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0. Introduction

The Fourier algebra A(G) of a general locally compact group G was introduced by P. Eymard in [7]. If G is abelian with
dual group Ĝ , then A(G) is just L1(Ĝ) via the Fourier transform. As the predual of the group von Neumann algebra, A(G)

has a canonical structure as an abstract operator space (see [6,27], or [29] for the theory of operator spaces), turning it into
a completely contractive Banach algebra. In the past decade and a half, operator space theoretic methods have given new
momentum to the study of A(G) (see [18,26], or [30], for example), yielding new insights, even if the problem in question
seemed to have nothing to do with operator spaces ([11] or [12]).

The definition of A(G) can be extended to an L p-context: instead of restricting oneself to the left regular representation
of G on L2(G), one considers the left regular representation of G on L p(G) for general p ∈ (1,∞). This approach leads
to the Figà-Talamanca–Herz algebras A p(G): they were introduced as mere linear spaces by A. Figà-Talamanca [10], were
recognized by C. Herz in [15] as Banach algebras, and further studied in [8,16], for instance. Ever since, the Figà-Talamanca–
Herz algebras have been objects of independent interest in abstract harmonic analysis. At the first glance, it may seem that
the passage from L2(G) to L p(G) for p �= 2 is of little significance, and, indeed, many (mostly elementary) properties of
A(G) can be established for A p(G) with p �= 2 along the same lines. However, the lack of von Neumann algebraic methods
for operator algebras on L p-spaces for p �= 2 has left other problems, which have long been solved for A(G), wide open for
A p(G). For instance, any closed subgroup of G is a set of synthesis for A(G) [34] whereas the corresponding statement for
A p(G) with p �= 2 is still wide open.

As the Figà-Talamanca–Herz algebras have no obvious connections with operator algebras on Hilbert space, it appears at
first glance that operator space theoretic methods are of very limited use when dealing with A p(G) for p �= 2. There is a
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notion of p-completely boundedness for general p ∈ (1,∞) with 2-complete boundedness just being usual complete bound-
edness, and an abstract theory based on p-complete boundedness can be developed—called p-operator space theory in
[4]—that parallels operator space theory [24]. There are indeed applications of p-complete boundedness to Figà-Talamanca–
Herz algebras (see [9] and [4]). Alas, as pointed out in [4], there is no suitable Hahn–Banach theorem for p-completely
bounded maps, so that the duality theory of p-operator spaces has to be fairly limited.

In [23], A. Lambert and the authors pursued a different approach to putting operator spaces to work on Figà-Talamanca–
Herz algebras. In his doctoral thesis [22], Lambert extended the notions of column and row operator space, which are
canonical over Hilbert space, to general Banach spaces. This allows, for p ∈ (1,∞), to equip B(L p(G)) for any p ∈ (1,∞)

with an operator space structure, which, for p = 2, is the canonical one. This, in turn, can be used to equip A p(G)—for
any p ∈ (1,∞)—with an operator space structure in the usual sense, making it a completely bounded Banach algebra. With
respect to this operator space structure, [30, Theorem 3.6] extends to Figà-Talamanca–Herz algebras: G is amenable if and
only if A p(G) is operator amenable for one—and, equivalently, all—p ∈ (1,∞).

In the present paper, we continue the work begun in [23] and link it with the paper [32] by the second author. Most
of it is devoted to extending operator space theoretic results known to hold for the Fourier algebra and (reduced) Fourier–
Stieltjes algebra of a locally compact group to the suitable generalizations in a general L p-context. In particular, we show
that, for any p ∈ (1,∞), the Banach algebra B p(G) introduced in [32] can be turned into a completely bounded Banach
algebra in a canonical manner, and we obtain an L p-generalization of [33, Theorem 4.4].

1. Preliminaries

In this section, we recall some background from [23] and [32]. We shall throughout rely heavily on those papers, and
the reader is advised to have them at hand.

1.1. Column and row operators spaces over Banach spaces

The notions of column and row operator space over a Hilbert space are standard in operator space theory [6, 3.4]. In
[22], Lambert extended these notions to general Banach spaces. As his construction is fairly involved, we will only sketch it
very briefly here and refer to [23, Sections 2 and 3] instead (and to [22] for more details). Throughout the paper, we adopt
the notation from [23].

