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Abstract

A g-element for a graded R-module is a one-form with properties similar to a Lefschetz class

in the cohomology ring of a compact complex projective manifold, except that the induced

multiplication maps are injections instead of bijections. We show that if kðDÞ is the face ring of
the independence complex of a matroid and the characteristic of k is zero, then there is a non-

empty Zariski open subset of pairs ðY;oÞ such that Y is a linear set of parameters for kðDÞ
and o is a g-element for kðDÞ=/YS: This leads to an inequality on the first half of the h-vector

of the complex similar to the g-theorem for simplicial polytopes.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The combinatorics of the independence complex of a matroid can be approached
from several different directions. The f -vector directly encodes the number of
independent sets of every cardinality, while the h-vector contains the same
information encoded in a way which is more appropriate for reliability problems
[4]. In either case the fundamental question is the same. What vectors are possible?
Let ðh0; h1;y; hrÞ be the h-vector of the independence complex of a rank r matroid
without coloops. Using a PS-ear decomposition of the complex Chari [6] proved that
for all ipr=2; hiphr�i and hi�1phi: By showing that the h-vector was the Hilbert
function of kðDÞ=/YS; where kðDÞ is the face ring of the complex and Y is a linear

system of parameters for kðDÞ; Stanley [9] proved that hiþ1ph
/iS
i (see Section 3 for a

definition of the /iS-operator). By combining these two methods we show in

Theorem 4.3 that if we define gi ¼ hi � hi�1; then giþ1pg
/iS
i for all ior=2: All of
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these inequalities are immediate consequences of the existence of pairs ðY;oÞ such
that Y is a linear set of parameters for kðDÞ and o is a g-element for kðDÞ=/YS:
Using a different approach, toric hyperkähler varieties, Hausel and Sturmfels proved
the existence of g-elements for kðDÞ=/YS when the matroid is representable over
the rationals [7]. A g-element is a one-form which acts like a Lefschetz class of a
compact complex projective manifold except that it induces injections instead of
bijections (Definition 4.1). The broken circuit complex of a matroid is a subcomplex
of the independence complex and directly encodes the coefficients of the
characteristic polynomial of the matroid. Every broken circuit complex is a cone,
and if we remove the cone point we obtain a reduced broken circuit complex. Any
independence complex is also a reduced broken circuit complex. Since the h-vector is
unchanged by the removal of a cone point, the set of h-vectors of independence
complexes is a (strict) subset of the set of h-vectors of broken circuit complexes. A
natural question is whether or not Theorem 4.2 holds for broken circuit complexes.
In Section 5 we show that even if broken circuit complexes satisfy the corresponding
combinatorial inequalities, there may be no set of linear parameters for the face ring
such that there exist g-elements for the quotient ring. Matroid terminology and
notation closely follows [8]. The main exception to this is that we use M � A for the
deletion of a subset instead of M\A: The ground set of the matroid M is always E:

2. Complexes

Let D be a finite abstract simplicial complex with vertices V ¼ fv1;y; vng: The f-

vector of D is the sequence ð f0ðDÞ;y; fsðDÞÞ; where fiðDÞ is the number of simplices
of cardinality i and s � 1 is the dimension of D: The h-vector of D is the sequence
ðh0ðDÞ;y; hsðDÞÞ defined by,

hiðDÞ ¼
Xi

k¼0

ð�1Þiþk
fkðDÞ

s � k

i � k

 !
:

Equivalently, if we let fDðtÞ ¼ f0t
s þ f1t

s�1 þ?fs�1t þ fs; then hDðtÞ ¼ h0ts þ h1ts�1 þ
?þ hs�1t þ hs satisfies hDð1þ tÞ ¼ fDðtÞ: The independence complex of M is the
simplicial complex whose vertices are the non-loop elements of E and whose
simplices are the independent subsets of E: We let DðMÞ represent the independence
complex of M:

