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Abstract

In intensity-modulated radiation therapy (IMRT) for cancer treatment, the most commonly used metric for
treatment prescriptions and evaluations is the so-called dose-volume constraint (DVC). These DVCs induce
much needed flexibility but also non-convexity into the fluence optimization problem, which is an important
step in the IMRT treatment planning. Currently, the models of choice for fluence optimization in clinical
practice are weighted least-squares models. When DVCs are directly incorporated into the objective functions
of least-squares models, these objective functions become not only non-convex but also non-differentiable.
This non-differentiability is a problem when software packages designed for minimizing smooth functions
are routinely applied to these non-smooth models in commercial IMRT planning systems. In this paper,
we formulate and study a new least-squares model that allows a monotone and differentiable objective
function. We devise a greedy approach for approximately solving the resulting optimization problem. We
report numerical results on several clinical cases showing that, compared to a widely used existing model,
the new approach is capable of generating clinically relevant plans at a much faster speed. This improvement
can be more than one-order of magnitude for some large-scale problems.
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1. Introduction

This section presents a very brief introduction to a particular problem, the fluence optimization
problem, that often occurs in intensity-modulated radiation therapy (IMRT). For more compre-
hensive information on this topic, the reader is referred to articles collected in two recent books
[16,13]. Survey papers on optimization models and methods in this area include [18,4], and a
historical perspective can be found in [2].

1.1. IMRT fluence optimization

The most common form of IMRT uses mounted linear accelerator with a treatment head that
can rotate around the patient. Usually, fixed treatment beam directions are used for dose delivery.
Beam modulation is achieved through the use of a multileaf collimator (MLC) attached to the head
of the treatment unit. The gantry mounted linear accelerator and the multi-leaf collimator (MLC)
are shown below (see Fig. 1). In order to precisely target the tumors while minimizing exposure
of the neighboring healthy structures, the MLC shapes radiation beam through a sequences of
movements of its metal leaves.

There are three major parts of the optimization process that can arise during IMRT planning.
The first is the beam-angle optimization problem which determines the “optimal” number of
gantry positions and their angles. This part of the process is often formulated as a combinatorial
optimization problem. The second part of the process is called intensity map optimization, and
is aimed at finding the “optimal” intensity distribution for each beam angle. The third part of the
process finds the MLC leaf sequencing needed to efficiently deliver the desired intensity pattern.
In this paper, however, we will exclusively concentrate on the second problem.

Specifically, we need to determine the X-ray intensity pattern at each point (x, y) on the plane
of the MLC aperture for all gantry angles. These beam intensity profiles are represented by two-
dimensional, non-negative functions Ia(x, y) for a = 1, 2, . . . , k, where k is the number of gantry
angles. See Fig. 2 where five beam angles are used, each with its own beam intensity profile. The
purpose of fluence optimization is to find the functions Ia(x, y) such that the tumor (or target)
structures receive the prescribed doses and the healthy structures receive as little dose as possible.
These goals are fundamentally conflicting and have ill-defined evaluation criteria, making fluence
optimization a difficult modeling problem.

Fig. 1. Linear accelerator (left) and multi-leaf collimator (right).
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Fig. 2. A five-beam treatment scheme.

In practice, each fluence map function Ia(x, y) is discretized at a rectangular grid on the plane
of the MLC aperture and approximated by a set of discrete values {Ia(xi, yj )}. The actual number
of these small rectangular elements, or “beamlets,” will vary from case to case. For notational
convenience, let us collect the unknown beamlet intensity values {Ia(xi, yj )}, a = 1, 2, . . . , k,
for all beam angles into a single vector x of n ordered elements, where n is the total number of
beamlets for all beam angles. Hence, the task of fluence optimization is to find a beamlet intensity
vector x that produces a dose distribution as close as possible to a prescribed dose distribution.
In the IMRT literature, this process is called inverse planning.

1.2. Dose calculation and dose-volume constraints

In practice, one also needs to discretize the “region of treatment” – the three-dimensional
volume of the patient’s anatomy containing the target structures and any nearby critical struc-
tures that might be adversely affected by the radiation, as well as any parts of the body that the
individual treatment beams might enter or exit through. This volume is discretized into small
three-dimensional rectangular elements known as “voxels.” During the treatment, each voxel will
absorb a dose of radiation. We denote the dose values absorbed by the voxels by a vector d ∈ Rm,
where m is the total number of voxels in the region of treatment.

The standard IMRT model for calculating dose absorbed at the ith voxel in the region of
treatment is the linear model d = Ax, or

di =
n∑

j=1

aij xj , i = 1, 2, . . . , m, (1)

where aij represents the amount of dose absorbed by the ith voxel per unit intensity emission
from the j th beamlet. The collection of values aij for all the voxels and beamlets forms a matrix
A ∈ Rm×n, known as the (dose) “influence matrix” (or kernel matrix).

The linear dose model d = Ax can be considered as a first-order approximation. Although
difficult to solve, radiation absorption as a function of radiation intensities can be modeled with
Boltzmann transport equations [9]. Different approximation methods have been proposed for com-
puting the matrix A. Monte Carlo sampling techniques are, for example, among the more popular
methods because of their accuracy, but they are also very slow Many faster, but less accurate, dose
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calculation engines exist. Currently, dose calculation is still considered an important research
area. While acknowledging its importance, we will assume in this paper that a constant influence
matrix A is provided to us a priori, and we will use it throughout our optimization process. Without
loss of generality, we also assume A has no zero rows or columns. This means, respectively, that
all voxels receive some non-zero amount of radiation and every beamlet influences at least one
voxel’s dose. These conditions can be easily met by pre-processing. Typically, m� n with m on
the order of 105 or larger and n of 103 up to 104. Note the entries aij are necessarily non-negative.
Depending on how much scattered radiation is included, the influence matrix A can be very sparse
or fairly dense.

It is generally impossible to avoid giving some dose to nearby critical structures during radiation
treatment. This occurs even through multiple beam angles are used in an attempt to focus radiation
on the targets while sparing critical structures. The radiation oncologists utilizes dose-volume
constraints (DVCs) to prescribe and control the dose at these critical structures. A typical DVC
specifies a certain percentage of the volume in a structure that is allowed to be overdosed. For
example, a prescription for a left-sided lung cancer case may contain the dose-volume constraint
for the healthy right lung that reads

“no more than 30% volume of the right lung should receive 20 Gy or higher,”

where “Gy” is the shorthand for “Gray” – the international unit for radiation dose absorption. In
addition, the radiation oncologists may specify additional constraints on the same organ, such as
“no more than 40% volume of the right lung should receive 10 Gy or higher.” These DVCs control
the amount of radiation reaching the right lung during the treatment. Although other metrics have
been proposed, the metrics based on dose-volume constraints have become the de facto standard
for to prescribing the radiation dose in clinical practice.