Lambert introduces a category—called operator sequence spaces—that can be viewed as an intermediary between Banach
spaces and operator spaces, and defines functors

min,max : {Banach spaces} → {operator sequence spaces}
and

Min,Max : {operator sequence spaces} → {operator spaces}
such that Min◦min = MIN and Max◦max = MAX. He then defines

COL,ROW : {Banach spaces} → {operator spaces}
as

COL := Min◦max and ROW := Max ◦min.

For any Banach space E , the operator spaces COL(E) and ROW(E) are homogeneous and satisfy

COL(E)∗ = ROW(E∗) and ROW(E)∗ = COL(E∗).

By [25], these definitions coincide with the usual ones in the case of a Hilbert space.

1.2. Representations on QSLp-spaces

By a representation of a locally compact group G on a Bananach we mean a pair (π, E), where E is a Banach space and
π is homomorphism from G into the group of invertible isometries on E which is continuous with respect to the given
topology on G and the strong operator topology on B(E). This is somewhat more restrictive than the usual use of the
term, but is in line with the usage of [32]. We shall follow [32] mostly concerning our terminology for representations, and
whenever we deviate from [32], we shall indicate it.

In this paper, we are interested in representations on QSLp-spaces with p ∈ (1,∞), i.e., on Banach spaces that are
isometrically isomorphic to quotients of subspaces—or, equivalently, subspace of quotients—of the usual L p-spaces. By [21,
Section 4, Theorem 2], these are precisely the p-spaces of [16]. For a locally compact group G and p ∈ (1,∞), we denote by
Repp(G) the collection of all (equivalence classes of) representations of G on a QSLp-space.

For the following definition, recall that, for p ∈ (1,∞), any QSLp-space E is reflexive, so that B(E) is a dual Banach space
in a canonical way, so that we can speak of a weak∗ topology.
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Definition 1.1. Let G be a locally compact group, let p ∈ (1,∞), and let (π, E) ∈ Repp(G). Then:

(a) the algebra PFp,π (G) of p-pseudofunctions associated with (π, E) is the norm closure of π(L1(G)) in B(E);
(b) the algebra PMp,π (G) of p-pseudomeasures associated with (π, E) is the weak∗ closure of π(L1(G)) in B(E).

If (π, E) = (λp, L p(G)), i.e., the left regular representation of G on L p(G), we simply speak of p-pseudofunctions and
p-pseudomeasures, as is standard usage, and write PFp(G) and PMp(G), respectively.

Let G be a locally compact group. Then PF2(G) and PM2(G) are the reduced group C∗-algebra C∗
r (G) and the group von

Neumann algebra VN(G), respectively. As C∗-subalgebras of B(L2(G)), they are operator spaces in a canonical manner. For
any Hilbert space H, the operator spaces B(H) and C B(COL(H)) are completely isometrically isomorphic.

We thus define:

Definition 1.2. Let G be a locally compact group, let p ∈ (1,∞), and let (π, E) ∈ Repp(G). Then the canonical operator space
structure of PFp,π (G) and PMp,π (G), respectively, is the one inherited as a subspace of C B(COL(E)).

2. PFp′ (G) and B p(G) as completely bounded Banach algebras

Let G be a locally compact group. Then A(G) = VN(G)∗ , Br(G) = C∗
r (G)∗—the reduced Fourier–Stieltjes algebra of G , and

the Fourier–Stieltjes algebra B(G) = C∗(G)∗ , where C∗(G) denotes the full group C∗-algebra, all have canonical operator space
structures turning them into completely contractive Banach algebras.

For p ∈ (1,∞), the embedding A p(G) ⊂ PMp′ (G)∗ turns A p(G) into a completely bounded Banach algebra, i.e., turns it into
an operator space such that multiplication is completely bounded, albeit not necessarily completely contractive (see [23] for
details).

For any p ∈ (1,∞), the space PFp′ (G)∗ consists of continuous functions on G and is a Banach algebra under pointwise
multiplication (see [17] and [2]). Moreover, in [32], the second author defined a unital, commutative Banach algebra B p(G)

containing PFp′(G)∗ [32, Theorem 6.6(i)], which, for p = 2, is just B(G). In this section, we will adapt the construction from
[23] to equip both PFp′(G) and B p(G) with canonical operator space structures—generalizing those for Br(G) and B(G) in
the p = 2 case—such that they become completely bounded Banach algebras.