In order to define the broken circuit complex for M; we first choose a linear order
n on the elements of the matroid. Given such an order, a broken circuit is a circuit
with its least element removed. The broken circuit complex is the simplicial complex
whose simplices are the subsets of E which do not contain a broken circuit. We

denote the broken circuit complex of M with linear order n by DBCðMÞ or, if

necessary, DBCðM; nÞ: Different orderings may lead to different complexes, see [1,
Example 7.4.4]. Conversely, distinct matroids can have the same broken circuit
complex. For instance, let E ¼ fe1; e2; e3; e4; e5; e6g; and let n be the obvious order.
Let M1 be the matroid on E whose bases are all triples except fe1; e2; e3g and
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fe4; e5; e6g and let M2 be the matroid on E whose bases are all triples except
fe1; e2; e3g and fe1; e5; e6g: Then M1 and M2 are non-isomorphic matroids but their
broken circuit complexes are identical. Both hDðMÞðtÞ and hDBCðMÞðtÞ satisfy similar

contraction-deletion formulas.

Proposition 2.1 (Björner [1], Brylawski and Oxley [3]).

1. If e is a loop of M, then hDðMÞðtÞ ¼ hDðM�eÞðtÞ; and hDBCðMÞðtÞ ¼ 1:

2. If e is a coloop of M, then hDðMÞðtÞ ¼ hDðM�eÞðtÞ; and hDBCðMÞðtÞ ¼ hDBCðM�eÞðtÞ:
3. If e is neither a loop nor a coloop of M, then hDðMÞðtÞ ¼ hDðM�eÞðtÞ þ hDðM=eÞðtÞ and

hDBCðMÞðtÞ ¼ hDBCðM�eÞðtÞ þ hDBCðM=eÞðtÞ:
4. If M ¼ M1"M2; then hDðMÞðtÞ ¼ hDðM1ÞðtÞ � hDðM2ÞðtÞ:
5. If S is an independent series class of M, then hDðMÞðtÞ ¼ hDðM=SÞðtÞ þ

hDðM�SÞðtÞð1þ t þ?þ tjSj�1Þ:

3. Face rings

Let k be a field and let R ¼ k½x1;y; xn�:

Definition 3.1. The face ring of D is the graded k-algebra

k½D� ¼ R=ID;

where ID is the ideal generated by all monomials xi1 �? � xil such that fvi1 ;y; vilg is

not a simplex of D:

Let s � 1 be the dimension of D: Let Y ¼ fy1;y; ysg be a set of one-forms in R:
Write each yi ¼ ki1x1 þ?kisxs and let K ¼ ðkijÞ: To each simplex in D there is a

corresponding set of column vectors in K : If for every simplex of D the
corresponding set of column vectors is independent, then Y is a linear set of

parameters (l.s.o.p.) for kðDÞ: If k is infinite, then it is always possible to choose Y
such that every set of s columns of K is independent. Given a l.s.o.p. Y for kðDÞ let
RðD;YÞ ¼ kðDÞ=/YS: If Y is unambiguous, then we just use RðDÞ: Since Y is
homogeneous, RðDÞ is a graded k-algebra.

Theorem 3.2 (Stanley [9]). Let Y be a l.s.o.p. for DðMÞ and let RðDðMÞÞi be the ith

graded component of RðDðMÞÞ: Then hiðDðMÞÞ ¼ dimk RðDðMÞÞi: Similarly, if Y is a

l.s.o.p. for DBCðMÞ; then hiðDBCðMÞÞ ¼ dimk RðDBCðMÞÞi:

Given any two integers i; j40 there is a unique way to write

j ¼
ai

i

 !
þ

ai�1

i � 1

 !
þ?þ

al

l

 !
; ai4ai�14?4alXlX1:
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Given this expansion define,

j/iS ¼
ai þ 1

i þ 1

 !
þ

ai�1 þ 1

i

 !
þ?þ

al þ 1

l þ 1

 !
;

ai4ai�14?4alXlX1:

Theorem 3.3 (Stanley [11, Theorem 2.2]). Let Q ¼ R=I ; where I is a homogeneous

ideal. Let Qi be the forms of degree i in Q and let hi ¼ dimk Qi: Then hiþ1ph
/iS
i :

Corollary 3.4 (Stanley [9]). For any independence or broken circuit complex

hiþ1ph
/iS
i :

4. The ring RðDðMÞÞ

In order to study the properties of hiðDðMÞÞ we will look for elements with
properties slightly weaker than those provided by Lefschetz elements of the
cohomology ring of a compact complex projective manifold.

