 or SB-216763 also stabilised cytoplasmic L-catenin
levels, consistent with GSK-3 inhibition [7,8].

We next determined whether adenoviral FRAT1 overex-
pression would result in Tau dephosphorylation. Two epi-
topes in endogenous Tau present in PC12 cells were examined
by Western blotting with phosphospeci¢c antibodies. AD2
antibody recognises phosphoserine 396 and phosphoserine
404 [27]. Tau-1 antibody recognises speci¢cally dephosphory-

Fig. 3. SB-415286, SB-216763 or adenoviral FRAT1 overexpression
stabilises endogenous cytoplasmic L-catenin and results in Tau de-
phosphorylation. A: Cells infected with AdGFP or AdFRAT were
serum-starved prior to treatment with SB-415286 (30 WM) or SB-
216763 (3 WM) for 4 h. Lysates were prepared using a hypotonic ly-
sis bu¡er. Immunoblotting of lysates con¢rmed the expression of
myc-tagged FRAT1, and an anti-tubulin antibody was used to cor-
rect for protein loading. Stabilisation of cytoplasmic L-catenin was
detected by immunoblotting. A representative blot from three sepa-
rate experiments is shown. B: Lysates from cells treated as de-
scribed in panel A were prepared for immunoblotting to determine
levels of Tau phosphorylated on Ser-396 and Ser-404 (AD2) or Tau
dephosphorylated on Ser-189^206 (Tau-1). Blots shown are from a
representative experiment, with the immunoreactivity from each ex-
periment quanti¢ed by densitometric analysis and plotted ( þ S.D.,
n = 3).

Fig. 2. SB-415286, SB-216763 or adenoviral FRAT1 overexpression
protect PC12 cells from apoptosis induced by treatment with LY-
294002. Cells were infected with AdGFP or AdFRAT (MOI 50).
Cell death was induced by treatment with LY-294002 (50 WM) in
the presence or absence of SB-415286 (30 WM) or SB-216763
(3 WM). Cell death was quanti¢ed 24 h after compound treatment
using an ELISA that detects the enrichment of histone-associated
DNA fragments in apoptotic cells. Data are expressed relative to
the maximum levels of apoptosis observed in GFP-expressing cells
treated with LY-294002 in the absence of GSK-3 inhibitors, which
was de¢ned as 100% ( þ S.E.M., n = 4).
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lated serine residues in the amino acid stretch 189^206 [30],
and consequently inhibition of phosphorylation of residues
within this region increases detection by this antibody. Resi-
dues detected by both these antibodies have been reported to
be phosphorylated by GSK-3 both in vitro and in cultured
cells [8,31^34]. Treatment of cells with SB-415286 and SB-
216763 con¢rmed phosphorylation at these epitopes to be
regulated by GSK-3 activity since a decrease in AD2 detec-
tion, consistent with a dephosphorylation of Ser-396/404, and
an increase in Tau-1 detection, consistent with a dephosphor-
ylation of serine residues between 189 and 206, was noted
(Fig. 3B). FRAT1 overexpression was also observed to de-
crease AD2 detection and increase Tau-1 detection, consistent
with an inhibition of GSK-3 activity to these sites.

3.4. GS activity is elevated by treatment with selective GSK-3
inhibitors SB-216763 or SB-415286, but not by adenoviral
FRAT1 overexpression

Having observed that FRAT1 overexpression can inhibit
GSK-3 activity towards L-catenin and Tau, we addressed
the selective nature of FRAT1 inhibition of GSK-3 by exam-
ining the e¡ect of FRAT1 overexpression on GS activity. GS
activity was assayed in PC12 cells infected with adenovirus-
overexpressing FRAT1 or infected with adenovirus-expressing
GFP only as a control (Fig. 4). Cells were also treated with
SB-415286 (30 WM) and SB-216763 (3 WM). Use of adenovirus
ensures that the vast majority of cells express FRAT1. Hence,
in contrast to conventional transfection techniques, results can
be interpreted without the concern that a background of non-
transfected cells may obscure a FRAT-mediated e¡ect on GS.
Consistent with an inhibition of GSK-3 activity towards GS,
treatment with ATP-competitive inhibitors elevated GS activ-
ity by two- to four-fold. However, FRAT1-overexpressing
cells did not show elevated levels of GS activity compared
to cells expressing GFP only, suggesting that phosphorylation
of GS by GSK-3 was not inhibited by FRAT1.