We begin the following proposition:

Proposition 2.1. Let p ∈ (1,∞), and let E and F be QSLp-spaces. Then there is a norm ‖ · ‖p on the algebraic tensor product E ⊗ F
with the following properties:

(i) ‖ · ‖p is a cross norm dominating the injective tensor norm;
(ii) the completion E ⊗̃p F of (E ⊗ F ,‖ · ‖p) is a QSLp-space;

(iii) if G is a locally compact group with (π, E), (ρ, F ) ∈ Repp(G), then (π ⊗ ρ, E ⊗̃p F ) ∈ Repp(G);
(iv) the bilinear maps

COL(E) × COL(F ) → COL(E ⊗̃p F ), (ξ,η) �→ ξ ⊗ η

and

ROW(E) × ROW(F ) → ROW(E ⊗̃p F ), (ξ,η) �→ ξ ⊗ η

are completely bounded with cb-norm at most KG , the complex Grothendieck constant.

Moreover, if E = L p(X) for some measure space X, we can choose ‖ · ‖p as the norm L p(X) ⊗ F inherits as a subspace of L p(X, F ).

Proof. (i), (ii), and (iii) just summarize [32, Theorem 3.1] and the “moreover” part is clear from an inspection of the proof
of that theorem.

(iv) follows from [23, Theorems 5.5 and 5.8] and the construction of ‖ · ‖p in [32]. �
Given a locally compact group G , p ∈ (1,∞), and (π, E) ∈ Repp′(G), let PMp,,π (G)∗ denote the canonical predual of

PMp′,π (G); we shall consider it with the operator space structure inherited from PMp,π (G)∗ . It is immediate that PMp,π (G)∗
consists of continuous functions on G . We have:

Lemma 2.2. Let G be a locally compact group, let p ∈ (1,∞), let (π, E), (ρ, F ) ∈ Repp′(G), and let (π ⊗ ρ, E ⊗̃p F ) be as in
Proposition 2.1. Then pointwise multiplication induces a completely bounded map from PMp′,π (G)∗ ⊗̂PMp′,ρ(G)∗ into PMp′,π⊗ρ(G)∗
with cb-norm at most K 2

G
.

Proof. It follows from [32, Corollary 3.2] that pointwise multiplication of two functions in PMp′,π (G)∗ and PMp′,ρ(G)∗ ,
respectively, does indeed yield a function in PMp′,π⊗ρ(G)∗ .
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A diagram chase just as in the proof of [23, Lemma 6.2]—invoking Proposition 2.1(iv)—then shows that the induced
bilinear map is indeed completely bounded with norm at most K 2

G
. �

We can now prove:

Proposition 2.3. Let G be a locally compact group, let p ∈ (1,∞), let (π, E), (ρ, F ) ∈ Repp′ (G), and let (π ⊗ ρ, E ⊗̃p F ) be as spec-
ified in Proposition 2.1. Then pointwise multiplication induces a completely bounded, bilinear map from PFp′,π (G)∗ × PFp′,ρ(G)∗ into
PFp′,π⊗ρ(G)∗ with cb-norm at most K 2

G
. Moreover, this multiplication is separately continuous with respect to the weak∗ topologies

involved.

Proof. Let

m : PMp′,π (G)∗ × PMp′,ρ(G)∗ → PMp′,π⊗ρ(G)∗
denote pointwise multiplication and recall from Lemma 2.2 that ‖m‖cb � K 2

G
. As a bilinear map between Banach spaces, m

has two Arens extensions

m∗∗
1 : PMp′,π (G)∗ × PMp′,ρ(G)∗ → PMp′,π⊗ρ(G)∗ and

m∗∗
2 : PMp′,π (G)∗ × PMp′,ρ(G)∗ → PMp′,π⊗ρ(G)∗.