DVCs are useful in describing a desired dose distribution, but they also introduce a high degree
of complexity to the planning process. In the above example, the exact voxels comprising the 30%
of the right lung volume allowed to absorb more than 20 Gy is not specified. This results in a
combinatorial component to the problem (once it is discretized). Mathematically, finding an exact
global optimum for such a problem can be extremely difficult.

1.3. A perspective on least-squares models

Several classes of models have been proposed and studied for fluence optimization; how-
ever, this paper concentrates on a particular class – weighted least-squares models. In particular,
it introduces dose-volume-based least-squares models and points out the main advantage and
disadvantage of these models.

Least-squares models were the first practical models used in inverse planning [19,3]. Today
they continue to be the models of choice in clinical practice, implemented in most commercial
IMRT planning systems. The main advantage of these models is their “speed"; that is, they can
be approximately solved relatively quickly.

It is perhaps widely-agreed that there are two major sources of difficulties in developing models
for fluence optimization:

1. Multi-objectiveness: The problem is inherently multi-objective due to the presence of conflict-
ing goals for multiple structures. The conflicts are not only between the typical two classes of
structures-targets and critical organs, but also between different structures in the same class.
Despite years of research, multi-objective optimization remains a very difficult problem.
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2. Vagueness of clinical objectives [8]: There is not a single accepted method for ranking different
treatment plans. This is partly because of the above multi-objectiveness, and partly because of
the lack of quantitative metrics to measure biological responses of irradiated tissues.

Due to these fundamental difficulties, the IMRT planning process has been human-dependent
and experience-driven, relying heavily on repeated trial-and-error and close interaction between
treatment planners and oncologists. More often than not, the experiences of the radiation oncol-
ogists plays a decisive role in accepting or rejecting a given treatment plan.

Under these conditions, a fast turn-around time for trial-and-error becomes a great advan-
tage. Weighted least-squares models have a speed advantage over other models such as integer
programming (for example, see [10,17]). Integer programming models are more mathematically
rigorous but more time consuming to solve. However, weighted least-squares models are generally
capable of producing clinically relevant treatment plans (even though they have less control over
constraint satisfaction than models imposing explicit constraints). These attributes are responsible
for the popularity of least-squares models in clinical practice.

For the weighted least-squares model, the difficulties of the multi-objectiveness and the vague-
ness of clinical objectives are addressed by adjusting a set of importance weights in a trial-and-error
process. In this approach, a positive weight is attached to each anatomical structure, representing
the relative priority of fitting the calculated dose to the prescription for that structure. If there are
N structures each consisting of a set of voxels, the objective function in a weighted least-squares
model takes the form

f (x) =
N∑

j=1

wjfj (d(x)), (2)

where d(x) = Ax is the calculated dose vector corresponding to a given influence matrix A and
a beamlet intensity vector x. The parameter wj is the weight for the j th structure, and fj (d) is a
piecewise quadratic function that penalizes the deviation of the calculated dose d(x) relative to
the prescription dose for the j th structure. For any fixed set of weights, f (x) can be approximately
minimized by one of the existing algorithms for continuous optimization subject to non-negativity
of the beamlet intensities.

Each penalty function fj (d(x)) in (2) is a sum of quadratic penalty terms, one for each voxel.
If the prescription at the ith voxel is either

di(x) = bi or di(x) � bi,

where di(x) is the calculated dose value at the ith voxel and bi is the prescription dose, then the
corresponding penalty terms are either

(di(x)− bi)
2 or max(0, di(x)− bi)

2.

In either case, this term is convex and differentiable. Thus, without DVCs the function f (x) in
(2) is convex and differentiable, and the resulting optimization problem is theoretically simple.

However, the addition of DVCs adds significant complication. Consider the DVC that no more
than 10% of the volume should receive a dose 20 Gy or higher. In this case, the standard approach
is to let go the 10% voxels with the highest calculated dose values and penalize the rest of the
voxels, if any, whose dose values exceed 20 Gy.

The improved flexibility that occurs when DVCs are added to the optimization process comes
at a price in that the resulting penalty function f (x) becomes non-convex and non-differentiable.
To illustrate this point, consider the example of a 2-voxel structure with the DVC that no more
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than 50% of the volume (i.e. 1 voxel) should receive a dose of 5 Gy or higher. In this case, the
corresponding penalty function is

f (d1, d2) =
{

max(0, d1 − 5)2, d1 < d2,

max(0, d2 − 5)2, d1 � d2,

where either none or one of the two voxels is penalized, but never both. A plot of this function will
clearly show that it is indeed non-convex and non-differentiable along the line d1 = d2 (starting
from the point (5, 5)).

Given the combinatorial nature of DVCs, the non-convexity is perhaps unavoidable. However,
it is not clear if it is possible to avoid the non-differentiability. It is problematic that optimiza-
tion algorithms designed for differentiable functions are being routinely used in daily clinical
practice to minimize non-differentiable functions. Experiments discussed here indicate that this
non-differentiability may be responsible for many failed trials in the trial-and-error process of
planning.

1.4. Notation and organization

Let n be the total number of relevant beamlets and m the total number of voxels in the treatment
region. We define the n-dimensional non-negative orthant as Rn+ :={x ∈ Rn : x � 0}, and simi-
larly for Rm×n+ . Let A ∈ Rm×n+ be a given influence matrix. Let mt be the number of target voxels.
We collect the mt rows of A corresponding to the target voxels to form a sub-matrix At ∈ Rmt×n

of A. Thus, for any beamlet intensity vector x ∈ Rn+, the vector Atx gives the dose values in the
target voxels. Accordingly, the prescribed target dose values are collected in a vector bt ∈ R

mt+ .
Recall that vector inequalities are always treated component-wise.

Let Dv ⊂ Rm+ be the set of dose vectors that satisfy all the dose-volume constraints for a given
problem. We note that there may be many targets and critical organs with (possibly multi-level)
DVCs, but vectors in Dv satisfy all such requirements.

This paper is organized as follows. Section 2 describes a new least-squares model, which was
first introduced by the authors in [20]. A greedy algorithm is developed and studied for this model
in Section 3. Numerical results on eight clinical cased are presented in Section 4.

