

ACADEMIC PRESS

g-Elements of matroid complexes ${ }^{2 \pi}$

Ed Swartz
Department of Mathematics, Cornell University, 310 Malott Hall, Ithaca, NY 14853-4201, USA

Received 15 April 2002

Abstract

A g-element for a graded R-module is a one-form with properties similar to a Lefschetz class in the cohomology ring of a compact complex projective manifold, except that the induced multiplication maps are injections instead of bijections. We show that if $k(\Delta)$ is the face ring of the independence complex of a matroid and the characteristic of k is zero, then there is a nonempty Zariski open subset of pairs (Θ, ω) such that Θ is a linear set of parameters for $k(\Delta)$ and ω is a g-element for $k(\Delta) /\langle\Theta\rangle$. This leads to an inequality on the first half of the h-vector of the complex similar to the g-theorem for simplicial polytopes.

© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The combinatorics of the independence complex of a matroid can be approached from several different directions. The f-vector directly encodes the number of independent sets of every cardinality, while the h-vector contains the same information encoded in a way which is more appropriate for reliability problems [4]. In either case the fundamental question is the same. What vectors are possible? Let $\left(h_{0}, h_{1}, \ldots, h_{r}\right)$ be the h-vector of the independence complex of a rank r matroid without coloops. Using a PS-ear decomposition of the complex Chari [6] proved that for all $i \leqslant r / 2, h_{i} \leqslant h_{r-i}$ and $h_{i-1} \leqslant h_{i}$. By showing that the h-vector was the Hilbert function of $k(\Delta) /\langle\Theta\rangle$, where $k(\Delta)$ is the face ring of the complex and Θ is a linear system of parameters for $k(\Delta)$, Stanley [9] proved that $h_{i+1} \leqslant h_{i}^{\langle i\rangle}$ (see Section 3 for a definition of the $\langle i\rangle$-operator). By combining these two methods we show in Theorem 4.3 that if we define $g_{i}=h_{i}-h_{i-1}$, then $g_{i+1} \leqslant g_{i}^{\langle i\rangle}$ for all $i<r / 2$. All of

[^0]these inequalities are immediate consequences of the existence of pairs (Θ, ω) such that Θ is a linear set of parameters for $k(\Delta)$ and ω is a g-element for $k(\Delta) /\langle\Theta\rangle$. Using a different approach, toric hyperkähler varieties, Hausel and Sturmfels proved the existence of g-elements for $k(\Delta) /\langle\Theta\rangle$ when the matroid is representable over the rationals [7]. A g-element is a one-form which acts like a Lefschetz class of a compact complex projective manifold except that it induces injections instead of bijections (Definition 4.1). The broken circuit complex of a matroid is a subcomplex of the independence complex and directly encodes the coefficients of the characteristic polynomial of the matroid. Every broken circuit complex is a cone, and if we remove the cone point we obtain a reduced broken circuit complex. Any independence complex is also a reduced broken circuit complex. Since the h-vector is unchanged by the removal of a cone point, the set of h-vectors of independence complexes is a (strict) subset of the set of h-vectors of broken circuit complexes. A natural question is whether or not Theorem 4.2 holds for broken circuit complexes. In Section 5 we show that even if broken circuit complexes satisfy the corresponding combinatorial inequalities, there may be no set of linear parameters for the face ring such that there exist g-elements for the quotient ring. Matroid terminology and notation closely follows [8]. The main exception to this is that we use $M-A$ for the deletion of a subset instead of $M \backslash A$. The ground set of the matroid M is always E.

2. Complexes

Let Δ be a finite abstract simplicial complex with vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$. The f vector of Δ is the sequence $\left(f_{0}(\Delta), \ldots, f_{s}(\Delta)\right)$, where $f_{i}(\Delta)$ is the number of simplices of cardinality i and $s-1$ is the dimension of Δ. The h-vector of Δ is the sequence $\left(h_{0}(\Delta), \ldots, h_{s}(\Delta)\right)$ defined by,

$$
h_{i}(\Delta)=\sum_{k=0}^{i}(-1)^{i+k} f_{k}(\Delta)\binom{s-k}{i-k} .
$$

Equivalently, if we let $f_{\Delta}(t)=f_{0} t^{s}+f_{1} t^{s-1}+\cdots f_{s-1} t+f_{s}$, then $h_{\Delta}(t)=h_{0} t^{s}+h_{1} t^{s-1}+$ $\cdots+h_{s-1} t+h_{s}$ satisfies $h_{\Delta}(1+t)=f_{\Delta}(t)$. The independence complex of M is the simplicial complex whose vertices are the non-loop elements of E and whose simplices are the independent subsets of E. We let $\Delta(M)$ represent the independence complex of M.

