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Abstract

In this paper, we give two di0erent ways to construct mutually orthogonal frequency hy-
perrectangles (MOFHR). Firstly, we exhibit sets of linear polynomials over 5nite 5elds that
represent complete sets of MOFHR of prime power order, which generalize Mullen’s method in
(G.L. Mullen, Discrete Math. 69 (1988) 79–84). Secondly, a recursive algorithm is given to
construct (d + 1)-dimensional MOFHR of type t + 1 from d-dimensional MOFHR of type t,
which generalizes a recursive procedure described in (Laywine et al., Monatsch Math. 119 (1995)
223–238). c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Frequency squares and hyperrectangles have numerous statistical properties and as a
result, there has been considerable interest in various aspects of the theory and con-
struction of such objects. In this paper, we provide two di0erent ways of constructing
mutually orthogonal frequency hyperrectangles of a prescribed type.
Firstly, we exhibit sets of linear polynomials over 5nite 5elds that represent complete

sets of mutually orthogonal frequency hyperrectangles (MOFHR) of a prescribed type
and of prime power order, which generalize Mullen’s method in [3].
Secondly, we give a recursive algorithm to construct (d + 1)-dimensional MOFHR

of type t + 1 from d-dimensional MOFHR of type t, which generalizes a recursive
procedure in [2].
We begin with some notation.
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For a natural number n; we use n for the set {1; 2; : : : ; n}, and we let Pk(S) denote
the set consisting of all k-subsets of the set S: When k = 0, we de5ne Pk(S) as {	},
where 	 is the empty set.

De�nition 1.1. We coordinatize the
∏d

i=1 ni cells of a d-dimensional hyperrectangle of
size n1×· · ·×nd by the d-tuple of integers (j1; : : : ; jd) where 06ji6ni−1: A frequency
hyperrectangle (F-hyperrectangle) of size n1×· · ·×nd and type t, 06t6d−1; denoted
by FHR(n1; : : : ; nd; t;m), where m | ni for 16i6d; is an n1 × · · · × nd array consisting
of m¿2 symbols, say 0; 1; : : : ; m − 1, with the property that whenever any t of the
coordinates are 5xed, all m symbols occur equally often in that subarray.

De�nition 1.2. Two F-hyperrectangles FHR(n1; : : : ; nd; t;m) are orthogonal if upon su-
perposition, each ordered pair (i; j); 06i; j6m − 1; appears equally often, i.e.,∏d

i=1 ni=m
2 times. A set of F-hyperrectangles is called mutually orthogonal if every pair

of F-hyperrectangles is orthogonal.
The following upper bound on the maximum number of mutually orthogonal F-hyper-

rectangles with a prescribed type is given in [1]. This result generalizes Theorem 3.1
of [2].

Theorem 1.3 (Cheng [1]). The maximal number of MOFHR of size n1 × · · · × nd
and type t; based on m symbols; is bounded above by

r
1

m− 1


 d∏

i=1

ni −
t∑

k=1

∑
{i1 ;:::; ik}∈Pk (d)

k∏
j=1

(nij − 1)− 1


 :

De�nition 1.4. A set of r MOFHR of size n1 × · · · × nd and type t, based on m
symbols, is called complete if r equals the bound from Theorem 1.3.

2. Polynomial representation of orthogonal F-hyperrectangles

Let Fq denote the 5nite 5eld of order q, where q is a prime power. Following
Niederreiter in [4], we say that a polynomial f(x1; : : : ; xn) with coeKcients in Fq is a
permutation polynomial in n variables over Fq if the equation f(x1; : : : ; xn) = � has
exactly qn−1 solutions in Fn

q for each � ∈ Fq. More generally, we say that a system
f1(x1; : : : ; xn); : : : ; fm(x1; : : : ; xn) of polynomials with 16m6n is orthogonal in Fq if
the system of equations fi(x1; : : : ; xn) = �i (i= 1; : : : ; m) has exactly qn−m solutions in
Fn
q for each (�1; : : : ; �m) ∈ Fm

q :
As indicated by Niederreiter in [4], the system f1(x1; : : : ; xn); : : : ; fm(x1; : : : ; xn) is

orthogonal if and only if for all (b1; : : : ; bm) ∈ Fm
q with (b1; : : : ; bm) �=(0; : : : ; 0); the

polynomial b1f1(x1; : : : ; xn) + · · · + bmfm(x1; : : : ; xn) is a permutation polynomial in n
variables over Fq.
Let m= q, a prime power, and let ni = qsi ; where si¿1 is an integer. Now we have

the following theorem.
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Theorem 2.1. The (1=q − 1)(q
∑d

i=1 si − ∑t
k=1

∑
{i1 ;:::; ik}∈Pk (d)