2. A least-squares model with differentiability

Since the fundamental difficulties of multi-objectiveness and vagueness of clinical objectives
will persist at least for the foreseeable future, the dominance of weighted least-squares models
in clinical practice will most likely continue as well. The purpose of this paper is to carry out an
in-depth theoretical and numerical study of a new least-squares model that allows a differentiable
objective function and faster numerical optimization.

Fast fluence optimization is also essential for resolving the problem of beam-angle optimiza-
tion, which is still considered unsolved [2]. Beam-angle optimization needs to repeatedly use this
fast fluence optimization as a necessary subroutine.

2.1. Geometric considerations

To support the approach presented here, the geometry of the dose-volume constraint set in the
IMRT fluence optimization problem is discussed. The goal is to provide sufficient dose to the
targets while satisfying the dose-volume constraints (DVCs) as closely as possible.
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Suppose there is a vector u ∈ Dv that satisfies the dose-volume constraints. Then finding
beamlet intensities x ∈ Rn+ whose resulting doses satisfy the dose-volume constraints requires
that Ax � u. (For this reason, this paper loosely refers to the u values as “bounds” throughout.)
Moreover, it is desirable to meet the target prescription Atx = bt . Equivalently, it is desirable to
find a beamlet intensity vector x ∈ Rn+ that satisfies

Atx = bt , Ax + s = u,

for some auxiliary (slack) variable s ∈ Rm+.
It is possible to define the prescription set

H =
{[

bt

u

]
: u ∈ Dv

}
⊂ R

mt+m
+ (3)

to contain doses that meet the fixed prescription bt and satisfies the DVCs. Since bt is fixed in the
definition (3), H consists of Dv embedded in the higher dimensional subspace. Furthermore, it
is possible to define the (augmented) physical set

K =
{[

Atx

Ax + s

]
: x, s � 0

}
⊂ R

mt+m
+ (4)

to contain the doses that can be realized physically (up to dose calculation and delivery errors).
The word “augmented” refers to the addition of the slack variable to the last m components.

It should be clear that K is a closed convex cone and H is non-convex since the set Dv ,
defined by DVCs of a combinatorial nature, is a non-convex set.

2.2. Problem formulation

In order to treat the targets while trying to achieve the dose limits for other structures, it is
desirable to find x ∈ Rn+ and s ∈ Rm+ such that both Atx = bt and Ax + s = u hold. However, in
trying to solve the IMRT fluence problem, it is not uncommon to find that there is no physically-
achievable dose that both satisfies the DVCs and meets the prescription. That is, generally speaking
dist(H,K) > 0, or equivalently H ∩K = ∅. Thus, it is necessary to determine dH ∈H and
dK ∈K such that

dist(H,K) = ‖dH − dK‖ = min
u∈Dv

min
x,s�0

∥∥∥∥[bt

u

]
−
[

Atx

Ax + s

]∥∥∥∥ , (5)

where the distance is in the Euclidean norm. However, it is more convenient to replace the norm
in the right-hand side of (5) with the quadratic function

q(x, s, u) = 1

2
‖Atx − bt‖2 + 1

2
‖Ax + s − u‖2. (6)

Thus, the objective function over the set of all u ∈ Dv can written as

f (u) = min
(x,s)�0

q(x, s, u). (7)

Namely, f (u) is itself the optimal value of a linear least-squares problem with a non-nega-
tivity constraint. Using this notation, it is possible to restate the problem (5) with the equivalent
formulation

min
u∈Dv

f (u). (8)

Solving this problem finds a u∗ ∈ Dv and associated beamlet intensities x∗ ∈ Rn+ such that
the “deliverable” dose distribution Ax∗ is as close as possible to being feasible with respect to
the dose-volume constraints and to meeting the prescribed dose bt in the targets.
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It should be emphasized that for any given prescription (bt , u
0), where bt is a prescribed target

dose and u0 ∈ Dv , the model

min
x�0

q(x, s, u0)

is nothing but a regular least-squares model without dose-volume constraints. Therefore, starting
from u = u0 and monotonically decrease f (u) gives a better solution (in terms of improved target
conformality while having a similar degree of DVC compliance) than the regular least-squares
solution. This clearly illustrates the benefit of using dose-volume-based models.

Since it is desirable to allow weightings in the least-squares formulation, in place of q(x, s, u)

it is possible to write the equation

q
W

(x, s, u) := 1

2
‖Wt(Atx − bt )‖2 + 1

2
‖W(Ax + s − u)‖2, (9)

where Wt and W are diagonal weighting matrices of appropriate sizes that hold the importance
weights for each structure. The weights can, for instance, incorporate scaling factors such as the
number of voxels for each structure.

Without loss of generality, it can be assumed that the weighting matrices have already been
absorbed into the quantities A, At , bt and Dv , i.e., A← WA, At ← WtAt , bt ← Wtbt , …, etc.
For this reason, it is not necessary to explicitly mention weighting in the formulation that follows.

2.3. Optimality of the subproblem

Our objective f is itself the minimum value of another optimization problem, making it some-
what complicated. This section will examines the properties of f on the domainDv for the purpose
of constructing an algorithm for solving the overall problem (8). The following assumption is made
in all our theoretical results that follow.

Assumption 1. The matrix At is full column rank.

Experience shows that this assumption almost always holds. The explanation for this is that
the number of target voxels far exceeds that of beamlets, hence At has far more rows than
columns. The theoretical work presented here depends on uniqueness properties that follow from
this assumption. In particular, the work reported here uses this assumption to prove that the
subproblem solutions are unique and continuously differentiable functions of u.

Evaluating f (u) requires solving a subproblem parameterized by u ∈ Dv which is denoted as
Q(u):

min
(x,s)�0

q(x, s, u). (10)

Subproblem Q(u) is a convex bound-constrained quadratic program that needs to be solved
repeatedly. The following examines the subproblem in more detail.

Proposition 1. Under Assumption 1, the subproblem objective function q(·, ·, u) is a strongly
convex quadratic function for every u ∈ Rm. Hence, f is well-defined and

f (u) = q(x(u), s(u), u), (11)

where (x(u), s(u)) is the unique solution pair of Q(u).
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Assumption 1 implies this strong convexity property since the matrix AT
t At is the Schur

complement of the Hessian of q(x, s, u) with respect to (x, s). Thus, it follows from well-known
facts of convex optimization thatQ(u)has a unique solution pair (x(u), s(u)) for anyu. Proposition
1 guarantees the existence and uniqueness of x(u) and s(u) for every u, i.e. they are well-defined
functions of u themselves.

