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Abstract

In this article, the problem of classifying a new observation vector into one of the two known groups
�i , i = 1, 2, distributed as multivariate normal with common covariance matrix is considered. The total
number of observation vectors from the two groups is, however, less than the dimension of the observation
vectors. A sample-squared distance between the two groups, using Moore–Penrose inverse, is introduced.
A classification rule based on the minimum distance is proposed to classify an observation vector into two
or several groups. An expression for the error of misclassification when there are only two groups is derived
for large p and n = O(p�), 0 < � < 1.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this article, we consider the problem of classifying a new observation vector x0 of dimension
p into one of the two known groups �1 and �2. It is assumed that independent observation vectors
xij , j = 1, . . . , Ni, i = 1, 2, are available from the two groups. We shall assume that xij are
independently distributed as multivariate normal with mean vectors µi , i = 1, 2, and common
p × p positive definite covariance matrix �. The mean vectors µi , i = 1, 2, and the covariance
matrix � are assumed unknown and are estimated by the sample mean vectors x̄i and the pooled
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sample covariance matrix S given, respectively, by

x̄i = N−1
i

Ni∑
j=1

xij , i = 1, 2, (1.1)

S = n−1V = n−1
2∑

i=1

Ni∑
j=1

(xij − x̄i )(xij − x̄i )
′, (1.2)

n = N1 + N2 − 2. (1.3)

Beginning with the seminal work of Fisher [4] and Wald [15] in the known parameter case,
this problem has been considered many times in the statistical literature with parameter known
or unknown when n > p, see for example, Kiefer and Schwartz [6] for the admissibility of the
maximum likelihood ratio (MLR) rule, Srivastava [11] for the admissibility of the MLR rule
in linear models, and DasGupta [2] for the monotonicity of the errors of misclassification for
many rules including the MLR rule. The MLR procedure when n > p classifies x0 into the group
�1, if

(1 + N−1
1 )−1(x0 − x̄1)

′S−1(x0 − x̄1)

< (1 + N−1
2 )−1(x0 − x̄2)

′S−1(x0 − x̄2). (1.4)

Otherwise, it is classified into the group �2. The probability of misclassifying x0 into group �2
when it actually belongs to �1 is called an error of misclassification and denoted by e1. Similarly,
the error in misclassifying x0 into group �1 when it actually belongs to �2 will be denoted by
e2. It is difficult to obtain an explicit expression for e1 or e2. But when the classification is carried
out without the factor (1 + N−1

1 )−1 on the left side of (1.4) and (1 + N−1
2 )−1 on the right side of

(1.4), Okamoto [9] gave an asymptotic expression for e1 and e2. These expressions are obtained
when n → ∞ and p is fixed p < n. Asymptotic expressions for ei when n and p both go to
infinity such that p

n
→ c, 0�c < 1 has also been considered in the literature, see for example,

Saranadasa [10] and Fujikoshi [5] among others.
For n > p, the classification rule (1.4) may also be considered as minimum distance rule. Prop-

erties such as invariance under a linear transformation by a p × p nonsingular matrix A holds.
However, when n < p, there does not exist an invariant statistic as the nonsingular linear trans-
formation group acts transitively on the sample space since the covariance matrix � is assumed
positive definite, see Lehmann [7, p. 318, Problem 24 (ii)]. Thus, any classification rule that may
be proposed for the case n < p will not be invariant under nonsingular linear transformations. A
rule that is invariant under a linear transformation by an orthogonal matrix has been proposed by
Saranadasa [10]. According to this rule x0 is classified into the group �1, if

(1 + N−1
1 )−1(x0 − x̄1)

′(x0 − x̄1) < (1 + N−1
2 )−1(x0 − x̄2)

′(x0 − x̄2). (1.5)

Otherwise, it is classified into the group �2. Saranadasa derived an asymptotic expression for the
errors of misclassification as p → ∞, for the classification rule (1.5). However, the procedure in
(1.5) ignores the information available from S.