(This construction is mostly done only for the product of a Banach algebra—see [3]—, but works as well for general bilinear
maps: see [14].) It is routinely checked that m∗∗

1 and m∗∗
2 are both completely bounded with ‖m∗∗

j ‖cb � K 2
G

for j = 1,2.
For σ ∈ {π,ρ,π ⊗ ρ}, let Q σ : PMp′,σ (G)∗ → PFp′,σ (G)∗ denote the restriction map, and note that it is a complete

quotient map. We claim that

Q π⊗ρ ◦ m∗∗
1 : PMp′,π (G)∗ × PMp′,ρ(G)∗ → PFp′,π⊗ρ(G)∗

drops to a map

m̃ : PFp′,π (G)∗ × PFp′,ρ(G)∗ → PFp′,π⊗ρ(G)∗,
which is easily seen to be pointwise multiplication and clearly satisfies ‖m̃‖ � K ∗

G
. (We could equally well work with m2.)

For σ ∈ {π,ρ,π ⊗ ρ}, let ισ : PMp′,σ (G)∗ → L∞(G) and Q̃ σ : PMp′,σ (G)∗ → L∞(G) = L1(G)∗ denote the canonical inclu-
sion and restriction maps, respectively. Also, let Q : L∞(G)∗∗ → L∞(G) be the canonical restriction map, and note that it is
an algebra homomorphism.

As the diagram

PMp′,π (G)∗

ιπ

× PMp′,ρ(G)∗

ιρ

m PMp′,π⊗ρ(G)∗

ιπ⊗ρ

L∞(G) × L∞(G) L∞(G),

where the bottom row is pointwise multiplication in L∞(G) commutes, so does

PMp′,π (G)∗

Q ◦ι∗∗
π

× PMp′,ρ(G)∗

Q ◦ι∗∗
ρ

m∗∗
1 PMp′,π⊗ρ(G)∗

Q ◦ι∗∗
π⊗ρ

L∞(G) × L∞(G) L∞(G).

(1)

As

Q ◦ ι∗∗
σ = Q̃ σ

(
σ ∈ {π,ρ,π ⊗ ρ}),

this entails the commutativity of

PMp′,π (G)∗

Q̃ π

× PMp′,ρ(G)∗

Q̃ ρ

m∗∗
1 PMp′,π⊗ρ(G)∗

Q̃ π⊗ρ

L∞(G) × L∞(G) L∞(G),

and thus of

PMp′,π (G)∗

Q π

× PMp′,ρ(G)∗

Q ρ

m∗∗
1 PMp′,π⊗ρ(G)∗

Q π⊗ρ

PFp′,π (G)∗ × PFp′,ρ(G)∗ PFp′,π⊗ρ(G)∗

with the bottom row being the desired map m̃.
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Finally, since the weak∗ topology of PFp′,σ (G)∗ for σ ∈ {π,ρ,π ⊗ ρ} coincides with the weak∗ topology of L∞(G) on
norm bounded subsets and since multiplication in L∞(G) is separately weak∗ continuous, the commutativity of (1) and
the Kreı̆n–Šmulian theorem [5, Theorem V.5.7] establish the separate weak∗ continuity of pointwise multiplication from
PFp′,π (G)∗ × PFp′,ρ(G)∗ to PFp′,π⊗ρ(G)∗ . �

Following [33], we call a completely bounded Banach algebra a dual, completely bounded Banach algebra if it is a dual
operator space such that multiplication is separately weak∗ continuous.

We can finally state and prove the first theorem of this section:

Theorem 2.4. Let G be a locally compact group G, and let p ∈ (1,∞). Then PFp′ (G)∗ is a dual, completely bounded Banach algebra
with multiplication having the cb-norm at most K 2

G
.

Proof. By Proposition 2.3, pointwise multiplication

PFp′ (G)∗ × PFp′(G)∗ → PFp′,λp′⊗λp′ (G)∗

is completely bounded with cb-norm at most K 2
G

and separately weak∗ continuous.
From [23, Theorem 4.6] and [32, Proposition 5.1], we conclude that PFp′ (G) and PFp′,λp′⊗λp′ (G) are canonically completely

isometrically isomorphic. This completes the proof. �
We shall now turn to the task of turning B p(G)—the p-analog of the Fourier–Stieltjes algebra introduced in [32]—into a

completely bounded Banach algebra. As in [32], a difficulty arises due to the fact that Repp′ (G) is not a set, but only a class;
we circumvent the problem, by imposing size restrictions on the spaces involved:

Definition 2.5. Let G be a locally compact group, and let p ∈ (1,∞). We call (π, E) ∈ Repp′ (G) small if card(E) �
card(L1(G))ℵ0 .