It is obvious that the Karush–Kuhn–Tucker (KKT) conditions for problem Q(u) are necessary
and sufficient for optimality. Note that for two vectors v and w of the same dimension, the
component-wise minimum min(v, w) = 0 is equivalent to v ◦ w = 0 and v, w � 0. Using this
notation, the KKT conditions for Q(u) can be written as

min(x,∇xq(x, s, u)) = 0, (12a)

min(s,∇sq(x, s, u)) = 0, (12b)

where

∇xq(x, s, u) = AT
t (Atx − bt )+ AT(Ax + s − u), (13a)

∇sq(x, s, u) = Ax + s − u. (13b)

Therefore, (x(u), s(u)) is the solution to Q(u) if and only if x(u) and s(u) satisfy the KKT
conditions (12a) and (12b), respectively. In addition, strict complementarity holds for Q(u) at
(x, s) if

x + ∇xq(x, s, u) > 0, (14a)

s + ∇sq(x, s, u) > 0. (14b)

Lemma 1. For any u,

s(u) = max(0, u− Ax(u)), (15a)

∇sq(x(u), s(u), u) = max(Ax(u)− u, 0), (15b)

where the maximum is taken component-wise.

Proof. Substituting (13b) into (12b) gives min(s(u), Ax(u)+ s(u)− u) = 0.

If [Ax(u)]i < ui , then necessarily [s(u)]i > [Ax(u)+ s(u)− u]i � 0. Complementarity then
implies that in fact [Ax(u)+ s(u)− u]i = 0 and thus [s(u)]i = [u− Ax(u)]i . Otherwise,
[Ax(u)]i � ui implies [Ax(u)+ s(u)− u]i � [s(u)]i , meaning that [s(u)]i = 0. This proves
(15a). To obtain (15b), it is necessary to substitute (15a) into (13b). �

Definition 1. Let the “sensitive” index set S ≡ S(x, u) :={i : (Ax)i > ui} and the matrix E(S) =∑
i∈S eie

T
i , where ei is the ith column of the identity matrix.

That is, E(S) is the diagonal matrix with diagonal elements [E(S)]ii = 1 for all i ∈ S and
zero otherwise. Using Lemma 1 and this definition of E(S) eliminates s and simplifies the KKT
conditions for Q(u).

Proposition 2. The KKT conditions for Q(u) implies

min(x, AT
t (Atx − bt )+ ATE(S)(Ax − u)) = 0. (16)

We observe that while all the target voxels are involved in the above condition, only the
“sensitive” healthy voxels show up. One can infer from this observation that the only healthy



1374 Y. Zhang, M. Merritt / Linear Algebra and its Applications 428 (2008) 1365–1387

voxels ultimately involved in determining x(u) are those with [Ax(u)]i > ui . As shown in the
next section, these voxels are included in the set that has sensitivity to the objective function f .
This is a fact that will have significant algorithmic implications later.

Finally, it is necessary to state an explicit expression for the solution x(u) of Q(u). Note that
s(u) can then be computed from (15a). It is first important to partition the indices for x(u) as
follows:

P = {i : x(u)i > 0}, O = {i : x(u)i = 0}. (17)

For a vector v, let vP denotes the sub-vector of v consisting of the components with indices in P

(similarly for vO ). For a matrix M , MOP is the sub-matrix of M with row indices from O and
column indices from P (similarly for MPP ). The next result follows directly from Proposition 2.

Proposition 3. Let the index set S∗ and the matrix E(S∗) be defined as in Definition 1 for x =
x(u). Then the non-zero elements of x(u) are given by

x(u)P = [AT
t At + ATE(S∗)A]−1

PP (AT
t bt + ATE(S∗)u)P > 0, (18)

and at the same time satisfy

[AT
t At + ATE(S∗)A]OP x(u)P � (AT

t bt + ATE(S∗)u)O. (19)

Note that the matrix [AT
t At + ATE(S∗)A]PP is positive definite under Assumption 1.

2.4. Sensitivity of the objective function

In order to solve the problem stated in Eq. (8), it is important to show how f changes as u is
adjusted. Assumption 1 is applied for all the following results.

Theorem 1. The function f (u) defined in (11) is monotone and non-increasing as u increases;
i.e.,

f (u+ d) � f (u) ∀d ∈ Rm+.

Moreover, the equality holds if and only if

x(u+ d) = x(u), s(u+ d) = s(u)+ d.

Proof. Let d ∈ Rm+. Then

f (u+ d)= 1

2
‖Atx(u+ d)− bt‖2 + 1

2
‖Ax(u+ d)+ s(u+ d)− (u+ d)‖2

� 1

2
‖Atx(u)− bt‖2 + 1

2
‖Ax(u)+ (s(u)+ d)− (u+ d)‖2

= f (u),

since the subproblem Q(u+ d) has the unique minimizer (x(u+ d), s(u+ d)) and the point
(x(u), s(u)+ d) is feasible with respect to Q(u+ d). The second statement also follows imme-
diately. �

Note that it is always possible to decrease f (u) by increasing u as long as x(u) does not stay
the same.
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Definition 2. Let the sensitivity of f to increases in ui be

σ(u)i = lim sup
t→0+

f (u+ tei)− f (u)

t
.

The limit superior is used in the sensitivity definition because the limit may not exist. Observe
that when the limit does exist, σ(u)i is the one-sided partial derivative that gives information
about how f (u) changes locally as ui is increased. Furthermore, whenever f is Gâteaux differ-
entiable, σ(u) = ∇f (u). A mild condition will be provided later in this report that guarantees f

being Fréchet differentiable. However, it is possible to examine a straightforward yet important
consequence of the definition of σ(u).

Theorem 2. The sensitivity vector satisfies

σ(u)i

{
�− [Ax(u)− u]i , [Ax(u)]i > ui,

= 0, otherwise.
(20)

Proof. First consider any index i such that [Ax(u)]i � ui . It can be easily verified that for any
t > 0 the pair (x(u), s(u)+ tei) satisfies the KKT conditions for Q(u+ tei), so that

x(u+ tei) = x(u), s(u+ tei) = s(u)+ tei .

Moreover, for any t > 0, f (u+ tei) ≡ f (u) and σ(u)i = 0.
Now consider any index i such that Ax(u)]i > ui . Since f (u+ tei) is the optimal value of

Q(u+ tei),

f (u+ tei)= q(x(u+ tei), s(u+ tei), u+ tei)

� q(x(u), s(u), u+ tei)

= f (u)− [Ax(u)− u]i t + 1

2
t2.

Therefore,

f (u+ tei)− f (u)

t
� −[Ax(u)− u]i + 1

2
t.