∏k
j=1 (q

sij − 1) − 1)
polynomials

f(a11 ;:::; a1s1 ;:::; ad1 ;::: adsd)
(x11; : : : ; x1s1 ; : : : ; xd1; : : : ; xdsd) =

d∑
i=1

si∑
j=1

aijxij (1)

over Fq; where

(a) at least t + 1 of the subvectors (a11; : : : ; a1s1 ); : : : ; (ad1; : : : ; adsd) are nonzero;
(b) no two sets of a’s are nonzero Fq multiples of each other; i.e.;

(a′11; : : : ; a
′
1s1 ; : : : ; a

′
d1; : : : ; a

′
dsd) �= e(a11; : : : ; a1s1 ; : : : ; ad1; : : : ; adsd)

for any e �=0 ∈ Fq, represent a complete set of MOFHR(qs1 ; : : : ; qsd ; t; q) of dimension
d and type t:

Proof. There are

1
q− 1


q∑d

i=1
si −

t∑
k=1

∑
{i1 ;:::; ik}∈Pk (d)

k∏
j=1

(qsij − 1)− 1




polynomials over Fq de5ned by (1) and conditions (a) and (b).
Label the ith coordinate with all si-tuples (ji1; : : : ; jisi) over Fq, for 16i6d: Now, we

may view an FHR(n1; : : : ; nd; t;m) as a function f :F
∑d

s=1 si
q →Fq, where the element

(j11; : : : ; j1s1 ; : : : ; jd1; : : : ; jdsd) becomes the element

f(j11; : : : ; j1s1 ; : : : ; jd1; : : : ; jdsd) ∈ Fq:

If (jik ;1; : : : jik ; sik ); for k = 1; : : : ; t, is 5xed, then

f(a)(x11; : : : ; x1s1 ; : : : ; xd1; : : : ; xdsd)|(xik ;1 ;:::; xik ; sik )=( jik ;1 ;:::; jik ; sik
); k=1;:::; t = �

has the same number of solutions in F

∑
w �= i1 ; :::; ik

sw
q for each � ∈ Fq; so that in the

subarray obtained by 5xing the i1th, : : : ; it th coordinates, each element of Fq is
picked up equally often. Hence f(a)(x11; : : : ; x1s1 ; : : : ; xd1; : : : ; xdsd) represents an
FHR(n1; : : : ; nd; t;m).
Clearly, the F-hyperrectangles represented by f1 = f(a)(x11; : : : ; x1s1 ; : : : ; xd1; : : : ; xdsd)

and f2 = f(a′)(x11; : : : ; x1s1 ; : : : ; xd1; : : : ; xdsd) are orthogonal if and only if f1 and f2
form an orthogonal system of polynomials in

∑d
s=1 si variables over Fq. By the Corol-

lary of [4, p. 417], f1 and f2 form an orthogonal system over Fq if and only if for
all (b1; b2) �=(0; 0) ∈ F2

q , the polynomial b1f1 + b2f2 is a permutation polynomial in∑d
s=1 si variables over Fq. Any linear polynomial of the form

∑r
j=1 cjxj is a permu-

tation polynomial in r variables provided at least one cj �=0:
Let (b1; b2) �=(0; 0) ∈ F2

q : If b1 = 0; then b2f2 is a permutation polynomial since
b2 �=0 while if b2 = 0; then b1f1 is a permutation polynomial. Suppose b1b2 �=0; so
b1f1+b2f2 is a permutation polynomial unless all

∑d
s=1 si coeKcients vanish, in which
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case b1a′j=−b2aj for j=1; : : : ;
∑d

s=1 si; i.e., unless a
′
j=−b2aj=b1 for j=1; :..,

∑d
s=1 si;

a contradiction of condition (b). Hence f1 and f2 form an orthogonal system and the
proof is complete.