The focus of this paper is to propose a classification procedure that utilizes the information
available in S. In order to use the information available in the singular sample covariance matrix
S, we define a sample distance between the observation vector x0 and the group �i . We use the
Moore–Penrose inverse of S, where the Moore–Penrose inverse of a matrix A is defined by A+
satisfying the following four properties: (i)AA+A = A, (ii)A+AA+ = A+, (iii) (A+A)′ = A+A,
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(iv) (AA+)′ = AA+. The Moore–Penrose inverse is unique. The sample covariance matrix S can
be written as

S = H ′LH, (1.6)

where H : n × p, HH ′ = In, the n × n identity matrix and L is an n × n diagonal matrix
with the diagonal elements as the n nonzero eigenvalues l1, . . . , ln of the p × p matrix S. The
Moore–Penrose inverse of S is defined by

S+ = H ′L−1H. (1.7)

We define the sample distance between x0 and the group �i by

D+
i

2 = (1 + N−1
i )−1(x0 − x̄i )

′S+(x0 − x̄i ), i = 1, 2. (1.8)

We propose the classification rule as classifying x0 into the group �1, if

D+
1

2 < D+
2

2. (1.9)

Otherwise, we classify x0 into the group �2.
It may be noted that the sample covariance matrix S has many small and near zero eigenvalues,

when p is large, even when n�p. That is, even if the inverse of the sample covariance matrix S
exists, at least theoretically, the classification rules such as MLR rule do not perform well due to
some near zero eigenvalues, as shown in many examples by Dudoit et al. [3]. Thus, it is proposed
to drop zero or near zero eigenvalues in both the cases when n < p and when n�p. Thus, in
practice, we may not use all the n column vectors of H ′, but only r �n of them corresponding to
the retained eigenvalues of S after deleting zero and near zero eigenvalues, and define

D+
i

2 = (1 + N−1
i )−1(x0 − x̄i )

′H ′
1L

−1
1 H1(x0 − x̄i ), i = 1, 2, (1.10)

where H ′=(H ′
1, H

′
2), H ′

1:p×r, r �n, H1H
′
1=Ir , and L1 is an r×r diagonal matrix consisting

of only the retained largest eigenvalues of S. An illustrative example is given in Section 2.2.
We generalize the above results for classifying a new observation vector x0 into several groups,

when they have common covariance matrix as well as when they are different. This is done in
Section 2. In Section 3, an asymptotic expansion of the errors of misclassification is given as p
goes to infinity and n = O(p�), 0 < � < 1, for the case of classifying a new observation vector
x0 into one of the two groups.

2. Classifying an individual into several populations

In this section, we consider the problem of classifying an individual with observations on p
characteristics into one of several populations. We first consider in Section 2.1, the case when all
the populations have a common covariance matrix which is estimated by pooling the observations
from all the populations. Then in Section 2.3, we consider the case when the population covariances
are unequal.

2.1. Classification when the population covariances are equal

Let x̄i be the sample mean vector of the ith population �i from which Ni independent obser-
vations have been obtained, i = 1, . . . , k. Let S be the pooled estimate of the covariance matrix �
based on f = ∑k

i=1(Ni −1) degrees of freedom where f < p. We have an observation vector x0
on an individual from a population �0 and wish to classify the observation (i.e., the individual)
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into one of the k populations �i , i = 1, . . . , k. The sample (squared) distance between �0 and
�i is given by

D̃+
i

2 = (x0 − x̄i )
′S+(x0 − x̄i ), i = 1, . . . , k, (2.1)

where S+ is the Moore–Penrose inverse of S. Here the multiplying factor (1 + N−1
i )−1 has been

dropped so that it can be connected with the canonical variables method defined later. Thus,
according to the minimum distance rule, the observation vector x0 from �0 is classified into �i

if and only if

D̃+
i

2 = min
1� j �k

D̃+
j

2. (2.2)

The above classification rule is equivalent to the classification rule based on the canonical
variables a′

l (x̄i − x̄), l = 1, . . . , m, m = min(k − 1, f ), where A = (a1, . . . , am) is chosen to
be the matrix of m eigenvectors corresponding to the m nonzero eigenvalues of S+B subject to
the condition that A′SA = Im, B is the matrix of between mean sum of squares given by

B =
k∑

i=1

Ni(x̄i − x̄)(x̄i − x̄)′, (2.3)

and

x̄ =
k∑

i=1

Ni x̄i/

k∑
i=1

Ni. (2.4)