Letting t go to zero gives the inequalities in (20). �

Consequently, f (u) is sensitive to increases in ui if and only if [Ax(u)]i > ui. This charac-
terization of sensitivity is extremely simple and yet completely natural. Also, it agrees with the
conclusion following Proposition 2 concerning the healthy voxels’ influence on x(u). With no
more information about the solutions x(u) and s(u), this is all that can be said about the sensitivity
σ(u). It is necessary to introduce a condition on the subproblem solutions that will be used for
the rest of this report.

Assumption 2. The solution of Q(u) is strictly complementary.

Under this condition, it is possible to we will examine the differentiability of f (u), beginning
with the well-defined functions x(u) and s(u).
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Lemma 2. The functions x(u) and s(u) are continuously differentiable in a neighborhood of
points where Assumption 2 holds.

Proof. Let “◦” denote the component multiplication for vectors and so that is possible to write
the complementarity equations in the KKT conditions (12a) as

K(x, s, u) :=
(

x ◦ ∇xq(x, s, u)

s ◦ ∇sq(x, s, u)

)
= 0,

which is clearly satisfied at (x̂, ŝ, û) = (x(û), s(û), û). The invertibility of the Jacobian of K with
respect to (x, s) at (x̂, ŝ, û) will now be verified. The Jacobian K ′(x,s)(x, s, u) is[

Diag(∇xq(x, s, u))+ Diag(x)∇2
xq(x, s, u) Diag(x)AT

Diag(s)A Diag(s + ∇sq(x, s, u))

]
,

where Diag(v) is the diagonal matrix with the vector v on the diagonal. Suppose that the equation
K ′(x,s)(x̂, ŝ, û)z = 0 holds with zT = [zT

1 zT
2 ]. Then

Diag(∇x q̂)z1 + Diag(x̂)∇2
x q̂z1 + Diag(x̂)ATz2 = 0, (21)

Diag(ŝ)Az1 + Diag(ŝ + ∇s q̂)z2 = 0, (22)

where “hats” over q denote a gradient or Hessian evaluated at (x̂, ŝ, û). The assumption of strict
complementarity implies the (2, 2) block of K ′(x,s)(x̂, ŝ, û) is positive definite. Thus, (22) can be
solved for z2:

z2 = −Diag(ŝ + ∇s q̂)−1Diag(ŝ)Az1 = −[I − E(Ŝ)]Az1,

where E(Ŝ) is defined as in Definition 1 with Ŝ = S(x̂, û). Let

D1 = Diag(x̂ + ∇x q̂)−1Diag(∇x q̂),

D2 = Diag(x̂ + ∇x q̂)−1Diag(x̂),

M = AT
t At + ATE(Ŝ)A.

Moreover, partition {1, . . . , n} into P = {i : ∇x q̂ = 0} and O = {i : x̂ = 0}. Substituting z2
into (21), collecting terms, and pre-multiplying by Diag(x̂ + ∇x q̂)−1 gives

(D1 +D2M)z1 =
∑
i∈O

eie
T
i z1 +

∑
i∈P

eie
T
i Mz1 = 0. (23)

Note that D1 and D2 could be simplified by using strict complementarity in x. The equation in
(23) can be further simplify to [z1]O = 0 and MPP [z1]P = 0. Since M is positive definite under
Assumption 1, MPP is positive definite and thus z = 0.

Having established the non-singularity of K ′(x,s)(x(û), s(û), û), the result follows from the
Implicit Function Theorem. �

By adding the strict complementarity condition, it can be concluded that f is differentiable and
the inequalities in (20) become equalities, providing a closed form expression for the gradient, or
sensitivity, of f .

Theorem 3. If Assumption 2 holds at u, then f is differentiable at u with

σ(u) = ∇f (u) = −max(Ax(u)− u, 0) � 0. (24)
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Proof. Observe from (11) that it is possible to write f (u) = q(x(u), s(u), u). That is, f is q

composed with the functions x(·), s(·), and the identity mapping. From Lemma 2, it can be shown
that x(·) and s(·) are differentiable at u and clearly the quadratic function q is differentiable. Thus,
the well-known chain rule theorem implies that f is differentiable at u so that σ ≡ ∇f .

Let x ≡ x(·) and s ≡ s(·). Using this notation to distinguish arbitrary variables x and s from
the functions x(u) and s(u), the chain rule is applied to (11) to obtain the j th component of the
gradient

σ(u)j = ∇f (u)j =
n∑

i=1

�q

�xi

�xi

�uj

+
m∑

i=1

�q

�si

�si

�uj

+ �q

�uj

,

where the partial derivatives of q are evaluated at (x(u), s(u), u) and the partial derivatives of x
and s are evaluated at u. Each term is zero in the two summations. It suffices to consider the kth
term in the first summation, �q

�xk

�xk

�uj
. From the KKT conditions in (12a), complementarity gives

�q
�xk

xk = 0, where �q
�xk

and xk are evaluated at (x(u), s(u), u) and u, respectively. If xk > 0, then
�q
�xk
= 0; so the product �q

�xk

�xk

�uj
= 0. On the other hand, if xk = 0, then differentiating both sides

of (12a) with respect to uj gives,

0 = �
�uj

(
�q

�xk

xk

)
= �2q

�uj�xk

xk + �q

�xk

�xk

�uj

= �q

�xk

�xk

�uj

.

Similarly, each term in the second summation must be zero. Substituting (15a) for s(u), we obtain
the formula

∇f (u) = ∇uq(x(u), s(u), u) = −(Ax(u)+ s(u)− u) = −max(Ax(u)− u, 0). �

Strict complementarity is sufficient, but not necessary, for the desirable property of differen-
tiability. Although degenerate behavior in x is difficult to predict, Lemma 1 provides a simple
characterization of strict complementarity in s. This means that (14b) is violated in component
i exactly when [Ax(u)]i = ui . Given the least-squares formulation, this degenerate case seems
unlikely in practice.

It is important to emphasize that under any circumstance (even without Assumption 1) the vec-
tor−max(Ax(u)− u, 0) can always be computed once a solution x(u) to the convex optimization
problem Q(u) is obtained. In the worse case, this gives a conservative estimate for the sensitivity
σ(u) (see Theorem 2), and actually is the gradient ∇f (u) whenever it exists. For convenience, in
the remainder of this report, the quantity −max(Ax(u)− u, 0) will be called the sensitivity.