Remarks.

1. The left regular representation (λp, L p(G)) is small, as are the cyclic representations used in [32].
2. Unlike Repp(G), the class of all small representation in Repp(G) is indeed a set.

Let G be a locally compact group, let p ∈ (1,∞), and let (π, E), (ρ, F ) ∈ Repp(G) be such that (ρ, F ) ⊂ (π, E). Then we
have a canonical complete contraction from PFp,π (G) to PFp,ρ(G). Consequently, if ((ρα, Fα))α is a family of representations
contained in (π, E), we have a canonical complete contraction from PFp,π (G) to 
∞-

⊕
α PFp,ρα (G).

We note:

Proposition 2.6. Let G be a locally compact group, let p ∈ (1,∞), let (π, E) ∈ Repp(G), and let ((ρα, Fα))α be the family of all small
representations contained in (π, E). Then the canonical map from PFp,π (G) to 
∞-

⊕
α PFp,ρα (G) is a complete isometry.

Proof. We need to show the following: for each n,m ∈ N, each n × n matrix [ f j,k] ∈ Mn(L1(G)), and each ε > 0, there is a
closed subspace F of G invariant under π(G) with card(F ) � card(L1(G))ℵ0 such that∥∥[

π( f j,k)
(m)

∣∣
Mm(F )

]∥∥
B(Mm(F ),Mnm(F ))

�
∥∥[

π( f j,k)
(m)

]∥∥
B(Mm(E),Mnm(E))

− ε.

Let n,m ∈ N, [ f j,k] ∈ Mn(L1(G)), and ε > 0. Trivially, there is [ξν,μ] ∈ Mm(E) with ‖[ξν,μ]‖Mm(E) � 1 such that
∥∥[

π( f j,k)ξν,μ

]∥∥
Mnm(E)

�
∥∥[

π( f j,k)
(m)

]∥∥
B(Mm(E),Mnm(E))

− ε.

Let F be the closed linear span of {π( f )ξν,μ: f ∈ L1(G), ν,μ = 1, . . . ,m}; it clearly has the desired properties. �
Definition 2.7. Let G be a locally compact group, and let p ∈ (1,∞). We say that (πu, Eu) ∈ Repp(G) p-universal if it contains
every small representation in Repp(G). We write UPFp(G) instead of PFp,πu (G) and call the elements of UPFp(G) universal
p-pseudofunctions.

Remarks.

1. Since cyclic representations in the sense of [32] are small, a p-universal representation according to Definition 2.7 is
also p-universal in the sense of [32, Definition 4.5]. We do not know if the converse is also true.

2. There are indeed p-universal representations: this can be seen as in the example immediately after [32, Definition 4.5].
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3. If (πu, Eu) ∈ Repp(G) is p-universal and (ρ, F ) ∈ Repp(G) is arbitrary, then Proposition 2.6 shows that we have a canon-
ical complete contraction from UPFp(G) to PFp,ρ(G). In particular, the operator space structure of UPFp(G) does not
depend on a particular p-universal representation.

Let G be a locally compact group, and let p ∈ (1,∞). As every p′-universal representation of G is also p′-universal in
the sense of [32], [32, Theorem 6.6(ii)] remains valid, and we can identity B p(G) with the Banach space dual of UPFp′ (G).
As UPFp′ (G) is an operator space by virtue of Definition 1.2, we define the canonical operator space structure of B p(G) as
the one it has as the dual space of UPFp′ (G).

Theorem 2.8. Let G be a locally compact group, and let p ∈ (1,∞). Then:

(i) B p(G) is a dual, completely bounded Banach algebra;
(ii) the canonical image of PFp′(G)∗ in B p(G) is an ideal of B p(G).

Proof. Let (πu, Eu) ∈ Repp′(G) be p′-universal. By Proposition 2.3, pointwise multiplication

B p(G) × B p(G) → PFp′,πu⊗πu (G)∗ (2)

is completely bounded. Since (πu, Eu) is p′-universal, we have a canonical complete contraction from UPFp′ (G) to
PFp′,πu⊗πu (G). Composing the adjoint of this map with (2), we obtain pointwise multiplication on B p(G), which is thus
completely bounded. That multiplication in B p(G) is separately weak∗ continuous is seen as in the proof of Theorem 2.4.
This proves (i).