The advantage of such a method is that the canonical variables can be plotted two at a time for
each group or population including the population to be classified. The relative position of the
population to be classified in comparison to other populations will indicate to which population it is
closest. Furthermore, often only a few canonical variables are important as the canonical variables
corresponding to smaller eigenvalues do not have much discriminating power and so only one or
two canonical variables may suffice for classification or discrimination of an individual into one
of k populations. To show the equivalence of the two procedures, we start with the sample-squared
distance function D̃+

i
2. Write

S = H ′LH, S+ = H ′L−1H, HH ′ = If , (2.5)

L = diag(l1, . . . , lf ), l1 > · · · > lf . (2.6)

Consider the symmetric matrix

L
− 1

2 HBH ′L− 1
2 . (2.7)

There exists an f × f orthogonal matrix � such that

�L
− 1

2 HBH ′L− 1
2 �′ =

(
Dm 0
0 0

)
, (2.8)

where �′� = If , and Dm is the diagonal matrix of the ordered eigenvalues of the matrix

L− 1
2 HBH ′L− 1

2 . Let �′ = (�′
1, �

′
2), where �1 : m × f . Then �1�′

1 = Im. Let

P = �L− 1
2 H =

(
�1L

− 1
2 H

�2L
− 1

2 H

)

=
(

F

C

)
. (2.9)



Muni S. Srivastava / Journal of Multivariate Analysis 97 (2006) 2057–2070 2061

Then

P ′P = H ′L− 1
2 �′�L

− 1
2 H = H ′L−1H

= S+ = F ′F + C′C, (2.10)

and

PBP ′ =
(

Dm 0
0 0

)
. (2.11)

Hence,

FBF ′ = Dm, CBC′ = 0. (2.12)

Also,

FSF ′ = �1L
− 1

2 HSH ′L− 1
2 �′

1

= �1�
′
1 = Im. (2.13)

Thus, F ′ corresponds to A mentioned earlier. Furthermore we have,

0 = CBC′

=
k∑

i=1

NiC(x̄i − x̄)(x̄i − x̄)′C′. (2.14)

Since each term in the summation is positive semidefinite, it follows that each term must be zero.
Thus,

Cx̄i = Cx̄, i = 1, . . . , k.

Hence, from (2.10) and (2.14), we get D̃+
i

2 given by

(x0 − x̄i )
′S+(x0 − x̄i ) = (x0 − x̄i )

′[F ′F + C′C](x0 − x̄i )

= (x0 − x̄i )
′F ′F(x0 − x̄i ) + (x0 − x̄i )

′C′C(x0 − x̄i )

= (x0 − x̄i )
′F ′F(x0 − x̄i ) + (x0 − x̄)C′C(x0 − x̄)

=
m∑

j=1

[a′
j (x0 − x̄i )]2 + (x0 − x̄)C′C(x0 − x̄). (2.15)

The second term in the last expression does not depend on the values of the ith population and
hence has no discriminating power. Thus, the classification rule based on canonical variables is
equivalent to the one based on the minimum distance rule. Although no expression for the errors
of misclassification is available, estimates can be obtained by using methods given in Srivastava
[12, pp. 250–251].

Remark 2.1. It may be noted that the D̃+
i

2 in (2.1) can also be defined by weighting it with
(1 + N−1

i )−1, namely,

D+
i

2(wi) = (1 + N−1
i )−1(x0 − x̄i )

′S+(x0 − x̄i ), (2.16)

and the classification procedure (2.2) can be modified with this D+
i

2(wi).
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2.2. An example

Wilbur et al. [16] analyzed the data in Nakatsu et al. [8] on soil DNA finger prints. Although,
initially it had data on 10,000 finger prints on four groups consisting of 23, 22, 22, and 22
observations, they selected only 84 finger prints. Assuming that all the four groups have the
same common covariance matrix �, the degrees of freedom available to estimate the unknown
covariance matrix � is 89 − 4 = 85, which is larger than 84, the number of finger prints. Thus,
theoretically a positive definite estimate of � exists with probability one. However, the Fisher’s
linear discriminant rule or the minimum distance rule did not perform well since 24 eigenvalues
of the sample covariance matrix are very close to zero. Thus, it would be desirable to drop some
of the eigenvalues and eigenvectors from considerations. We define a quantity ci called the ratio
of the cummulative sum of the sample ordered eigenvalues (from highest to lowest) up to the ith
eigenvalue divided by the sum of all the eigenvalues of the sample covariances matrix. For the
example on finger prints data,