4. Discussion

Here, we have observed that adenoviral FRAT1 overex-
pression in mammalian cells is neuroprotective, and that neu-
roprotection correlates with inhibition of GSK-3 activity to-
wards Tau and L-catenin, but not GS. Our results
demonstrate for the ¢rst time that FRAT1 overexpression
results in selective inhibition of GSK-3 towards speci¢c cellu-
lar substrates in mammalian cells. By comparison, treatment
with selective small molecule ATP-competitive GSK-3 inhib-
itors was found to be more potent in terms of neuroprotection
than FRAT1 overexpression, and resulted in inhibition of
GSK-3 activity towards Tau and L-catenin and elevated GS
activity.

Using in vitro ligand displacement assays, we extended pre-
vious ¢ndings to de¢ne the a¤nity of FRATtide and GID for
GSK-3, and also illustrated that whereas the binding sites on
GSK-3 for FRATtide and GID overlap, binding of FRATtide
does not interfere with binding of ATP-competitive inhibitors.
These results are in good agreement with information gained
recently from the crystal structure of GSK-3L complexed with
FRATtide [35], which reveals that the FRATtide binding site
is on the C-terminal lobe of the kinase domain, and does not
obstruct the ATP binding site. Together, these results demon-
strate the biophysical di¡erences in the mechanisms of inhibi-
tion of GSK-3 by FRAT1 and by the selective small molecule
ATP-competitive inhibitors SB-216763 and SB-415286. More-
over, we have shown that they also di¡er in modulation of
GSK3 substrates, so facilitating molecular dissection of path-
ways of neuroprotection mediated by GSK-3 inhibition.

Microinjection studies have also suggested that FRAT
overexpression protects neurones from apoptosis, but bio-
chemical analysis of cellular substrates of GSK-3 that may
contribute to neuroprotection has not been possible by this
route [36,37]. The biochemical analyses of cellular substrates
of GSK-3 performed here have shown that GS activity is not
modulated by FRAT1-mediated inhibition of GSK-3 under
conditions where phosphorylation of Tau and L-catenin is
inhibited. This suggests that adenoviral FRAT1 overexpres-
sion is not simply acting by non-speci¢c sequestration of
GSK-3 into complexes in which GSK-3 can no longer access
cellular substrates. The selective e¡ect of FRAT1 overexpres-
sion on GSK-3 activity is therefore distinct to GSK-3 inhibi-
tion by small molecule ATP-competitive inhibitors, which ac-
cording to their mechanism of action would inhibit GSK-3
activity towards all available substrates.

Several mechanisms have been suggested to explain such
selective inhibition (reviewed in [38]). Since FRAT1 overex-
pression did not appear to inhibit GSK-3 activity towards GS
(a primed substrate), our data are consistent with a hypothesis
that FRAT1 may be unable to inhibit GSK-3 activity towards
substrates that contain a `priming' phosphoserine located at
n+4 (where n is the site of phosphorylation). The crystal struc-
ture of GSK-3L complexed with FRATtide also suggests
FRAT1 is unable to inhibit GSK-3 activity towards primed
substrates, since FRATtide does not obstruct the binding site
for the priming phosphoserine residue [35]. Here, we have
shown that FRAT1 overexpression does, however, result in
inhibition of GSK-3 activity towards Tau and L-catenin. It
should be noted that Ser-396 and Ser-404 (detected by AD2
antibody) and Ser-199 and Ser-202 (detected by Tau-1 anti-
body) have been shown to be phosphorylated in bacterial

Fig. 4. GS activity is elevated by SB-415286 and SB-216763, but
not by adenoviral FRAT1 overexpression in PC12 cells. Cells in-
fected with AdGFP or AdFRAT were serum-starved prior to treat-
ment with SB-415286 (30 WM) or SB-216763 (3 WM) for 1.5 h. Ly-
sates were assayed for GS activity using incorporation of [14C]UDP
glucose into glycogen. Results are expressed as a ratio of active
GS:total GS present in lysates ( þ S.E.M., n = 6 from three inde-
pendent experiments).
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recombinant Tau incubated with GSK-3 in vitro [31,32,39],
suggesting that in vitro at least, these sites are unprimed.
However, it is presently unclear whether L-catenin is un-
primed in a cellular context, and also whether the Tau phos-
phorylation sites assayed are primed or unprimed in cells.