In order to define the broken circuit complex for M, we first choose a linear order \mathbf{n} on the elements of the matroid. Given such an order, a broken circuit is a circuit with its least element removed. The broken circuit complex is the simplicial complex whose simplices are the subsets of E which do not contain a broken circuit. We denote the broken circuit complex of M with linear order \mathbf{n} by $\Delta^{\mathrm{BC}}(M)$ or, if necessary, $\Delta^{\mathrm{BC}}(M, \mathbf{n})$. Different orderings may lead to different complexes, see [1, Example 7.4.4]. Conversely, distinct matroids can have the same broken circuit complex. For instance, let $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$, and let \mathbf{n} be the obvious order. Let M_{1} be the matroid on E whose bases are all triples except $\left\{e_{1}, e_{2}, e_{3}\right\}$ and
$\left\{e_{4}, e_{5}, e_{6}\right\}$ and let M_{2} be the matroid on E whose bases are all triples except $\left\{e_{1}, e_{2}, e_{3}\right\}$ and $\left\{e_{1}, e_{5}, e_{6}\right\}$. Then M_{1} and M_{2} are non-isomorphic matroids but their broken circuit complexes are identical. Both $h_{\Delta(M)}(t)$ and $h_{\Delta^{\mathrm{BC}}(M)}(t)$ satisfy similar contraction-deletion formulas.

Proposition 2.1 (Björner [1], Brylawski and Oxley [3]).

1. If e is a loop of M, then $h_{\Delta(M)}(t)=h_{\Delta(M-e)}(t)$, and $h_{\Delta^{\mathrm{BC}}(M)}(t)=1$.

2. If e is neither a loop nor a coloop of M, then $h_{\Delta(M)}(t)=h_{\Delta(M-e)}(t)+h_{\Delta(M / e)}(t)$ and $h_{\Delta^{\mathrm{BC}}(M)}(t)=h_{\Delta^{\mathrm{BC}}(M-e)}(t)+h_{\Delta^{\mathrm{BC}}(M / e)}(t)$.
3. If $M=M_{1} \oplus M_{2}$, then $h_{\Delta(M)}(t)=h_{\Delta\left(M_{1}\right)}(t) \cdot h_{\Delta\left(M_{2}\right)}(t)$.
4. If S is an independent series class of M, then $h_{\Delta(M)}(t)=h_{\Delta(M / S)}(t)+$ $h_{\Delta(M-S)}(t)\left(1+t+\cdots+t^{|S|-1}\right)$.

3. Face rings

Let k be a field and let $R=k\left[x_{1}, \ldots, x_{n}\right]$.
Definition 3.1. The face ring of Δ is the graded k-algebra

$$
k[\Delta]=R / I_{\Delta},
$$

where I_{Δ} is the ideal generated by all monomials $x_{i_{1}} \cdots \cdots x_{i_{l}}$ such that $\left\{v_{i_{1}}, \ldots, v_{i_{l}}\right\}$ is not a simplex of Δ.

Let $s-1$ be the dimension of Δ. Let $\Theta=\left\{\theta_{1}, \ldots, \theta_{s}\right\}$ be a set of one-forms in R. Write each $\theta_{i}=k_{i 1} x_{1}+\cdots k_{i s} x_{s}$ and let $K=\left(k_{i j}\right)$. To each simplex in Δ there is a corresponding set of column vectors in K. If for every simplex of Δ the corresponding set of column vectors is independent, then Θ is a linear set of parameters (l.s.o.p.) for $k(\Delta)$. If k is infinite, then it is always possible to choose Θ such that every set of s columns of K is independent. Given a l.s.o.p. Θ for $k(\Delta)$ let $R(\Delta, \Theta)=k(\Delta) /\langle\Theta\rangle$. If Θ is unambiguous, then we just use $R(\Delta)$. Since Θ is homogeneous, $R(\Delta)$ is a graded k-algebra.