c35 =
⎛⎝ 35∑

j=1

li

/ 84∑
j=1

li

⎞⎠ = 90.23%, c60 =
⎛⎝ 60∑

j=1

li

/ 84∑
j=1

li

⎞⎠ = 99.99%,

c80 =
⎛⎝ 80∑

j=1

li

/ 84∑
j=1

li

⎞⎠ = 100%.

While Wilbur et al. [16] proposed two methods to reduce further from 84 finger prints to a
smaller number to be used for analysis, we applied the method given above by considering
35, 60 and 80 eigenvalues, respectively, and compared the correct classification rates with their
classification rules. The correct classification rates are obtained by leave-one-out cross validation
method described, say, for example in Srivastava [12, pp. 322]. The results are shown in the
following table (Table 1). It shows that a selection of 60 eigenvalues gives a total error rate of 5%
as opposed to the best error rate of 12% obtained by Wilbur et al. [16]. It has also been found that by
plotting two components at a time, namely a′

1(xij −x), a′
2(xij −x), j = 1, . . . , Ni, i = 1, . . . , k,

see (2.15) the selection of 35 components do not provide a good separation between the four group
while 60 components provide a good separation of the groups. These graphs can be obtained from
the author.

2.3. Classification when the population covariances are unequal

When the covariances are unequal, we calculate the sample covariances Si , niSi = Vi =∑Ni

j=1(xij − x̄i )(xij − x̄i )
′, ni = (Ni − 1), i = 1, . . . , k and write

Si = H ′
i LiHi, and S+

i = H ′
i L

−1
i Hi, (2.17)

where HiH
′
i = Ini

, and Li = diag(li1, . . . , lini
). We define the sample-squared distance between

�0 and �i by

D+
ii

2 = (1 + N−1
i )−1(x0 − x̄i )

′S+
i (x0 − x̄i ), (2.18)

and use the minimum distance rule. That is, we classify x0 into �i if and only if

D+
ii

2 = min
1� j �k

D+2
jj . (2.19)
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Table 1
Number of correctly classified samples in the cross-validations explained by PC and Wilbur et al. method

Proposed method

Principal components ci (%) Treatment Total

1 2 3 4

35 90.23 22 21 20 19 82
60 99.99 23 21 21 20 85
80 100 14 21 13 7 46
Wilbur et al. (2002) method
Bernoulli Multivariate 23 23 14 9 68
Logistic Multivariate 20 22 14 9 65
Bernoulli Univariate 22 18 22 17 79
Logistic Univariate 22 18 18 14 72

3. Evaluation of misclassification errors: two groups case

To carry out the procedures described in Sections 1 and 2, the assumption of normality is
not needed. However, to derive an expression for the errors of misclassification, the normality
assumption is needed and we shall assume so. Under this assumption, we evaluate the probability of
misclassifying an individual from group �1 (into �2), denoted by e1 and called a misclassification
error. That is, we evaluate

e1 = P {a(x0 − x̄1)
′S+(x0 − x̄1) > (x0 − x̄2)

′S+(x0 − x̄2) | x0 ∈ �1}, (3.1)

where

a = (1 + N−1
1 )−1(1 + N−1

2 ). (3.2)

Similarly, the error e2 of misclassifying an individual from �2 (into �1) is given by

e2 = P {a(x0 − x̄1)
′S+(x0 − x̄1) < (x0 − x̄2)

′S+(x0 − x̄2) | x0 ∈ �2}. (3.3)

And x0, x̄1, x̄2, and S are independently distributed as x̄i ∼ Np(µi , N
−1
i �), i = 1, 2, V =

nS ∼ Wp(�, n), and x0 ∼ Np(µ0, �), µ0 = µ1 or µ2, depending on which population it comes
from. Since the classification rule defined in (1.9) is invariant under the orthogonal transforma-
tions: xi → Gxi , S → GSG′, where GG′ = Ip, we may assume without any loss of generality
that the p × p positive definite matrix � is a diagonal matrix, given by

