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Questions connected with the admissibility of rules of inference and the solvability of the 
substitution problem for modal and intuitionistic logic are considered in an algebraic 

framework. The main result is the decidability of the universal theory of the free modal algebra 
p<“((Grz) extended in signature by adding constants for free generators. As corollaries we 

obtain: (a) there exists an algorithm for the recognition of admissibility of rules with 
parameters (hence also without them) in the modal system Grz, (b) the substitution problem 
for Grz and for the intuitionistic calculus H is decidable, (c) intuitionistic propositional calculus 
H is decidable with respect to admissibility (a positive solution of Friedman’s problem). A 

semantical criterion for the admissibility of rules of inference in Grz is given. 

The need for simplification of derivations in formal systems has led to the 

consideration of the class of all inference rules that do not increase the set of 

provable formulas. The rules of this class are called admissible rules of inference. 

Investigations into admissible rules of inference have mostly dealt with 

intuitionistic propositional calculus H. A number of conditions for admissibility 

and derivability of rules in H have been obtained in [15, 16, 36, 371; a description 

of quasi-characteristic admissible rules in H has been given in [34]; the 

structurally pre-complete extensions of H have been given in [35]. The connection 

between admissible rules in extensions of H and admissible rules of modal logics 

was observed in [17]. This connection draws attention to admissible rules of 

modal logics. A number of results regarding admissible rules in modal logics have 

been presented in [17, 18, 191. 

The general problem of finding an algorithm which recognizes admissibility of 

rules in H was posed by Friedman [5, problem 401. Kuznetsov formulated a 

related problem: Does there exist a finite basis of admissible rules of H? The 

positive solution of Friedman’s problem is given in [20,23,27]. Kuznetsov’s 

problem and it’s analogues for the modal systems S4, Grz have negative solutions 

[21, 241. The approach to the solution of these problems is based on properties of 

universal theories of free topo-boolean and pseudo-boolean algebras. The 

problem of substitution (or the problem of logical equations) may also be 

formulated in terms of properties of universal theories. 

The substitution problem (or problem of logical equations) for a propositional 
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logic A. consists in recognizing for an arbitrary formula A&, pi) (the xi are 
variables, the pj are propositional letters) whether there exist formulas Bi such 
that A(&, pj) is a theorem of the logic A. The problem of logical equations has so 
far not been investigated satisfactorily. The decidability of the substitution 
problem for the modal system S4 has been obtained recently [25, 261. 

The aim of this article is a proof of the algorithmical decidability of 
admissibility in modal systems Grz of rules of inference (with parameters) of 
generalized form, and a proof of decidability of the substitution problem for Grz 
and for intuitionistic logic H. 

The main result of the paper is a proof of the decidability of the universal theory 
of the free modal algebra PU(Grz) (the variety of modal algebras corresponding 
to the logic Grz), in signature extended by adding constants for free generators. 
As simple corollaries of this result we obtain the following facts: (a) there exists 
an algorithm for recognition of admissibility in Grz of rules of inference with 
parameters (hence also without parameters), (b) the substitution problem for Grz 
and H is decidable, (c) the algorithmical decidability of admissible rules in H (so 
we have another positive solution to Friedman’s problem). A semantical criterion 
for the admissibility of rules of inference in Grz is found and examples of its use 
are given. 

We suppose the reader to be familiar with the main principles and conventions 
of first-order theories. Familiarity with Kripke semantic for modal logic is 
required. In Section 1 we will review some definitions and notations. All 
undefined terms can be found in [29,2]. 

1. Introduction 

As usual we understand by a modal logic (m.1.) a set of modal propositional 
formulas containing all axioms of the minimal normal system K and which is 
closed under substitution, modus ponens and rule of necessitation: A/OA. 
Similarly a superintuitionhtic logic (s.1.) is a set of propositional formulas 
containing all axioms of Heyting’s intuitionistic calculus H and which is closed 
under modus ponens and substitution. 

We shall use a combination of the algebraic semantics and the relational 
semantics of Kripke. A modal algebra (m.a.) is a boolean algebra with an 
additional unary operation 0 satisfying the equations: 

q l=l, 10(1x v y) v (10x v q y) = 1. 

Let dpl,. . . , p,J be a modal propositional formula with propositional letters 

Pl, . . . , pn. The formula Q, is said to be valid in the m.a. % (notation: B h q) if 
for all tuples (a,, . . . , a,) it is true that 

B i= (V(% . . . , a,) = 1) (Uj E 23). 
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A pseudo-boolean algebra (p.b.a.) ‘?I is a distributive lattice with smallest and 
greatest elements 0 and 1, and such that for arbitrary elements a, b E 3 there is a 
relative pseudo-complement a 3 b (that is a greatest element x such that 
a nx G b, this element x is denoted by a 3 b). The element a 3 0 is called the 
pseudo-complement of the element a and is denoted by -UZ. The definition of 
validity in $!I for propositional formulas Q, is similar to the modal case. 

If !.X3 is a m.a. (p.b.a.) then n(B) := {q 1 ‘93 b cp} is its m.1. (s.1.). According to 
the completeness theorem [8,12] (which is based on the Lindenbaum algebra) for 
each m.1. (s.1.) Iz there exists an m.a. (p.b.a.) !XI such that A = n(B). 

Let A. be a m.1. (s.l.), then Var(A) denotes the algebraic variety of m.a.‘s 
(p.b.a.‘s) (8 ( Vg7 E A (B k q)}. By the completeness theorem we have 

Q, E 2, ($ V% E Var(n)@ k q). 