3. A greedy algorithm

Summarizing from above, it is possible to write least-squares formulation (8):

min
u∈Dv

f (u) :=q(x(u), s(u), u),

where Dv is the set of dose distributions that satisfy all the DVCs for a given problem, and
(x(u), s(u)) solves the subproblem Q(u),

(x(u), s(u)) = arg min
(x,s)�0

q(x, s, u).

As has been mentioned, the set Dv is non-convex. Therefore, global minimization of f in Dv

is generally intractable. A realistic goal is to find a good local minimum in a reasonable amount
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of time. To this end, consider a simple algorithm framework that exploits the monotonicity of
the function f established in Theorem 1. In this framework, it is possible to decrease f along a
sequence of increasing dose bounds {uk ∈ Dv} so that

u0 � u1 � u2 � · · · �⇒ f (u0) � f (u1) � f (u2) � · · ·
This general framework can have different “relaxation schemes" to generate increasing dose
bound sequences {uk} ⊂ Dv , resulting in different approximate solutions to (8).

3.1. A sensitivity-driven greedy algorithm

In particular, the experimental work reported here uses a relaxation scheme based on the
sensitivity of f . The resulting algorithm is called a Sensitivity-Driven Greedy (SDG) algorithm.

Algorithm 1 (Sensitivity-Driven Greedy (SDG) Algorithm).
– Inputs: Initial dose bound u0 ∈ Dv .
– Output: Beamlet intensities x(uk).
for k = 0, 1, 2, . . .

1. Solve Q(uk) for x(uk).
2. Compute ∇f (uk) = −max(Ax(uk)− uk, 0).
3. If stopping criteria are met, output x(uk) and stop.
4. Set uk+1 = ProjDk

v
(uk − ∇f (uk)) where Dk

v = {u : u � uk} ∩Dv .
end

Note that in Step 4 the vector inside the projection operator is

uk − ∇f (uk) ≡ max(uk, Ax(uk)) � uk.

Hence, a dose bound uk
i is replaced by the calculated dose value [Ax(uk)]i whenever the latter

is greater. The resulting larger vector is then projected onto the set Dk
v to obtain the next dose

bound uk+1. Since the set Dv is non-convex, so is Dk
v . Thus, the projection operation in Step 4

calls for an explanation, which is provided later in this report.
The bulk of the computation in this framework is to solve the subproblem Q(uk) in Step 1 at

each iteration which is a convex quadratic program known as a non-negative least-squares (NNLS)
problem. Given their relative large sizes in IMRT applications, a fast algorithm for solving these
NNLS problems is of primary importance. In the implementation discussed here, an interior-point
gradient algorithm that was originally designed to strike a balance between reasonable accuracy
and efficiency in this application [15] is used. For a comparison of this solver’s performance
versus some other leading algorithms, see [14].

For given stopping criteria, the output of SDG algorithm depends solely on the choice of the
initial u0 ∈ Dv . The choice for u0 used in the present work is the prescribed dose bounds at the
lowest level DVCs. For example, in the case of 2-level DVCs for the right lung, which are “no
more than 30% volume of the right lung should receive a dose of 20 Gy or higher” and “no more
than 40% volume of the right lung should receive 10 Gy or higher,” u0 = 10 Gy would be set for
all voxels in the right lung.

It is worth noting that although initial guesses for the beamlet intensities are needed to start
solving the subproblem Q(uk) at each iteration, they have no theoretical bearing on the final
outcome of the algorithm.
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3.2. Projection operations

Despite Dv being non-convex, projection onto it is straightforward. For example, suppose
Dv ⊂ R10+ describes the dose-volume constraint: at least 70% of the voxels must have dose values
no more than 5 Gy (i.e. only 3 of the 10 components can have values greater than 5). Then

ProjDv
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]T = [1, 2, 3, 4, 5, 5, 5, 8, 9, 10]T.

Here the projection sets the 7 smallest components equal to the minimum of their value and 5.
Clearly, this is the closest point in Dv as it affects the least change on the original point in R10+ .
Applying the projection only requires a sorting operation and can be done quickly. However, to
define the projection uniquely it is necessary to employ an a priori tie-break rule. To break a tie, it
is possible we may choose to give priority to the component with the higher indices (by not setting
it to a smaller value), or to assign priority based on some available information such as relative
distance to the tumor, tissue density, individual voxel weights, etc. In numerical computation,
however, ties almost never occur and the effect of a tie-break rule is inconsequential.

The projection onto Dk
v is just as simple except for some additional bookkeeping. Continuing

with the above example, let

Dk
v :=

{
u ∈ R10+ : u � uk :=[1, 2, 3, 4, 5, 6, 6, 5, 5, 5]T

}
∩Dv.

Note that uk ∈ Dv with uk
6 = uk

7 = 6 > 5. Then

ProjDk
v
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]T = [1, 2, 3, 4, 5, 6, 7, 5, 5, 10]T.

Again the projection sets the 7 smallest components equal to the minimum of their value and
5, but excludes the two (the 6th and 7th) corresponding to those in uk whose values are greater
than 5 to ensure that the resulting vector is component-wise greater than or equal to uk . Should uk

already have 3 components greater than 5, then the projection would return uk unchanged since,
being in Dv , the remaining seven components of uk must be less than or equal to 5.

3.3. Convergence of the SDG algorithm

Recall that solving the subproblem Q(u) means projecting a point in the prescription set H
onto the physical setK (see the definitions (3) and (4)). Under this projection ProjK(·), it happens
that the image of u is Ax(u)+ s(u) ≡ u− ∇f (u) (which follows from (15a)). Therefore, in view
of the Step 4 of the SDG algorithm, it is possible to write(

bt

uk+1

)
= ProjHk

(
ProjK

(
bt

uk

))
, Hk :={bt } ×Dk

v. (25)

The set Dv , thus the augmented set H defined in (3), is a union of a large (but nevertheless
finite) number of convex “branches,” each containing a local minimum – a point closest to the
physical set K defined in (4). The monotonicity of the iterates {uk} guarantees that, without
stopping, they will eventually enter and stay in a fixed branch. Afterwards, the SDG algorithm
reduces to the alternating projection algorithm between two convex sets (a fixed branch of H and
K), as is indicated by (25). Since the convergence of the alternating projection is well known
(see, for example [1]), the following convergence result is obtained.

Theorem 4. Under Assumption 1, the Sensitivity-Driven Greedy Algorithm, without stopping,

generates an infinite sequence {uk} that converges to a local minimum of f in Dv.
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However, since most of the local minima of f in Dv have little or no clinical relevance, this
convergence property has limited practical value. Interested readers are referred to [14] for a
detailed proof. The clinical relevance of the SDG algorithm ultimately lies in the effectiveness
of the relaxation scheme to select a “good” branch (or a “good” set of voxels to sacrifice). This
effectiveness can only be verified through experiments.