(ii) follows from [32, Proposition 5.1]. �
Remarks.

1. Unless p = 2, we it is well possible that the canonical map from PFp′ (G)∗ to B p(G) fails to be an isometry: see the
remark immediately after [32, Corollary 5.3].

2. We even have that PFp′ (G)∗ is a B p(G) module with completely bounded module actions. Since the canonical map from
PFp′ (G)∗ to B p(G) need not be a (complete) isometry, this is somewhat stronger than Theorem 2.8(ii).

3. Herz–Schur and completely bounded multipliers of A p(G)

Let G be a locally compact group, let p,q ∈ (1,∞), and—as in [6] and [23]—let ⊗γ stand for the projective tensor product
of Banach spaces. Even though L p(G) ⊗γ Lq(G) does not consist of functions on G × G , but rather of equivalence classes
of functions, it still makes sense to speak of multipliers of L p(G) ⊗γ Lq(G): by a multiplier of L p(G) ⊗γ Lq(G), we mean
a continuous function f on G × G , so such that the corresponding multiplication operator M f induces a bounded linear
operator on L p(G) ⊗γ Lq(G).

For p ∈ (1,∞), we write V p(G) to denote the pointwise multipliers of L p(G) ⊗γ L p′
(G). For any function f : G → C, we

write K ( f ) for the function

G × G → C, (x, y) �→ f
(
xy−1).

We define the Herz–Schur multipliers of A p(G) as

MHS
(

A p(G)
) := {

f : G → C: K ( f ) ∈ V p(G)
}
.

As V p(G) is a closed subspace of B(L p(G) ⊗γ L p′
(G)), and since the map MHS(A p(G)) � f �→ K ( f ) is injective, we can

equip MHS(A p(G)) with a natural norm turning it into a Banach space.
In [1], M. Bożejko and G. Fendler showed that MHS(A(G)) and Mcb(A(G)) are isometrically isomorphic (see also [20]),

and in [9], Fendler showed that, for general p ∈ (1,∞), the Herz–Schur multipliers of A p(G) are precisely the p-completely
bounded ones.

In this section, we investigate how MHS(A p(G)) and Mcb(A p(G)) relate to each other for general p ∈ (1,∞), but with
A p(G) having the operator space structure introduced in [23]. We start with a lemma:

Lemma 3.1. Let p ∈ (1,∞), let X and Y be measure spaces, and let E be a QSLp-space. Then the map

(
L p(X) ⊗ E

) ⊗ (
L p′

(Y ) ⊗ E∗) → L p(X) ⊗ L p′
(Y ),

( f ⊗ ξ) ⊗ (g ⊗ φ) �→ 〈ξ,φ〉( f ⊗ g)

extends to a complete quotient map

trE : ROW
(
L p(X, E)

) ⊗̂ COL
(
L p′

(Y , E∗)
) → ROW

(
L p(X)

) ⊗̂ COL
(
L p′

(Y )
)
.
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Proof. Since E∗ is a QSLp′ -space, this follows from [23, Theorem 4.6] through taking adjoints. �
Proposition 3.2. Let p ∈ (1,∞), and let G be a locally compact group. Then, for any f ∈ MHS(A p(G)), the multiplication operator

MK ( f ) : L p(G) ⊗γ L p′
(G) → L p(G) ⊗γ L p′

(G) is completely bounded on ROW(L p(G)) ⊗̂ COL(L p′
(G)) such that

‖MK ( f )‖cb = ‖ f ‖MHS(Ap(G)).

Proof. Let f ∈ MHS(A p(G)), and let ε > 0. Then, by [13] (see also [9, Theorem 4.4]), there is a QSLp-space E along with
bounded continuous functions L : G → E and R : G → E∗ such that

K ( f )(x, y) = 〈
L(x), R(y)

〉
(x, y ∈ G)

and

‖L‖∞‖R‖∞ < ‖ f ‖MHS(Ap(G)) + ε, (3)

where

‖L‖∞ := sup
x∈G

∥∥L(x)
∥∥ and ‖R‖∞ := sup

x∈G

∥∥R(x)
∥∥.