Theorem 3.2 (Stanley [9]). Let Θ be a l.s.o.p. for $\Delta(M)$ and let $R(\Delta(M))_{i}$ be the $i^{\text {th }}$ graded component of $R(\Delta(M))$. Then $h_{i}(\Delta(M))=\operatorname{dim}_{k} R(\Delta(M))_{i}$. Similarly, if Θ is a l.s.o.p. for $\Delta^{\mathrm{BC}}(M)$, then $h_{i}\left(\Delta^{\mathrm{BC}}(M)\right)=\operatorname{dim}_{k} R\left(\Delta^{\mathrm{BC}}(M)\right)_{i}$.

Given any two integers $i, j>0$ there is a unique way to write

$$
j=\binom{a_{i}}{i}+\binom{a_{i-1}}{i-1}+\cdots+\binom{a_{l}}{l}, \quad a_{i}>a_{i-1}>\cdots>a_{l} \geqslant l \geqslant 1 .
$$

Given this expansion define,

$$
\begin{gathered}
j^{\langle i\rangle}=\binom{a_{i}+1}{i+1}+\binom{a_{i-1}+1}{i}+\cdots+\binom{a_{l}+1}{l+1}, \\
a_{i}>a_{i-1}>\cdots>a_{l} \geqslant l \geqslant 1 .
\end{gathered}
$$

Theorem 3.3 (Stanley [11, Theorem 2.2]). Let $Q=R / I$, where I is a homogeneous ideal. Let Q_{i} be the forms of degree i in Q and let $h_{i}=\operatorname{dim}_{k} Q_{i}$. Then $h_{i+1} \leqslant h_{i}^{\langle i\rangle}$.

Corollary 3.4 (Stanley [9]). For any independence or broken circuit complex $h_{i+1} \leqslant h_{i}^{\langle i\rangle}$.

4. The ring $R(\Delta(M))$

In order to study the properties of $h_{i}(\Delta(M))$ we will look for elements with properties slightly weaker than those provided by Lefschetz elements of the cohomology ring of a compact complex projective manifold.

Definition 4.1. Let N be a (non-negatively) graded R-module whose dimension over k is finite. Let r be the last non-zero grade of N and let ω be a one-form in R. Then ω is a g-element for N if for all $i, 0 \leqslant i \leqslant r / 2$, multiplication by $\omega^{r-2 i}$ is an injection from N_{i} to N_{r-i}.

If we replace injection with bijection in the above definition, then we obtain the strong Stanley property in [12]. Let M be a rank r matroid without coloops and k a field of characteristic zero. Let $n=|E|$. Write the elements of $k^{n \times(r+1)}$ in the form (Θ, ω), where Θ consists of r elements in k^{n} and ω is also in k^{n}. Identify elements of k^{n} with the one-forms in R in the canonical way. Let U be the set of all pairs $(\Theta, \omega) \in k^{n \times(r+1)}$ such that Θ is a l.s.o.p. for $k(\Delta(M))$ and ω is a g-element for $R(\Delta(M), \Theta)$.

Theorem 4.2. Let M, U and k be as above. Then, U is a non-empty Zariski open subset of $k^{n \times(r+1)}$.

Proof. We first note that Θ is a l.s.o.p. for $k(\Delta)$ if and only if the determinants of the appropriate $r \times r$ minors of K are non-zero. Secondly, the multiplication maps $\omega^{r-2 i}$ can be encoded as matrices which are polynomial in the coefficients of K and ω. Thus, U is the intersection of two Zariski open subsets of $k^{n \times(r+1)}$.

To show that U is not empty we proceed by induction on n. However, we use a slightly different (but equivalent) induction hypothesis. Let $C(j)$ be the circuit with j elements. Let P be a direct sum of circuits, so we can write $P=C\left(j_{1}\right) \oplus \cdots \oplus C\left(j_{m}\right)$.

The rank of $M \oplus P$ is $r^{\prime}=r+j_{1}+\cdots+j_{m}-m$ and its cardinality is $n^{\prime}=n+j_{1}+$ $\cdots+j_{m}$. The induction hypothesis is that given any such P, then $U=$ $\left\{(\Theta, \omega) \in k^{n^{\prime} \times\left(r^{\prime}+1\right)}: \Theta\right.$ is a 1.s.o.p. for $k(\Delta(M \oplus P))$ and ω is a g-element for $R(\Delta(M \oplus P), \Theta)\}$ is not empty. If M consists of a single loop, then $k(\Delta(M \oplus P)) \simeq k(\Delta(P))$. As a simplicial complex $\Delta(P)$ is $\partial\left(\Delta^{j_{1}-1}\right) * \cdots * \partial\left(\Delta^{j_{m}-1}\right)$, where Δ^{j} is the j-simplex. Since this is the boundary of a convex rational polytope we can apply the Hard Lefschetz theorem as in [10] to see that U is not empty when $k=\mathbb{Q}$, and hence is not empty for any field of characteristic zero.