4. Numerical comparison

This section compares the model developed here with a dose-volume-based least-squares model
implemented in the popular commercial planning system Pinnacle3� RayOptimizer [11,12]. With-
out access to the commercial system, we have implemented a model that we call a Pinnacle-
like (PL) formulation, which is our best attempt to duplicate what is implemented in Pinnacle3

RayOptimizer based on publicly available information.

4.1. A pinnacle-like approach

The implemented Pinnacle-like (PL) model takes the same general form of weighted least-
squares models

min
x�0

p(x) :=
N∑

k=1

wkpk(d(x)), (26)

where N is the number of planning structures, d(x) = Ax and each structure k has its own weight
wk (importance factor) and penalty function pk . We will denote the set of voxel indices in the
kth structure by Vk with cardinality |Vk|. At the individual structure level, there are two forms of
penalty functions, one for critical (healthy) structures and one for target (tumor) structures.

Assume that critical structure k has the dose-volume constraints “no more than ηk
j % of the

voxels can have doses above bk
j ” for j = 1, 2, . . . , ck , where ck is the number of DVCs for critical

structure k. Then the penalty function for this critical structure is of the form

pk(d) = 1

|Vk|
ck∑

j=1

∑
i∈Vk

H(di − bk
j )H(d[ηk

j ] − di)

(
di − bk

j

bk
j

)2

, (27)

where d[ηk
j ] is the current dose value received at the ηk

j dose-volume level (i.e. at d = d(x), ηk
j %

of voxels receive a dose above d[ηk
j ]) and H is the heaviside function H(y) = max(y, 0). This

function only penalizes voxels with dose values between dk
j and d[ηk

j ].
Assume that target structure k has a prescribed dose bk and a dose upper bound bk

max. Then
the penalty function for this target structure is of the form

pk(d) = 1

|Vk|
∑
i∈Vk

[H(bk − di)+H(di − bk
max)]

(
di − δk

δk

)2

, (28)

where δk = (bk + bk
max)/2 is our target fit value. Note that at any voxel only one of the above two

heaviside functions can be non-zero. It is unclear in the open literature what is the exact form of the
target penalty functions used in RayOptimizer, so (28) may not be precisely what is implemented
inside that software, but is in the same spirit as its critical structure objective definitions. Namely,
penalization by relative deviation from δk occurs whenever dose is below the prescribed dose dk
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or above the maximum dose bk
max. We have chosen this particular value of δk because we feel it

should lead to good target dose distributions and make this formulation more comparable to our
own (this form of δ is the same value which we use in our SDG implementation for bt ). With
this exception, we have attempted to stay as close as possible to the Pinnacle3 formulation as
described in [11,12].

It is well known that the dose-volume-based penalty functions of the form (27) are both non-
convex and non-differentiable. The non-convexity makes starting point selection an issue because
different starting points can lead to different solutions. The non-differentiability can be a potential
source of bad numerical behavior for optimization algorithms designed for smooth functions such
as the Fortran solver NPSOL [7] employed by Pinnacle3� RayOptimizer [11].

4.2. Setup of experiments

Our numerical comparison has been carried out primarily under the Matlab�7 environment.
While the SDG algorithm is implemented entirely in Matlab, the PL implementation uses, just
like the commercial system Pinnacle3� RayOptimizer [11,12], the Fortran 77 package NPSOL�

[7] as its optimization engine. We believe that the use of a strong Fortran solver should give PL a
considerable advantage on execution speed.

The NPSOL documentation [7] indicates that it stops whenever the relative change in the
objective function drops below a given tolerance. In all of our tests, we used the same stopping
tolerance of 10−2 in both SDG and PL algorithms. All the numerical results have been produced
in Matlab 7 on a Linux workstation with a 3.8 GHz Intel Xeon processor and 8Gb of memory.

The software environment used for this project is called CEER (Computational Environment
for Radiotherapy Research) and is available for free download [6,5]. This is a Matlab imple-
mentation of the vital features we need for fluence optimization, namely clinical data interface,
dose calculation, and visualization. In our experiments, we used the QIB dose calculation engine
native to CERR to generate an influence matrix for each test case using nine equally-spaced
beams.

Our numerical experiments have been conducted on eight clinical cases: 6 relatively large cases
(2 esophagus and 4 lung cases) and 2 small ones (a head-and-neck and a prostate case). By the
size of a case we refer to the number of voxels involved in the region of treatment. More details
on the test data have been included in Appendix A.

For each test case and each model, we settled at a computed solution corresponding to a
set of tuned weights that we considered to be the best seen after an extensive trial-and-error
process. The procedure for selecting weights always started with tuning weights for our model
first, then we used the best weights found for our model as the “initial guesses" for the PL model.
In some cases, the final choices are the same for both, or very similar. In others, they differ
greatly.

4.3. Summary of results

Due to the aforementioned multi-objectiveness and the vagueness of clinical objectives, com-
paring the quality of IMRT treatment plans is a job for qualified medical specialists. However,
we can still make assessments based on dose-volume constraint compliance.

In two test cases, the lung B case and the prostate case, the SDG solutions were clearly
better than those of PL (more information on these two cases is given in Appendix A). On
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Table 1
Run time comparison (in CPU seconds)

Case name PL time SDG time PL/SDG ratio

Esophagus A 1510 244 6.2
Esophagus B 1643 287 5.7
Lung A 1536 169 9.1
Lung B 112∗ 118 0.95∗
Lung C 954 90 10.6
Lung D 2237 178 12.6

Headneck 80 93 0.86
Prostate 65 31 2.1

the other hand, in the two esophagus cases the SDG solutions violated the dose-volume con-
straints more significantly than the PL did. For the rest of the four cases, the SDG solutions
appeared either comparable or marginally better than the PL ones. Overall, we can only conclude
that in terms of DVC compliance, the two methods have generated clinically relevant plans
of competitive qualities over the eight tested cases, though none consistently outperformed the
other.

The reason for the lesser performance of SDG in the two esophagus cases appeared to be that
the relaxation scheme in use was a bit too greedy. There is certainly room for further research on
relaxation strategies in our approach.