For example, Theorem 2.1 gives the complete sets �1 of 9 MOFHR(4,4;1; 2); �2 of
3 MOFHR(4,2;1; 2); and �3 of 3 MOFHR(4; 0; 2).
Consider the 9 polynomials over GF(2) given by

f1(x1; x2; x3; x4) = x1 + x3;

f2(x1; x2; x3; x4) = x2 + x3;

f3(x1; x2; x3; x4) = x2 + x4;

f4(x1; x2; x3; x4) = x1 + x4;

f5(x1; x2; x3; x4) = x2 + x3 + x4;

f6(x1; x2; x3; x4) = x1 + x2 + x3;

f7(x1; x2; x3; x4) = x1 + x3 + x4;

f8(x1; x2; x3; x4) = x1 + x2 + x4;

f9(x1; x2; x3; x4) = x1 + x2 + x3 + x4:

These 9 polynomials represent the complete set of 9 MOFHR(4,4;1; 2):

�1 : H1 =

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

H2 =

0 0 1 1
1 1 0 0
0 0 1 1
1 1 0 0

H3 =

0 0 1 1
1 1 0 0
1 1 0 0
0 0 1 1

H4 =

0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0

H5 =

0 1 1 0
0 1 1 0
1 0 0 1
1 0 0 1

H6 =

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

H7 =

0 1 1 0
1 0 0 1
0 1 1 0
1 0 0 1

H8 =

0 1 0 1
1 0 1 0
1 0 1 0
0 1 0 1

H9 =

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

:

Consider the 3 polynomials over GF(2) given by

f1(x1; x2; x3) = x1 + x3;

f2(x1; x2; x3) = x1 + x2 + x3;

f3(x1; x2; x3) = x2 + x3:

These 3 polynomials represent the complete set of 3 MOFHR(4,2;1; 2):

�2 : Q1 =

0 1
0 1
1 0
1 0

Q2 =

0 1
1 0
1 0
0 1

Q3 =

0 1
1 0
0 1
1 0

:
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Consider the 3 polynomials over GF(2) given by

f1(x1; x2) = x1;

f2(x1; x2) = x2;

f3(x1; x2) = x1 + x2:

These 3 polynomials represent the complete set of 3 MOFHR(4; 0; 2):

�3 : 0 0 1 1 0 1 0 1 0 1 1 0 :

3. Type 0 canonical F-hyperrectangles

The following construction gives type 0 canonical FHR(n1; : : : ; nd; 0;m) from
MOFHR(n1; 0;m); : : : ;MOFHR(nd; 0;m). Furthermore, adding a set of MOFHR of type
1, we will have an enlarged set of MOFHR of type 0. If the set of MOFHR of type
1 and the sets of MOFHR(n1; 0;m); : : : ;MOFHR(nd; 0;m) are both complete, then the
enlarged set of MOFHR of type 0 is also complete.
Suppose X is an FHR(n1; : : : ; nd; t;m). Let X (x1; x2; : : : ; xd) denote the entry in po-

sition (x1; x2; : : : ; xd). The subarray obtained by assigning some 5xed values a1; : : : ; at
to the i1th; : : : ; it th coordinates, where 06aj6nij − 1 for 16j6t; will be called a
hyperplane and denoted by X (xij = aj; j = 1; : : : ; t). The class of hyperplanes into
which X is partitioned by coordinates xi1 ; : : : ; xit is denoted by {X (xi1 =a1; : : : ; xit =at) |
06aj6nij − 1}.
A set�i of type 0 canonical FHR can be constructed from a set� of MOFHR(ni; 0;m).
Suppose L ∈ �; then de5ne a size n1 × · · · × nd FHR, L∗ as follows:

L∗(x1; x2; : : : ; xd) = L(xi):

It is clear that L∗ is a type 0, d-dimensional FHR. The set
⋃d

i=1 �i is called the set
of type 0 canonical FHR.
For example, from the set �3 of MOFHR(4; 0; 2) in Section 2, we can construct

two sets �1 and �2: The set �1 ∪ �2 is the set of type 0 cononical FHR(4,4; 0; 2).
Furthermore, (�1 ∪�2) ∪ �1 is a complete set of MOFHR(4,4; 0; 2).