For the induction step, let S be a series class of M. Reordering M if necessary, we assume that $S=\left\{e_{1}, \ldots, e_{s}\right\}$ consists of the first s elements of M. If S is a circuit, then $M=(M-S) \oplus C(s)$. Hence, $M \oplus P=(M-S) \oplus(C(s) \oplus P)$ and the induction hypothesis applies to $M-S$. So assume that S is independent. Let $x^{S}=x_{1} \ldots x_{s}$. For Θ a l.s.o.p. for $k(\Delta(M \oplus P))$ consider the following short exact sequence.

$$
\begin{equation*}
0 \rightarrow \frac{\left\langle x^{S}\right\rangle}{\left\langle x^{S}\right\rangle \cap\left\langle\Theta+I_{\Delta(M \oplus P)}\right\rangle} \rightarrow R(\Delta(M \oplus P, \Theta)) \rightarrow \frac{R(\Delta(M \oplus P), \Theta)}{\left\langle x^{S}\right\rangle} \rightarrow 0 . \tag{1}
\end{equation*}
$$

Since S is a series class, a subset of $M-S$ is independent if and only if its union with any proper subset of S is independent. Hence, the right-hand side is easily seen to be $R(\Delta((M-S) \oplus(C(s) \oplus P), \Theta))$. Therefore, we can apply the induction hypothesis to $M-S$ to obtain a non-empty Zariski open subset U^{\prime} of $k^{n \times(r+1)}$ consisting of pairs $\left(\Theta^{\prime}, \omega^{\prime}\right)$ such that ω^{\prime} is a g-element for $R\left(\Delta((M-S) \oplus C(s) \oplus P), \Theta^{\prime}\right)$. In order to analyze the left-hand side of (1) choose generators $\left\{\theta_{1}, \ldots, \theta_{s}, \ldots, \theta_{r^{\prime}}\right\}$ for $\langle\Theta\rangle$ so that in the corresponding matrix $K, k_{i j}=\delta_{i j}$ for $1 \leqslant i \leqslant s$. Now define an R-module structure on $R^{\prime}=k\left[x_{s+1}, \ldots, x_{n^{\prime}}\right]$ by defining $\left(x_{i}\right) \cdot f=\left(x_{i}-\theta_{i}\right) \cdot f$ for $1 \leqslant i \leqslant s$ and $f \in R^{\prime}$. Let $\phi: R^{\prime} \rightarrow\left\langle x^{S}\right\rangle /\left\langle\Theta+I_{\Delta(M \oplus P)}\right\rangle$ be multiplication by x^{S}. Since S is independent, every polynomial in $\left\langle x^{S}\right\rangle /\left\langle\Theta+I_{\Delta(M \oplus P)}\right\rangle$ is equivalent to a polynomial in $\left\langle x^{S}\right\rangle R^{\prime}$. So, ϕ is surjective. The kernel of ϕ contains $\Theta^{\prime}=\{\theta \in \Theta: \theta=$ $k_{s+1} x_{s+1}+\cdots+k_{n^{\prime}} x_{n^{\prime}}$. $\}$ In addition, ker ϕ contains all monomials in $I_{\Delta((M / S) \oplus P)}$. Since Θ^{\prime} is a l.s.o.p. for $k(\Delta(M / S))$, we see that ϕ is a degree s graded surjective R module homomorphism from $R^{\prime} /\left\langle I_{\Delta((M / S) \oplus P)}+\Theta^{\prime}\right\rangle$ to the left-hand side of (1). Proposition 2.1 and $h_{\Delta(C(s))}(t)=1+t+\cdots+t^{s-1}$ show that the k-dimension of $R^{\prime}\left(\Delta(M / S), \Theta^{\prime}\right)$ and the l.h.s. of (1) are the same. Hence ϕ is an isomorphism. Therefore, by the induction hypothesis applied to M / S, there is a non-empty Zariski open subset $U^{\prime \prime}$ of $k^{n \times(r+1)}$ consisting of pairs $\left(\Theta^{\prime \prime}, \omega^{\prime \prime}\right)$ such that if ψ is multiplication by $\omega^{\prime \prime}\left(r^{\prime}-2 i-s\right)$, then