Definition 4.1. Let N be a (non-negatively) graded R-module whose dimension over
k is finite. Let r be the last non-zero grade of N and let o be a one-form in R: Then o
is a g-element for N if for all i; 0pipr=2; multiplication by or�2i is an injection from
Ni to Nr�i:

If we replace injection with bijection in the above definition, then we obtain the
strong Stanley property in [12]. Let M be a rank r matroid without coloops and k a

field of characteristic zero. Let n ¼ jEj: Write the elements of kn�ðrþ1Þ in the form
ðY;oÞ; where Y consists of r elements in kn and o is also in kn: Identify elements of
kn with the one-forms in R in the canonical way. Let U be the set of all pairs

ðY;oÞAkn�ðrþ1Þ such that Y is a l.s.o.p. for kðDðMÞÞ and o is a g-element for
RðDðMÞ;YÞ:

Theorem 4.2. Let M;U and k be as above. Then, U is a non-empty Zariski open subset

of kn�ðrþ1Þ:

Proof. We first note that Y is a l.s.o.p. for kðDÞ if and only if the determinants of the

appropriate r � r minors of K are non-zero. Secondly, the multiplication maps or�2i

can be encoded as matrices which are polynomial in the coefficients of K and o:
Thus, U is the intersection of two Zariski open subsets of kn�ðrþ1Þ:

To show that U is not empty we proceed by induction on n: However, we use a
slightly different (but equivalent) induction hypothesis. Let Cð jÞ be the circuit with j

elements. Let P be a direct sum of circuits, so we can write P ¼ Cð j1Þ"?"Cð jmÞ:
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The rank of M"P is r0 ¼ r þ j1 þ?þ jm � m and its cardinality is n0 ¼ n þ j1 þ
?þ jm: The induction hypothesis is that given any such P; then U ¼
fðY;oÞAkn0�ðr0þ1Þ : Y is a l.s.o.p. for kðDðM"PÞÞ and o is a g-element for
RðDðM"PÞ;YÞg is not empty. If M consists of a single loop, then

kðDðM"PÞÞCkðDðPÞÞ: As a simplicial complex DðPÞ is @ðDj1�1Þ �? � @ðDjm�1Þ;
where Dj is the j-simplex. Since this is the boundary of a convex rational polytope we
can apply the Hard Lefschetz theorem as in [10] to see that U is not empty when
k ¼ Q; and hence is not empty for any field of characteristic zero.

For the induction step, let S be a series class of M: Reordering M if necessary, we
assume that S ¼ fe1;y; esg consists of the first s elements of M: If S is a circuit, then
M ¼ ðM � SÞ"CðsÞ: Hence, M"P ¼ ðM � SÞ"ðCðsÞ"PÞ and the induction

hypothesis applies to M � S: So assume that S is independent. Let xS ¼ x1yxs: For
Y a l.s.o.p. for kðDðM"PÞÞ consider the following short exact sequence.