�1 : C1 =

0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

C2 =

0 0 0 0
1 1 1 1
0 0 0 0
1 1 1 1

C3 =

0 0 0 0
1 1 1 1
1 1 1 1
0 0 0 0

�2 : C4 =

0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1

C5 =

0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

C6 =

0 1 1 0
0 1 1 0
0 1 1 0
0 1 1 0

:

Theorem 3.1. Given a set of l1 MOFHR(n1; 0;m); : : : ; a set of ld MOFHR(nd; 0;m);
there exists a set � of

∑d
i=1 li type 0 canonical FHR(n1; : : : ; nd; 0;m): Furthermore;
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adding a set & of h MOFHR(n1; : : : ; nd; 1;m); the enlarged set � ∪ & is a set of∑d
i=1 li + h MOFHR(n1; : : : ; nd; 0;m).

Proof. We only need to show that the members of � ∪ & are orthogonal.
Let X and Y be members of � ∪ &. If X; Y ∈ &; then X and Y are orthogonal.
Otherwise, we may assume X ∈ �; which implies that there exists k, where 16k6d;

such that X ∈ �k:
If Y ∈ �k; we assume that X is constructed from X ′, Y is constructed from Y ′; where

X ′; Y ′ are MOFHR(nk ; 0;m). By the fact that each ordered pair occurs nk=m2 times
in (X ′; Y ′); where (X ′; Y ′) denotes the F-hyperrectangle obtained by superimposing X ′

and Y ′; we have that each ordered pair occurs

nk
m2

∏d
i=1 ni
nk

=
∏d

i=1 ni
m2

times in (X; Y ). Hence X and Y are orthogonal.
If Y �∈ �k; then each element occurs

∏d
i=1 ni=(m × nk) times in each hyperplane

Y (xk = a), 06a6nk − 1: Hence each ordered pair occurs exactly (nk=m)
∏d

i=1 ni=(m×
nk) =

∏d
i=1 ni=m

2 times in (X; Y ). Therefore X and Y are orthogonal.

Corollary 3.2. If the initial sets of MOFHR(n1; 0;m); : : : ; MOFHR(nd; 0;m) and the
set of MOFHR(n1; : : : ; nd; 1;m) are both complete; so is the enlarged set of
MOFHR(n1; : : : ; nd; 0;m).

Proof. If li = (ni − 1)=(m− 1) and

h=
1

m− 1

(
d∏
i=1

ni −
d∑
i=1

(ni − 1)− 1

)
;

then

d∑
i=1

li + h=
1

m− 1

(
d∏
i=1

ni − 1

)
:

4. A recursive procedure

The following procedure constructs MOFHR(n1; : : : ; nd; nd+1; t + 1;m) from
MOFHR(n1; : : : ; nd; t;m) and MOFHR(nd+1; m; 1;m).
Given a set ) of h MOFHR(n1; : : : ; nd; t;m), we can divide the set into two classes,

)1 and )2. The class )1 consists of all FHR(n1; : : : ; nd; t + 1;m), and )2 consists of
the rest. Let h1 be the cardinality of )1:
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Given a set * of l MOFHR(nd+1; m; 1;m), we append the following nd+1 × m
rectangle

R=

0 1 ::: m− 1
0 1 ::: m− 1
::: ::: ::: :::
0 1 ::: m− 1

to *:

We denote this new set as *+. Using this we now construct hl+h1 MOFHR(n1; : : : ;
nd; nd+1; t + 1;m). Suppose X ∈ ); and L ∈ *+; then de5ne the (d + 1)-dimensional
hyperrectangle X L as follows:
X L(x1; x2; : : : ; xd; xd+1) = L(X (x1; x2; : : : ; xd); xd+1). The expression is interpreted

to mean that X L is partitioned into the hyperplanes {X L(xd+1 = 0); X L(xd+1 = 1); : : : ;
X L(xd+1 = nd+1 − 1)}, where X L(xd+1 = i) is X with a permutation applied to its
symbols as de5ned by the ith row of L. We can view each row of L as the image
of a permutation from Sm; the symmetric group on m letters, 0; 1; : : : ; m− 1.
The construction gives a new set

+= {X L: X ∈ )1; L ∈ *+} ∪ {X L: X ∈ )2; L ∈ *}:
Note that

|+|= |)1| × (|*|+ 1) + |)2| × |*|= h1(l+ 1) + (h− h1)l= hl+ h1;

as earlier claimed.
Let us look at an example. Set ) = {H1; : : : ; H9; C1; : : : ; C6}; and * = {Q1; Q2; Q3}.