$$
\psi:\left(\frac{\left\langle x^{S}\right\rangle}{\left\langle x^{S}\right\rangle \cap\left\langle\Theta^{\prime \prime}+I_{\Delta(M \oplus P)}\right\rangle}\right)_{i+s} \rightarrow\left(\frac{\left\langle x^{S}\right\rangle}{\left\langle x^{S}\right\rangle \cap\left\langle\Theta^{\prime \prime}+I_{\Delta(M \oplus P)}\right\rangle}\right)_{r^{\prime}-i}
$$

is an injection for $1 \leqslant i \leqslant\left(r^{\prime}-s\right) / 2$. Now, $U^{\prime} \cap U^{\prime \prime} \subseteq U$. Since the intersection of two non-empty Zariski open subsets of $k^{n \times(r+1)}$ is not empty, U is also not empty.

Theorem 4.3. Let M be a rank r matroid without coloops. Let $h_{i}=h_{i}(\Delta(M))$. Then,

1. $h_{0} \leqslant \cdots \leqslant h_{\lfloor r / 2\rfloor}$.
2. $h_{i} \leqslant h_{r-i}$ for all $i \leqslant r / 2$.
3. Let $g_{i}=h_{i}-h_{i-1}$. Then, for all $i<r / 2, g_{i+1} \leqslant g_{i}^{\langle i\rangle}$.

Proof. The first two inequalities follow from the injectivity properties of any g element ω for $R(\Delta(M), \Theta)$. Since $g_{i}=(R(\Delta(M), \Theta) /\langle\omega\rangle)_{i}$ when $i<r / 2$, the last inequality follows from Theorem 3.3.

The first two inequalities were obtained by Chari using a PS-ear decomposition of $\Delta(M)$. See [5] for details on PS-ear decompositions. Hausel and Sturmfels used toric hyperkähler varieties to prove the last inequality for matroids representable over the rationals [7]. The proof of Theorem 4.2 is essentially an algebraic version of a PS-ear decomposition [6, Theorem 2]. Indeed, the proof works with a much simpler induction hypothesis for any simplicial complex with a PS-ear decomposition.

5. The ring $R\left(\Delta^{\mathbf{B C}}(M)\right)$

As shown in [2] the cone on any independence complex is a broken circuit complex (for some other matroid). Since the h-vector of the cone of a simplicial complex is the same as the h-vector of the original complex, the h-vectors of independence complexes form a (strict) subset of the h-vectors of broken-circuit complexes. It is natural to ask whether or not Theorem 4.2 holds for $\Delta^{\mathrm{BC}}(M)$. The last non-zero element of the h-vector of $\Delta^{\mathrm{BC}}(M)$ is $r-m$, where m is the number of components of M. It is not difficult to modify the proof of Theorem 4.2 to produce injections from $R\left(\Delta^{\mathrm{BC}}(M)\right)_{0}$ to $R\left(\Delta^{\mathrm{BC}}(M)\right)_{r-m}$ and from $R\left(\Delta^{\mathrm{BC}}(M)\right)_{1}$ to $R\left(\Delta^{\mathrm{BC}}(M)\right)_{r-m-1}$. Since the first possible problem is in degree 2, the smallest possible rank of M for which Theorem 4.2 does not hold for $\Delta^{\mathrm{BC}}(M)$ is six. Let $G(s)$ be the graph obtained by subdividing each edge of the graph consisting of s parallel edges into two edges. Let $M(s)$ be the cycle matroid of $G(s)$. The rank of $M(s)$ is $s+1$ and $M(s)$ has $2 s$ elements.

Proposition 5.1. Let Θ be a l.s.o.p. for $M(s), \mathbf{n}$ a linear ordering of the elements of $M(s)$ and ω a linear form in $k\left[x_{1}, \ldots, x_{2 s}\right]$. Then, multiplication by ω has a non-trivial kernel in $R\left(\Delta^{\mathrm{BC}}(M)\right)_{2}$.