0-
/xSS

/xSS-/Yþ IDðM"PÞS
-RðDðM"P;YÞÞ-RðDðM"PÞ;YÞ

/xSS
-0: ð1Þ

Since S is a series class, a subset of M � S is independent if and only if its union with
any proper subset of S is independent. Hence, the right-hand side is easily seen to be
RðDððM � SÞ"ðCðsÞ"PÞ;YÞÞ: Therefore, we can apply the induction hypothesis to

M � S to obtain a non-empty Zariski open subset U 0 of kn�ðrþ1Þ consisting of pairs

ðY0;o0Þ such that o0 is a g-element for RðDððM � SÞ"CðsÞ"PÞ;Y0Þ: In order to
analyze the left-hand side of (1) choose generators fy1;y; ys;y; yr0 g for /YS so
that in the corresponding matrix K ; kij ¼ dij for 1pips: Now define an R-module

structure on R0 ¼ k½xsþ1;y; xn0 � by defining ðxiÞ � f ¼ ðxi � yiÞ � f for 1pips and

fAR0: Let f : R0-/xSS=/Yþ IDðM"PÞS be multiplication by xS: Since S is

independent, every polynomial in /xSS=/Yþ IDðM"PÞS is equivalent to a

polynomial in /xSSR0: So, f is surjective. The kernel of f containsY0 ¼ fyAY : y ¼
ksþ1xsþ1 þ?þ kn0xn0 :g In addition, ker f contains all monomials in IDððM=SÞ"PÞ:

Since Y0 is a l.s.o.p. for kðDðM=SÞÞ; we see that f is a degree s graded surjective R-

module homomorphism from R0=/IDððM=SÞ"PÞ þY0S to the left-hand side of (1).

Proposition 2.1 and hDðCðsÞÞðtÞ ¼ 1þ t þ?þ ts�1 show that the k-dimension of

R0ðDðM=SÞ;Y0Þ and the l.h.s. of (1) are the same. Hence f is an isomorphism.
Therefore, by the induction hypothesis applied to M=S; there is a non-empty Zariski

open subset U 00 of kn�ðrþ1Þ consisting of pairs ðY00;o00Þ such that if c is multiplication

by o
00ðr0�2i�sÞ; then

c:
/xSS

/xSS-/Y00 þ IDðM"PÞS

� �
iþs

-
/xSS

/xSS-/Y00 þ IDðM"PÞS

� �
r0�i

is an injection for 1pipðr0 � sÞ=2: Now, U 0-U 00DU : Since the intersection

of two non-empty Zariski open subsets of kn�ðrþ1Þ is not empty, U is also not
empty. &
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Theorem 4.3. Let M be a rank r matroid without coloops. Let hi ¼ hiðDðMÞÞ: Then,

1. h0p?phIr=2m:

2. hiphr�i for all ipr=2:

3. Let gi ¼ hi � hi�1: Then, for all ior=2; giþ1pg
/iS
i :

Proof. The first two inequalities follow from the injectivity properties of any g-
element o for RðDðMÞ;YÞ: Since gi ¼ ðRðDðMÞ;YÞ=/oSÞi when ior=2; the last

inequality follows from Theorem 3.3. &

The first two inequalities were obtained by Chari using a PS-ear decomposition of
DðMÞ: See [5] for details on PS-ear decompositions. Hausel and Sturmfels used toric
hyperkähler varieties to prove the last inequality for matroids representable over the
rationals [7]. The proof of Theorem 4.2 is essentially an algebraic version of a PS-ear
decomposition [6, Theorem 2]. Indeed, the proof works with a much simpler
induction hypothesis for any simplicial complex with a PS-ear decomposition.

5. The ring RðDBCðMÞÞ

As shown in [2] the cone on any independence complex is a broken circuit complex
(for some other matroid). Since the h-vector of the cone of a simplicial complex is the
same as the h-vector of the original complex, the h-vectors of independence
complexes form a (strict) subset of the h-vectors of broken-circuit complexes. It is

natural to ask whether or not Theorem 4.2 holds for DBCðMÞ: The last non-zero

element of the h-vector of DBCðMÞ is r � m; where m is the number of components of
M: It is not difficult to modify the proof of Theorem 4.2 to produce injections from

RðDBCðMÞÞ0 to RðDBCðMÞÞr�m and from RðDBCðMÞÞ1 to RðDBCðMÞÞr�m�1: Since the

first possible problem is in degree 2, the smallest possible rank of M for which

Theorem 4.2 does not hold for DBCðMÞ is six. Let GðsÞ be the graph obtained by
subdividing each edge of the graph consisting of s parallel edges into two edges. Let
MðsÞ be the cycle matroid of GðsÞ: The rank of MðsÞ is s þ 1 and MðsÞ has 2s

elements.