Alternatively (or in addition), the selective nature of GSK-3
inhibition by FRAT1 may well be explained by the disruption
of protein complexes that are necessary for GSK-3 activity
towards speci¢c cellular substrates. FRAT1 and Axin have
overlapping binding sites on GSK-3 [19,22] (Fig. 1A) and
disruption of Axin binding to GSK-3 prevents L-catenin phos-
phorylation and degradation. The data presented here dem-
onstrate that the binding a¤nity of FRATtide for GSK-3 is
two orders of magnitude higher than GID. Such a large di¡er-
ence in a¤nity raises questions regarding the mechanism by
which FRAT recruitment may displace Axin binding; a more
closely aligned binding a¤nity between the two would be
more consistent with the hypothesis that an increased local
concentration of FRAT (as a result of FRAT1 recruitment)
could compete for GSK-3 binding. However, it is possible
that the binding a¤nity of Axin for GSK-3 is higher, since
GID might not optimally represent the GSK-3 binding region
of Axin. With respect to FRAT1-mediated inhibition of Tau
phosphorylation, it is also possible that FRAT1 displaces a
cellular interacting protein that facilitates Tau phosphoryla-
tion by GSK-3.

The inhibition of L-catenin and Tau phosphorylation ob-
served may well contribute to FRAT1-mediated neuroprotec-
tion, since both of these substrates have been implicated in
neurodegeneration, and have been observed to be modulated
in GSK-3-overexpressing transgenic mice that demonstrate
neurodegenerative loss [40]. L-Catenin as a transcriptional reg-
ulator would seem a likely candidate for a substrate of GSK-3
that may play a role in the regulation of apoptosis ; previous
studies have shown that dominant negative L-catenin and Lef-
1 sensitise neurones to L-amyloid-induced toxicity [41]. How-
ever, other reports argue against a neuroprotective role [36].
GSK-3 has been observed to phosphorylate Tau both in vitro
and in cultured cells [31^34,42,43]. Tau promotes microtubule
assembly in vitro [44,45], and Tau function is in£uenced by its
phosphorylation [43,46^48]. Whether Tau hyperphosphoryla-
tion by GSK-3 contributes to neuronal death is presently un-
clear [49].

The observation that adenoviral FRAT1 overexpression
proved a less potent method of neuroprotection than treat-
ment with structurally distinct small molecule ATP-competi-
tive inhibitors is intriguing. Although increasing viral load did
not improve neuroprotection, it is possible that the di¡ering
extent to which individual cells express FRAT1 may be crit-
ical to reaching a `threshold' of GSK-3 inhibition required for
survival. Alternatively, the di¡erence in potency of neuropro-
tection could re£ect the possibility that maximal survival pro-
moted by GSK-3 inhibition may require multiple e¡ector
pathways. For example, the additional ability of small mole-
cule ATP-competitive compounds to elevate GS activity may
contribute to neuroprotection, since cellular energy homeo-
stasis is fundamental to the regulation of cell survival, and
glycogen accumulation has been proposed as being neuropro-
tective against insults such as ischaemia [50]. It is probable
that ATP-competitive GSK-3 inhibitor compounds modulate
kinase activity not only towards GS, but also towards addi-
tional substrates una¡ected by FRAT1 overexpression that

are important to survival. Further dissection of neuroprotec-
tive e¡ector pathways resulting from GSK-3 inhibition could
be of therapeutic value in the treatment of neurodegenerative
disorders such as Alzheimer's disease or stroke.
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