Another important aspect of the comparison is the speed of planning. In Table 1, we list run
times in CPU seconds for each case. Note that these are planning times for the best importance
factors found, not the total time spent during the trial-and-error process. Timing information on
the head-and-neck and the prostate cases in Table 1 is less meaningful because these are two
very small cases with fewer voxels. On the six larger (esophagus and lung) cases, the average
improvement in treatment planning time of SDG over PL is greater than 7.5. We consider this
to be a significant improvement, especially in view of the fact that PL used the commercial
Fortran 77 package NPSOL as its optimization engine, while SDG is programmed entirely in
Matlab.

The SDG time improvements are even more promising if we take into account the fact that
during our trial-and-error process of importance factor selection, the SDG times were much
more stable than those of PL. For example, on Lung B, one choice of weights for PL led
to a solution that bore a striking resemblance in quality to the final one we have reported,
but for which PL took 17 minutes, not 2 minutes as reported in the table (thus the aster-
isk). Similar behavior of wildly varying times was observed for Esophagus B and Lung D as
well. In this context, the run time for the best weights found is really not as indicative as the
total elapsed time spent on tuning to find a good plan. Our numerical experiments suggest
that our algorithm be not only faster but also more reliable than PL given the trial-and-error
environment.

In summary, at this point the primary advantages of the SDG algorithm over PL appear to be
speed and stability. SDG demonstrated substantial speedups over PL in almost all cases despite
the fact that PL used a well-established commercial Fortran package as its optimization solver.
The reported times did not include the many hours (in some cases) spent in tuning weights,
nor did they indicate the erratic behavior of PL’s running times. We submit that the time spent
tuning PL weights with PL runs was greatly reduced by starting with the tuned SDG weights
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since it is much faster per run than PL. Based on this fact alone, we believe that SDG can be
useful in improving computation time for the trial-and-error process in IMRT treatment plan-
ning.

5. Conclusions

From a theoretical perspective, the use of PL-type models leaves much to be desired. As
presented in this paper, the issue of non-differentiability is problematic because optimization
software designed for differentiable functions, such as NPSOL, is routinely applied to non-dif-
ferentiable PL-type models. The frequency with which abnormal terminations of NPSOL are
encountered hints at a volatility to PL-type models that should be at least partly attributable
to non-differentiability. In contrast, the objective function in our formulation is continuously
differentiable under a mild condition. (In fact, it is well defined in any circumstance with or
without differentiability.)

We claim that from a practical perspective, the inherent non-convexity and nonlinearity present
in dose-volume-based models is more pronounced in the PL approach than in the approach
presented here. Several of our PL experiments gave unacceptable results due to declared “conver-
gence” by NPSOL to some spurious (possibly stationary) points, and it was necessary to restart
from different initial guesses. In practice, this amounts to another level of “tuning” that must
be done with PL to find suitable starting beamlet intensities. The SDG method, on the other
hand, only requires solving well-behaved convex quadratic subproblems at every iteration and is
therefore insensitive to the initial guesses for beamlet intensities.

The speed and stability advantages exhibited by the approach developed in this paper could
be attributed to two desirable properties: (a) the model has a monotone objective function, and
(b) the algorithm only requires solving convex quadratic programs. This combination enables the
algorithm to alleviate the non-convexity problem inherent in dose-volume-based fluence optimi-
zation.

In conclusion, the new dose-volume-based, least-squares approach presented here has demon-
strated a promising potential as a practical tool for IMRT treatment planning. It strikes a critical
balance between the computational tractability needed in this application and the theoretical rigor
lacking from some existing dose-volume-based least-squares models.
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Appendix A. Details on data and results

Appendix A.1. Clinical data description

The data set consists of eight clinical cases: 2 esophagus, 4 lung, a single head-and-neck,
and one prostate. The esophagus and lung cases are courtesy of M.D. Anderson Cancer Cen-
ter Thoracic Oncology Department, while the head–neck and prostate cases are distributed
with CERR [5]. For the esophagus and lung cases, all the planning requirements have been
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specified by the responsible radiation oncologist. The prescriptions for the head–neck and pros-
tate cases, on the other hand, have been chosen in accordance with treatment guidelines laid
out by physicians at Memorial Sloan-Kettering Cancer Center [13]. For the sake of space,
we only present detailed prescription information and computational results for two cases: the
lung B case and the prostate case. More details are contained in the second author’s thesis
[14].

For the lung B case, an upper bound of 45 Gy is put on the spinal cord. The heart has
the DVC that no more than 40% of the volume can receive doses greater than 40 Gy, or in
short “volume(�40%) > 40 Gy". The esophagus has the DVC: “volume(�50%) > 50 Gy.” More-
over, the total lung has the DVCs: “volume(�45%) > 10 Gy” and “volume(�35%) > 20 Gy.”
Finally, at least 95% of the target volume must receive at least 70 Gy with an upper bound of
75 Gy.

For the prostate case, the planning target volume (PTV) has overlaps with both the bladder
and the rectum. The bladder excluding the PTV volume has the DVC that “volume(�53%) >

47 Gy”. The rectum excluding the PTV volume has the DVCs that “volume(�53%) > 47 Gy” and
“volume(�30%) > 75.6 Gy”. In addition, all voxels are limited by an upper bound of 100 Gy to
prevent hot spots. At least 95% of the target must receive at least 77 Gy with an upper bound of
90 Gy.

Appendix A.2. Results on lung B and prostate cases

In IMRT, the DVC compliance is visualized by dose-volume histograms (DVHs), where the
x-axis represents dose values and y-axis represent accumulated volume percentage. In the DVH,
each planning structure has a corresponding curve. For example, the point (30, 50) on the curve
for esophagus means that 50% of esophagus voxels have dose values 30 Gy or higher. The ideal
curve for a target structure is a step function dropping from 100 to zero at the prescribed dose

Fig. 3. Lung B – DVH (SDG solid/PL dashed).
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value. For a healthy structure, the lower the curve is, the better. Another common tool for plan
evaluation is contours of dose values called isodose lines.

The DVHs for the Lung B case are given in Fig. 3. For the spinal cord and esophagus, the DVH
curves for SDG (solid lines) are much lower than those for PL (dashed lines), respectively. The
corresponding isodose lines are shown in Fig. 4.

Structure overlap occurs in the prostate case. For the optimization process, the voxels shared
by the rectum and the bladder with the planning target volume have been removed from these two
organs. This approach allows an emphasis on critical structure sparing over target dose coverage.
The DVHs in Fig. 5 suggest a much better SDG solution compared to the PL solution. Notice
that the target dose coverage is much more homogeneous with SDG. The corresponding isodose
lines are shown in Fig. 6.

Fig. 4. Lung B – dose distributions.

Fig. 5. Prostate – DVH (SDG solid/PL dashed).
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Fig. 6. Prostate – dose distributions.
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