Proposition 5.1. Let Y be a l.s.o.p. for MðsÞ; n a linear ordering of the elements of

MðsÞ and o a linear form in k½x1;y; x2s�: Then, multiplication by o has a non-trivial

kernel in RðDBCðMÞÞ2:

Proof. Let El consist of the greatest l elements of MðsÞ with respect to n: Let fei; ejg
be the first pair of edges to appear in El as l goes from 1 to s þ 1 such that they come
from the subdivision of one of the parallel edges used to construct GðsÞ: Consider the
ideal /xixjSDRðDBCðM; nÞÞ: Using the same reasoning as in the proof of Theorem

4.2, the choice of fei; ejg implies that /xixjS is isomorphic as an R-module to

R0ðDBCðDðMðsÞÞ=fei; ejg; n0Þ;Y0Þ; where R0 and Y0 are defined as in the proof of
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Theorem 4.2, and n0 is the order on MðsÞ=fei; ejg induced from n:Now, MðsÞ=fei; ejg
is the cycle matroid of the GðsÞ with the two edges fei; ejg contracted. For any such

pair and any linear order DBCðMðsÞ=fei; ejgÞ is an s � 2 dimensional simplex. Hence

/xixjSCk and will vanish under any multiplication map. &

Repeated application of Proposition 2.1 shows that hiðDBCðMðsÞÞÞ ¼ ðs
i
Þ when

ia1 and h1ðDBCðMðsÞÞÞ ¼ s � 1: When sX5; the h-vector of the broken circuit
complex of MðsÞ satisfies the combinatorial conditions of Theorem 4.3 but there is
no l.s.o.p. for the face ring such that the quotient ring has g-elements. Thus, the

comments following Theorem 4.3 show that DBCðMðsÞÞ does not have a PS-ear
decomposition when sX5: As far as we know, whether or not broken circuit
complexes satisfy the combinatorial inequalities of Theorem 4.3 remains an open
question.

Acknowledgments

Louis Billera suggested the problem of determining whether or not independence

complexes satisfied giþ1pg
/iS
i :

References

[1] A. Björner, The homology and shellability of matroids and geometric lattices, in: N.L. White (Ed.),

Matroid Applications, Cambridge University Press, Cambridge, 1992, pp. 226–283.

[2] T. Brylawski, The broken-circuit complex, Trans. Amer. Math. Soc. 234 (1977) 417–433.

[3] T. Brylawski, J.G. Oxley, The Tutte polynomial and its applications, in: N.L. White (Ed.), Matroid

Applications, Cambridge University Press, Cambridge, 1992, pp. 123–225.

[4] M. Chari, C. Colbourn, Reliability polynomials: a survey, J. Combin. Inform. System Sci. 22 (1997)

177–193.

[5] M.K. Chari, Matroid inequalities, Discrete Math. 147 (1995) 283–286.

[6] M.K. Chari, Two decompositions in topological combinatorics with applications to matroid

complexes, Trans. Amer. Math. Soc. 349 (1997) 3925–3943.

[7] T. Hausel, B. Sturmfels, Toric hyperkähler varieties, Documenta Math. 7 (2002) 495–534.

[8] J.G. Oxley, Matroid Theory, Oxford University Press, Oxford, 1992.

[9] R.P. Stanley, Cohen–Macaulay complexes, in: M. Aigner (Ed.), Higher Combinatorics, Reidel,

Dordrecht and Boston, 1977, pp. 51–62.

[10] R.P. Stanley, The number of faces of a simplicial convex polytope, Adv. Math. 35 (1980) 236–238.

[11] R.P. Stanley, Combinatorics and Commutative Algebra, in: Progress in Mathematics, Vol. 41,
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