Define L̃ : L p(G) → L p(G, E) by letting

(L̃ξ)(x) := ξ(x)L(x)
(
ξ ∈ L p(G), x ∈ G

)
.

Then L̃ is linear and bounded with ‖L̃‖ = ‖L‖∞ . Similarly, one defines a bounded linear map R̃ : L p′
(G) → L p′

(G, E∗) with
‖R̃‖ = ‖R‖∞ by letting

(R̃η)(x) := η(x)R(x)
(
η ∈ L p′

(G), x ∈ G
)
.

Since the row and the column spaces over any Banach space are homogeneous, it is clear that
L̃ : ROW(L p(G)) → ROW(L p(G, E)) and R̃ : COL(L p′

(G)) → COL(L p′
(G, E∗)) are completely bounded with ‖L̃‖cb = ‖L‖∞ and

‖R̃‖cb = ‖R‖∞ . From [6, Corollary 7.1.3], it thus follows that

L̃ ⊗ R̃ : ROW
(
L p(G)

) ⊗̂ COL
(
L p′

(G)
) → ROW

(
L p(G, E)

) ⊗̂ COL
(
L p′

(G, E∗)
)

is completely bounded as well with ‖L̃ ⊗ R̃‖cb � ‖L‖∞‖R‖∞ . Since

trE : ROW
(
L p(G, E)

) ⊗̂ COL
(
L p′

(G, E∗)
) → ROW

(
L p(G)

) ⊗̂ COL
(
L p′

(G)
)

as in Lemma 3.1 is a complete contraction, we conclude that trE ◦(L̃ ⊗ R̃) is completely bounded with cb-norm at most
‖L‖∞‖R‖∞ .

From the definitions of trE , L̃, and R̃ , it straightforward to verify that trE ◦(L̃ ⊗ R̃) = MK ( f ) . In view of (3), we thus obtain
that

‖MK ( f )‖cb � ‖L‖∞‖R‖∞ < ‖ f ‖MHS(Ap(G)) + ε.

Since ε > 0 is arbitrary, this yields ‖MK ( f )‖cb � ‖ f ‖MHS(Ap(G)) . By definition,

‖ f ‖MHS(Ap(G)) = ‖MK ( f )‖ � ‖MK ( f )‖cb

holds, so that have equality as claimed. �
Passing to quotients we thus obtain:

Theorem 3.3. Let p ∈ (1,∞), and let G be a locally compact group. Then MHS(A p(G)) is contained in Mcb(A p(G)) such that the
inclusion is a contraction.

Remarks.

1. By Proposition 3.2, the linear map MHS(A p(G)) � f �→ MK ( f ) is an isometric embedding into the operator space
C B(ROW(L p(G)) ⊗̂ COL(L p′

(G))) and can be used to equip MHS(A p(G)) with a canonical operator space structure.
We do not know whether Theorem 3.3 can be improved to yield a completely contractive—or at least completely
bounded—inclusion map.

2. For amenable G , the algebras PFp′(G)∗ , B p(G), Mcb(A p(G)), and MHS(A p(G)) are easily seen to be isometrically iso-
morphic (see [2,17,32]). We do not know whether theses isometric isomorphisms are, in fact, completely isometric; for
some of them, this seems to be open even in the case where p = 2.
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For p ∈ (1,∞) and a locally compact group G , any f ∈ A p(G) is a cb-multiplier of A p(G), simply because A p(G) is a
completely bounded Banach algebra. However, as A p(G) is not known to be completely contractive, this does not allow us
to conclude that ‖ f ‖Mcb(Ap(G)) � ‖ f ‖Ap(G) , but only that ‖ f ‖Mcb(Ap(G)) � K 2

G
‖ f ‖Ap(G) .

Theorem 3.3, nevertheless, allows us to obtain a better norm estimate:

Corollary 3.4. Let p ∈ (1,∞), and let G be a locally compact group. Then we have

‖ f ‖Mcb(Ap(G)) � ‖ f ‖Ap(G)

(
f ∈ A p(G)

)
.