� = � = diag(�1, . . . , �p). (3.4)

Although, the errors of misclassification can be evaluated for a general classification rule, as
in Srivastava and Khatri [14, pp. 246], in which a can take any positive real number, we shall
confine to the case when a = (1 + N−1

1 )−1(1 + N−1
2 ) as given in (3.2). We only evaluate e1, as

the calculation of e2 is similar. The evaluation is, however, done for the case when the difference
in the two mean vectors is of the order n− 1

2 , that is,

µ1 − µ2 = n− 1
2 �, (3.5)

where � is a nonnull vector of constants. Let

k2
1 = 2[(1 + N−1

2 ) − a
1
2 ],

k2
2 = 2[(1 + N−1

2 ) + a
1
2 ], (3.6)
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and

u1 = k−1
1 [a 1

2 (x0 − x̄1) − (x0 − x̄2)],
u2 = k−1

2 [a 1
2 (x0 − x̄1) + (x0 − x̄2)]. (3.7)

Then, when x0 ∈ �1

E(u1) = −k−1
1 (µ1 − µ2) = −k−1

1
�√
n
,

E(u2) = k−1
2 (µ1 − µ2) = k−1

2
�√
n
,

Cov(u1) = �, Cov(u2) = �, Cov(u1, u2) = 0. (3.8)

Hence, when x0 ∈ �1(
u1
u2

)
∼ N2p

[(−k−1
1

�√
n

k−1
2

�√
n

)
,

(
� 0
0 �

)]
(3.9)

and

e1 = P {u′
1S

+u2 > 0}, (3.10)

where (u′
1, u′

2)
′ is distributed as normal, stated above, and is independently distributed of S. Thus,

letting

A = (H�H ′)−
1
2 , (3.11)

we get

e1 = P {u′
1H

′L−1Hu′
2 > 0}

= P {u′
1H

′A(ALA)−1AHu2 > 0}. (3.12)

Note that given H,

AHui ∼ Nn((−1)in− 1
2 k−1

i AH�i , In), i = 1, 2, (3.13)

are independently distributed. Let � be an orthogonal matrix whose first row is �′H ′A
(�′H ′A2H�)

1
2

.

Then

e1 = P {u′
1H

′A�′�(ALA)−1�′�AHu2 > 0}
= P {w′

1�(AL̃A)−1�′w2 > 0}, (3.14)

where wi = �AHui , L̃ = diag(l̃1, . . . , l̃n), and l̃i are the eigenvalues of V = nS, l̃i = nli .
Given H, w1 and w2 are independently distributed as multivariate normal with covariances as the
n × n identity matrix In and the mean vectors given by

E(w1 | H) = −
(

k−1
1 �n

0

)
,

E(w2 | H) =
(

k−1
2 �n

0

)
, (3.15)
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where

�n = (n−1�′H ′A2H�)
1
2 . (3.16)

So far the results are exact. We now evaluate e1 asymptotically as p, n → ∞ and the difference

in the mean vectors is assumed to be of the order n− 1
2 , as given in (3.5). We also assume that

(i) 0 < ai0 = lim
p→∞ ai < ∞,

(ii) �2
0 = lim

p→∞
�′��

pa2
< ∞, (3.17)

where ai = tr�i

p
, i = 1, . . . , 4, and � is a nonnull vector of constants. Assumption (i) is needed

to prove Lemma A.1 given in the Appendix.
From Lemma A.1, we get in probability

lim
n→∞ lim

p→∞

(
�′H ′A2H�

n
− �′��

pa2

)
= 0, (3.18)

and

lim
p→∞

( ˜ALA

p
− bIn

)
= 0, (3.19)

where b = a2
1

a2
.