From the above procedure we can construct a complete set of 54 MOFHR(4,4,4;1; 2).
The following is HQ2

5 :

x3 = 0 x3 = 1 x3 = 2 x3 = 3

x1 = 0
x1 = 1
x1 = 2
x1 = 3

0 1 1 0
0 1 1 0
1 0 0 1
1 0 0 1

1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0

1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0

0 1 1 0
0 1 1 0
1 0 0 1
1 0 0 1

x2 = 0; 1; 2; 3

Before showing that + is a set of MOFHR(n1; : : : ; nd; nd+1; t+1;m), we make some
observations about the hyperplanes of members of +.
Let (i1; : : : ; it ; it+1) be an arbitrary element in Pt+1(d+ 1). Now we consider two

classes of hyperplanes in X L; a typical member of +.
Class 1 hyperplanes are of the form X L(xi1 = a1; : : : ; xit = at ; xit+1 = at+1); where

it+1=d+1: By de5nition this is X (xi1 =a1; : : : ; xit =at) with the permutation determined
by row at+1 of L applied to the symbols.
Class 2 hyperplanes are of the form X L(xi1 = a1; : : : ; xit = at ; xit+1 = at+1); where

it+1¡d+ 1: Say P = X L(xi1 = a1; : : : ; xit = at ; xit+1 = at+1): Partition P into {P(xd+1 =
0); : : : ; P(xd+1 = nd+1 − 1)}. Further P(xd+1 = k) is obtained from X (xi1 = a1; : : : ; xit=
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at ; xit+1 =at+1) by permuting the symbols in X (xi1 =a1; : : : ; xit =at ; xit+1 =at+1) according
to the permutation de5ned by the kth row of L.

Lemma 4.1. The members of + are of type t + 1:

Proof. Suppose X L ∈ +; and let (i1; : : : ; it ; it+1) be an arbitrary element in Pt+1(d+ 1):
We have to show that each symbol occurs an equal number of times in the hyperplane
X L(xi1 = a1; : : : ; xit = at ; xit+1 = at+1); where 06ak6nik − 1; 16k6t + 1:
This is obvious if the hyperplane is in class 1.
Consider a hyperplane P in class 2. Then P consists of nd+1 copies of hyperplane

X (xi1 = a1; : : : ; xit = at ; xit+1 = at+1) with the kth copy having the symbols permuted by
the kth row of L.
If X ∈ )1; then each symbol occurs equally often in X (xi1=a1; : : : ; xit=at ; xit+1=at+1)

and therefore each symbol occurs equally often in P since permutations of the symbols
of X (xi1 = a1; : : : ; xit = at ; xit+1 = at+1) leave the number of occurrences of each symbol
unchanged. So if X ∈ )1; then X L is an FHR(n1; : : : ; nd; nd+1; t + 1;m).
If X �∈ )1; then X ∈ )2: Hence L ∈ *: Hyperplane P has partition {P(xd+1 =

0); P(xd+1 = 1); : : : ; P(xd+1 = nd+1 − 1)}, where P(xd+1 = k) is X (xi1 = a1; : : : ; xit =
at ; xit+1 = at+1) with the symbols replaced according to row k of L. For any element
e; 06e6m − 1; the 5rst row of L permutes e1 to e; : : : ; the nd+1 row of L permutes
end+1 to e, where 06e1; : : : ; end+16m− 1:
By the fact that L ∈ *; we see that the multi-set {e1; : : : ; end+1} = {0; : : : ; 0; 1; : : : ;

1; : : : ; m − 1; : : : ; m − 1} (each element with multiplicity nd+1=m). Hence the number
of times that symbol e appears in P is

∑nd+1
k=1 (the number of times that symbol ek

appears in X (xi1 = a1; : : : ; xit = at ; xit+1 = at+1)), which is nd+1m ×∑m−1
j=0 (the number

of times that symbol j appears in X (xi1 = a1; : : : ; xit = at ; xit+1 = at+1)), which equals

nd+1

m
×
∏d

k=1 nk∏t+1
k=1 nik

:

Thus each symbol occurs equally often in P.

Lemma 4.2. The members of + are mutually orthogonal.