Proof. Let f ∈ A p(G). By [28, Proposition 10.2], we have ‖ f ‖MHS(Ap(G)) � ‖ f ‖Ap(G) and thus

‖ f ‖Mcb(Ap(G)) � ‖ f ‖MHS(Ap(G)) � ‖ f ‖Ap(G)

by Theorem 3.3. �
4. B p(G), PFp′ (G)∗, and the amenability of G

A classical amenability criterion due to R. Godement asserts that a locally compact group G is amenable if and only if its
trivial representation is weakly contained in (λ2, L2(G)) (see [28, Theorem 8.9], for instance). In terms of Fourier–Stieltjes
algebras this means that G is amenable if and only if Br(G) = B(G) (the equality is automatically a complete isometry).

The following theorem generalizes this to a general L p-context:

Theorem 4.1. The following are equivalent for a locally compact group G:

(i) the canonical map from PFp′ (G)∗ into B p(G) is surjective for each p ∈ (1,∞);
(ii) there is p ∈ (1,∞) such that 1 ∈ PFp′ (G)∗;

(iii) G is amenable.

Proof. (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii). An inspection of the proof of [2, Theorem 5] shows that 1 ∈ PFp′ (G)∗ for just one p ∈ (1,∞) is possible only

if G is amenable.
(iii) ⇒ (i). This follows from [32, Theorem 6.7]. �

Remark. Unless p = 2, we cannot say for amenable G whether or not PMp′ (G)∗ = B p(G) holds completely isometrically. By
[32, Theorem 6.7], we do have an isometric isomorphism, but this is all we can say. Due to the lack of an inverse mapping
theorem for completely bounded maps, we even do not know for general p ∈ (1,∞) whether the completely bounded
bijective map from PFp′(G)∗ onto B p(G) has a completely bounded inverse.

In [30], Z.-J. Ruan adapted the notion of an amenable Banach algebra due to B.E. Johnson ([19]) to an operator space
context.

Given a completely bounded Banach algebra A and a completely bounded Banach A-bimodule E , i.e., a Banach A-
bimodule which is also an operator space such that the module actions are completely bounded, the dual operator space
E∗ because a completely bounded Banach A-bimodule in its own right via

〈ξ,a · φ〉 := 〈ξ · a, φ〉 and 〈ξ,φ · a〉 := 〈a · ξ,φ〉 (ξ ∈ E, φ ∈ E∗, a ∈ A),

and A is said to be operator amenable if and only if, for each completely bounded Banach A-bimodule E , every completely
bounded derivation D :A → E∗ is inner. Ruan showed that a locally compact group G is amenable if and only if A(G) is
operator amenable, and in [23], Lambert and the authors extended this result to A p(G) for arbitrary p ∈ (1,∞).

Suppose that A is a dual, completely bounded Banach algebra. If E is a completely bounded Banach A-bimodule, we call
E∗ normal if the bilinear maps

A × E∗ → E∗, (a, φ) �→
{

a · φ,

φ · a

are separately weak∗ continuous. Following [33], we say that A is operator Connes-amenable if, for every completely bounded
Banach A-bimodule E such that E∗ is normal, every weak∗-weak∗-continuous, completely bounded derivation D :A → E∗
is inner.

Extending [33, Theorem 4.4] in analogy with [23, Theorem 7.3], we obtain:
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Theorem 4.2. The following are equivalent for a locally compact group G:

(i) G is amenable;
(ii) P p′(G)∗ is operator Connes-amenable for every p ∈ (1,∞);

(iii) Br(G) is operator Connes-amenable;
(iv) there is p ∈ (1,∞) such that PFp′ (G)∗ is operator Connes-amenable.

Proof. (i) ⇒ (ii). Let p ∈ (1,∞) be arbitrary. Then [23, Theorem 7.3] yields the operator amenability of A p(G). Since the
inclusion of A p(G) into PFp′ (G)∗ is a completely contractive algebra homomorphism with weak∗ dense range, the operator
space analog of [31, Proposition 4.2(i)] yields the operator Connes-amenability of PFp′ (G)∗ .

(ii) ⇒ (iii) ⇒ (iv) are trivial.
(iv) ⇒ (i). Let p ∈ (1,∞) be such that PFp′(G)∗ is operator Connes-amenable. The operator space analog of [31, Proposi-

tion 4.1] then yields that PFp′ (G)∗ has an identity, so that Theorem 4.1(ii) is satisfied. By Theorem 4.1, this means that G is
amenable. �
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