Thus,

lim
n→∞ lim

p→∞ e1 = lim
n→∞ lim

p→∞ P {4w′
1w2 > 0}

= lim
n→∞ lim

p→∞ P {(w1 + w2)
′(w1 + w2) − (w1 − w2)

′(w1 − w2) > 0}
= lim

n→∞ P {�2
n,�1

− �2
n,�2

> 0}
= lim

n→∞ P {�2
n,�2

− �2
n,�1

< 0},
where

�1 = (k−1
2 − k−1

1 )2�2
0,

�2 = (k−1
2 + k−1

1 )2�2
0,

�2
0 = lim

p→∞

(
�′��

pa2

)
≡ lim

p→∞ �2,

and �2
r,� denotes the noncentral chi-square with r degrees of freedom and noncentrality parameter

�; here �2
n,�1

and �2
n,�2

are independently distributed. Thus,

lim
n→∞ lim

p→∞ e1 = lim
n→∞ P

⎧⎨⎩
n∑

j=1

(z2
2j − z2

1j ) < 0

⎫⎬⎭
= lim

n→∞ P

⎧⎨⎩
n∑

j=1

wj < 0

⎫⎬⎭ ,



2066 Muni S. Srivastava / Journal of Multivariate Analysis 97 (2006) 2057–2070

where zij are independently distributed as N(
√

�i/n, 1), j = 1, . . . , n, i = 1, 2, and wj are
independently and identically distributed with

E(wj ) = �2 − �1

n

= 4

n
k−1

2 k−1
1 �2

0,

Var(wj ) = 4 + 4
�1 + �2

n
,

�3(wj ) = E[wj − E(wj )]3

= 24
�2 − �1

n

= 96

n
k−1

2 k−1
1 �2

0.

Hence

lim
n→∞ lim

p→∞ e1

= lim
n→∞ P

⎧⎨⎩
∑n

j=1 wj − 4k−1
2 k−1

1 �2
0

2(n + �1 + �2)
1
2

< − 4k−1
2 k−1

1 �2
0

2(n + �1 + �2)
1
2

⎫⎬⎭ .

Let

l = 4k−1
2 k−1

1 �2

2[n + 2(k−2
1 + k−2

2 )�2] 1
2

. (3.20)

Then from Edgeworth’s expansion, see Cramer [1, pp. 229], we get the following theorem.

Theorem 3.1. The error of misclassification e1 is asymptotically given by

e1 = �(−l) − l2 − 1

6
�(l)

12k−1
2 k−1

1 �2

[n + 2(k−2
1 + k−2

2 )�2] 3
2

+ o(n
− 1

2 ). (3.21)
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Appendix

Lemma A.1. Let V = YY ′ ∼ Wp(�, n), Y = (y1, . . . , yn), yi

iid∼ Np(0, �), � > 0, and
V = H ′L̃H , where HH ′ = In, L̃ = diag(l̃1, . . . , l̃n), a diagonal matrix consisting of the
eigenvalues of V in the diagonal, and � = diag(�1, . . . , �p) consisting of the eigenvalues of the
covariance matrix � > 0. Then, in probability

(a) lim
p→∞

L̃

p
= a10In,



Muni S. Srivastava / Journal of Multivariate Analysis 97 (2006) 2057–2070 2067

(b) lim
p→∞

Y ′Y
p

= a10In,

(c) lim
p→∞ H�H ′ = a20

a10
In,

(d) lim
n→∞ lim

p→∞
a′H ′Ha

n
= lim

p→∞
a′�a
pa1

,

where a �= 0, is a vector of constants.

Proof. The n eigenvalues l̃1, . . . , l̃n of the diagonal matrix L̃ are the n nonzero eigenvalues of
V = YY ′, where the n columns of the p×n matrix Y are iid Np(0, �). The n nonzero eigenvalues
of YY ′ are also the n eigenvalues of Y ′Y . Let U denote a p × n matrix where its n columns are
iid Np(0, Ip). Then, the eigenvalues of Y ′Y are in distribution the eigenvalues of

U ′�U =
⎛⎝u′

1
...

u′
n

⎞⎠�(u1, . . . , un)

=

⎛⎜⎜⎝
u′

1�u1, u′
1�u2, . . . , u′

1�un

u′
2�u1, u′

2�u2, . . . , u′
2�un

...,
...,

. . .,
...

u′
n�u1, u′

n�u2, . . . , u′
n�un

⎞⎟⎟⎠ .