Proof. Let X L and YM be members of +; and assume X �=Y . Then X and Y are
orthogonal, and X L and YM , respectively, have partitions {X L(xd+1 =0); : : : ; X L(xd+1 =
nd+1−1)} and {YM (xd+1=0); : : : ; YM (xd+1=nd+1−1)}. Each member of these partitions
is obtained from X or Y by a permutation of the symbols, an operation that does not
a0ect orthogonality. Hence X L(xd+1 = k) is orthogonal to YM (xd+1 = k) since X is
orthogonal to Y . Therefore X L is orthogonal to YM :
Assume X = Y . Then L is orthogonal to M . Let (L;M) denote the F-hyperrectangle

obtained by superimposing L and M .
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If the ordered pair (�; -) appears in the position (i; j) of (L;M), then (�; -) appears
in (X L; XM )(xd+1 = i),

∏d
k=1 nk=m times by the fact that element j appears

∏d
k=1 nk=m

times in X .
Since L and M are orthogonal F-hyperrectangles, we see that each ordered pair

occurs exactly (nd+1×m=m2)=nd+1=m times in (L;M). Hence each pair occurs exactly∏d+1
k=1 nk=m

2 times in (X L; XM ).

The following theorem follows from Lemmas 4.1 and 4.2.

Theorem 4.1. Given a set of h MOFHR(n1; : : : ; nd; t;m); which consists of h1
MOFHR(n1; : : : ; nd; t + 1;m); and a set of l MOFHR(nd+1; m; 1;m); there exists a
set of hl+ h1 MOFHR(n1; : : : ; nd; nd+1; t + 1;m).

We note that Theorem 4.1 provides a generalization of Theorem 3:6 of [2].
Given a complete set + of MOFHR(n1; : : : ; nd; t;m), where 06t6d−2; if the subset

of +; consisting of all type (t + 1) F-hyperrectangles, is also complete, then we call
the set + strongly complete.

Corollary 4.2. (1) Given a complete set of MOFHR(n1; : : : ; nd;d− 1;m) and a com-
plete set of MOFHR(nd+1; m; 1;m); then the above recursive algorithm gives a com-
plete set of MOFHR(n1; : : : ; nd; nd+1;d;m).
(2) Given a strongly complete set of MOFHR(n1; : : : ; nd; t;m); where 06t6d − 2;

and a complete set of MOFHR(nd+1; m; 1;m); then the above recursive algorithm gives
a complete set of MOFHR(n1; : : : ; nd; nd+1; t + 1;m):

Proof. (1) If

h=
1

m− 1


 d∏

i=1

ni−
d−1∑
k=1

∑
{i1 ;:::; ik}∈Pk (d)

k∏
j=1

(nij −1)− 1


 =

1
m− 1

(
d∏
i=1

(ni−1)

)
;

h1 = 0 and l= nd+1 − 1; then

hl+ h1 =
1

m− 1

(
d+1∏
i=1

(ni − 1)

)

=
1

m− 1


d+1∏

i=1

ni −
d∑

k=1

∑
{i1 ;:::; ik}∈Pk (d+1)

k∏
j=1

(nij − 1)− 1


 :

(2) If

h=
1

m− 1


 d∏

i=1

ni −
t∑

k=1

∑
{i1 ;:::; ik}∈Pk (d)

k∏
j=1

(nij − 1)− 1


 ;



64 B. Cheng, G.L. Mullen /Discrete Mathematics 242 (2002) 55–64

h1 =
1

m− 1


 d∏

i=1

ni −
t+1∑
k=1

∑
{i1 ;:::; ik}∈Pk (d)

k∏
j=1

(nij − 1)− 1




and l= nd+1 − 1; then

hl+ h1 =
1

m− 1


d+1∏

i=1

ni −
t+1∑
k=1

∑
{i1 ;:::; ik}∈Pk (d+1)

k∏
j=1

(nij − 1)− 1


 :

It is easily seen that the complete set of MOFHR(qs1 ; : : : ; qsd ; t;m) constructed by
Theorem 2.1 is strongly complete and so this construction (Theorem 2.1) gives a
strongly complete set of MOFHR of prime power order.
We conclude this paper with some conjectures.

Conjecture 1. If there exists a complete (or strongly complete) set of
MOFHR(n1; : : : ; nd; t;m), then m is a prime power.

Conjecture 2. A complete (or strongly complete) set of MOFHR(n1; : : : ; nd; t;m) exists
if and only if m is a prime power and n1; : : : ; nd are all powers of m:
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