Proof. Let E_{l} consist of the greatest l elements of $M(s)$ with respect to \mathbf{n}. Let $\left\{e_{i}, e_{j}\right\}$ be the first pair of edges to appear in E_{l} as l goes from 1 to $s+1$ such that they come from the subdivision of one of the parallel edges used to construct $G(s)$. Consider the ideal $\left\langle x_{i} x_{j}\right\rangle \subseteq R\left(\Delta^{\mathrm{BC}}(M, \mathbf{n})\right)$. Using the same reasoning as in the proof of Theorem 4.2, the choice of $\left\{e_{i}, e_{j}\right\}$ implies that $\left\langle x_{i} x_{j}\right\rangle$ is isomorphic as an R-module to $R^{\prime}\left(\Delta^{\mathrm{BC}}\left(\Delta(M(s)) /\left\{e_{i}, e_{j}\right\}, \mathbf{n}^{\prime}\right), \Theta^{\prime}\right)$, where R^{\prime} and Θ^{\prime} are defined as in the proof of

Theorem 4.2, and \mathbf{n}^{\prime} is the order on $M(s) /\left\{e_{i}, e_{j}\right\}$ induced from \mathbf{n}. Now, $M(s) /\left\{e_{i}, e_{j}\right\}$ is the cycle matroid of the $G(s)$ with the two edges $\left\{e_{i}, e_{j}\right\}$ contracted. For any such pair and any linear order $\Delta^{\mathrm{BC}}\left(M(s) /\left\{e_{i}, e_{j}\right\}\right)$ is an $s-2$ dimensional simplex. Hence $\left\langle x_{i} x_{j}\right\rangle \simeq k$ and will vanish under any multiplication map.

Repeated application of Proposition 2.1 shows that $h_{i}\left(\Delta^{\mathrm{BC}}(M(s))\right)=\binom{s}{i}$ when $i \neq 1$ and $h_{1}\left(\Delta^{\mathrm{BC}}(M(s))\right)=s-1$. When $s \geqslant 5$, the h-vector of the broken circuit complex of $M(s)$ satisfies the combinatorial conditions of Theorem 4.3 but there is no l.s.o.p. for the face ring such that the quotient ring has g-elements. Thus, the comments following Theorem 4.3 show that $\Delta^{\mathrm{BC}}(M(s))$ does not have a PS-ear decomposition when $s \geqslant 5$. As far as we know, whether or not broken circuit complexes satisfy the combinatorial inequalities of Theorem 4.3 remains an open question.

Acknowledgments

Louis Billera suggested the problem of determining whether or not independence complexes satisfied $g_{i+1} \leqslant g_{i}^{\langle i\rangle}$.

References

[1] A. Björner, The homology and shellability of matroids and geometric lattices, in: N.L. White (Ed.), Matroid Applications, Cambridge University Press, Cambridge, 1992, pp. 226-283.
[2] T. Brylawski, The broken-circuit complex, Trans. Amer. Math. Soc. 234 (1977) 417-433.
[3] T. Brylawski, J.G. Oxley, The Tutte polynomial and its applications, in: N.L. White (Ed.), Matroid Applications, Cambridge University Press, Cambridge, 1992, pp. 123-225.
[4] M. Chari, C. Colbourn, Reliability polynomials: a survey, J. Combin. Inform. System Sci. 22 (1997) 177-193.
[5] M.K. Chari, Matroid inequalities, Discrete Math. 147 (1995) 283-286.
[6] M.K. Chari, Two decompositions in topological combinatorics with applications to matroid complexes, Trans. Amer. Math. Soc. 349 (1997) 3925-3943.
[7] T. Hausel, B. Sturmfels, Toric hyperkähler varieties, Documenta Math. 7 (2002) 495-534.
[8] J.G. Oxley, Matroid Theory, Oxford University Press, Oxford, 1992.
[9] R.P. Stanley, Cohen-Macaulay complexes, in: M. Aigner (Ed.), Higher Combinatorics, Reidel, Dordrecht and Boston, 1977, pp. 51-62.
[10] R.P. Stanley, The number of faces of a simplicial convex polytope, Adv. Math. 35 (1980) 236-238.
[11] R.P. Stanley, Combinatorics and Commutative Algebra, in: Progress in Mathematics, Vol. 41, Birkhäuser, Boston, 1996.
[12] J. Watanabe, The Dilworth Number of Artinian Rings and Finite Posets with Rank Function, Commutative algebra and combinatorics, Advanced Studies in Pure Mathematics, Vol. 11, NorthHolland, Amsterdam, 1985, pp. 303-312.

[^0]: ${ }^{2}$ Partially supported by a VIGRE postdoc under NSF Grant No. 9983660 to Cornell University.
 E-mail address: ebs@math.cornell.edu.