Let U = (u1, . . . , un) = (uij ). Then uij are iid N(0, 1) and u1, . . . , un are iid Np(0, Ip). Hence,

E(u′
1�u1) = tr �, E(u′

1�u2) = 0,

and

E(Y ′Y ) = E(U ′�U) = pa1In,

where

a1 = (tr �/p), and lim
p→∞ a1 = a10.

We also note that

E(u2
ij ) = 1, Var(u2

ij ) = 2.

Hence, from Chebyshev’s inequality

P

{∣∣∣∣u′
1�u1

p
− a1

∣∣∣∣ > 	

}
= P

{∣∣∣∣∣
∑p

i=1�i (u2
1i − 1)

p

∣∣∣∣∣ > 	

}

�
E[∑p

i=1�i (u2
1i − 1)]2

p2	2

= E[∑p
i=1�

2
i (u

2
1i − 1)2]

p2	2

= 2
∑p

i=1�
2
i

p2	2 .
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Since 0 < limp→0 (tr �2/p) < ∞, it follows that

lim
p→∞

∑p
i=1�

2
i

p2 = 0.

Hence,

lim
p→∞

u′
i�ui

p
→ a10, i = 1, . . . , n

in probability. Similarly, it can be shown that in probability

lim
p→∞

u′
i�uj

p
= 0, i �= j,

and

lim
p→∞

Y ′Y
p

= a10In in probability.

This proves (a). Also, if l̃1, . . . , l̃n denote the nonzero eigenvalues of YY ′ then, from the above
result, it follows that

lim
p→∞

(
1

p

)
L̃ = a10In in probability.

This proves (b). We note that

YY ′ = H ′L̃
1
2 GG′L̃

1
2 H,

for an n × n orthogonal matrix G, GG′ = In depending on Y . Choosing G = L
1
2 HY(Y ′Y Y−1),

we find that in distribution,

Y = H ′L̃
1
2 G ∼ Np,n(0, �, In).

Thus, in distribution

GY ′�YG′ = GU ′�2UG′ = L̃
1
2 H�H ′L̃

1
2 ,

where U = (u1, . . . , un). We note that

E

(
u′

i�
2uj

p

)
= tr �2

p
�ij ,

where �ij = 1 if i = j and �ij = 0, i �= j, i, j = 1, . . . , n, the Kronecker symbol. Similarly,

Var

(
u′

i�
2uj

p

)
= 2 tr �4

p2 , i = j,

= tr �4

p2 , i �= j.
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Since, lim
p→∞ tr �4/p = a40, and 0 < a40 < ∞, it follows that

lim
p→∞

tr �4

p2 = 0,

Hence, in probability,

lim
p→∞

[
G

(
Y ′�Y

p

)
G′
]

=
(

lim
p→∞

tr �2

p

)
In = a20In.

Thus, in probability

lim
p→∞

(
L̃

1
2 H�H ′L̃ 1

2

p

)
= a20In.

Since, lim
p→∞ (L̃/p) = a10In it follows that in probability

lim
p→∞(H�H ′) = (a20/a10)In.

This proves (c).
To prove (d), consider a nonnull p-vector a = (a1, . . . , ap)′. Then, since YY ′ = H ′L̃H, HH ′ =

In, we get

a′YY ′a
pn

= a′H ′L̃Ha
pn

.

With Y = (y1, . . . , yn) and yi = (yi1, . . . , yip)′, the left side

= 1

pn

n∑
i=1

(a′yi )
2

= 1

pn

⎡⎣ n∑
i=1

p∑
j=1

a2
j y

2
ij

⎤⎦+ 2

pn

n∑
i=1

p∑
j<k

aj akyij yik,

of which the second term goes to zero in probability.
Hence, in probability

lim
n,p→∞

1

pn

n∑
i=1

p∑
j=1

a2
j y

2
ij = lim

n,p→∞
a′H ′L̃Ha

pn
.

From the law of large numbers, the left side goes to limn→∞ limp→∞ ( a′�a
p

), and from the results

in (a), we have in probability limp→∞ p−1L̃ = a10In. Hence, in probability

lim
n,p→∞

(
a′H ′Ha

n

)
= lim

p→∞

(
a′�a
p

)/
a10In.

This proves (d). �

This lemma along with other similar results appear in [13].
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