Now we review the basics of Kripke’s semantics [7, lo]. A frame 9 = (T, R) is 
a pair where T is a nonempty set and R is a binary relation on T. Let P be some 
set of propositional letters. A model 9J2 = (T, R, V) is an 3-tuple where (T, R) is 
a frame and V (valuation) is a function, mapping P into the set of all subsets of 
the set T. 

The validity (or truth) of modal propositional formulas on elements x E T is 
defined by induction on the formula: 

XIkVpi e X E V(Pi), 

x WV (A A B) e (x It-VA) & (x Ikv I?), 

x Itv (A v B) e (x ItvA) v (x It” B), 

xlt,lA e 1(x +,A), 

x h q A e (VY E T)((xRy) 3 Y IhA), 

x It-v OA @ (3~ E T)((xRy) & (Y IhA)), 

xItv(A+B) G (xItvB) v~(xItvA). 

A formula Q, with propositional letters from P is said to be valid in the model 
??R (ZR IF q) iff Vx E T (x It, q). A formula q is called valid in the frame Y (Y It 47) 

iff 97 is true for all valuations V of its propositional letters. 
The set n(Y) := (9 1 Tit cp} for a frame Y = (T, R) is a modal logic. A m.1. 3, 

is said to be Kripke-complete [4,33] if there exists a frame Y with the property 
n(5) = A. Fine [4] and Thomasson [33] showed that there exist modal logics which 
are not Kripke-complete. However, Kripke semantics and its modifications (for 
example refined first-order semantics [32]) turned out to be very convenient. 

A few words about first-order semantics in the style of Kripke [lo, 23,321. Let 
(W, R) be a frame. We assign to this frame the associated modal algebra 

(W, R)+, where ( W, R)+ is the boolean algebra of all subsets of the set W and 
0 is the operation defined by the following equation: 

q X:={+EW,V~EW((~R~)=J~EX)}. 
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Let X1,. . . , X,, E (W, R)+. By (W, R)+ (Xi, . . . , X,) we denote the subal- 
gebra of the algebra (W, R)+ generated by the elements Xi, . . . , X,. Arbitrary 
elements of this subalgebra have the form 97(X1, . . . , X,), where Q, is a term. 
Let us define the valuation of {pi, . . . , pm} on (W, R) by V(pi) :=Xi. If 

&Xi,..., X,) is an element of (W, R)+ (where Q, is some term), then by 

T(Plt. * . , pn) we mean the formula obtained from Q, by substituting letters pi for 
Xi and logical connectives for the corresponding operations. 

The following lemma is well-known (it is proved by induction on q). 

Lemma 1. For arbitrary x E W, 

xEQ)(XI,..., X4 e XhdPl> . . . J P,). 

The associated frame %3+ of a m.a. 93 is given by 93+ := (T,, R), where Tm is 
the set of all ultrafilters on % and 

According to the inclusion theorem of Jonsson-Tarski-Stone [8] the mapping 
i: B+ B+ where i(a) := {V 1 V E T,, a E V} is a monomorfism “in”. If 93 is finite, 
then i is a mapping “onto”. 

The m.1. A is said to have the finite model property if A = nisi n(5!3s,) where the 
!-I$ are finite m.a.‘s. Lemmon [lo] showed that this definition is equivalent to 
A = nie, A($) where the .!& are finite frames. 

Now we proceed to the rules of inference. Let A be a ml. (s.1.) and Aj, B 
formulas in the language of this logic; pl, . . . , pn are propositional letters from 
these formulas and xi, . . . , x, are distinct variables. 

An expression of the form 

A&i, . . . , x,), . . . , A&, . . . , .~)lB(x,, . . . , x,) (1) 

is called a rule of inference. We note that in Polish mathematical literature 
[l, 11,12,31,38] a more general notion of rule of inference is used. A rule is 
mapping the set of all a-tuples of formulas into the set of formulas. If CY < o, 
then the rule is called finite. If the rule is closed with respect to substitution, then 
the rule is called structural. Each finite structural rule is a set-theoretic union of 
rules which are defined by rules of the form (l), that is mappings which assign 
formulas B(C,, . . . , C,) to tuples AI(C1,. . . , C,), . . . , A,(C1,. . . , C,). A 
rule of the form (1) is said to be (finite) sequential or standard. According to the 
Los’-Suzko representation theorem [ 121, an arbitrary standard logical conse- 
quence operation is generated by a countable set of standard rules. Therefore we 
mean in this paper by rules of inference rules of the form (1) only. 

The rule (1) is said to be admissible in the logic A iff for all formulas 

RI,...,&, 

Vj 1 s j s m Aj(BI, . . . , B,) E A. implies B(B,, . . . , B,) E A. 
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The rule (1) is called derivable in m.1. A (~1. A) iff from AI, . . . , A,,, and the set 
of theorems of the logic A the formula B is derivable with the help of the 
necessitation rule and modus ponens (modus ponens only). It is clear that 
derivability implies admissibility. Harrop’s rule [7] 

(1p = (9 v r))l(lp = 9) v (1~ = r) 

is an example of an admissible but inderivable rule in Heyting’s intuitionistic 
calculus H. 

There exists an algebraic approach to admissibility. Let A be a m.1. (s.1.). Let 

gi(xi), J(x;)t g(xi), f(xi) b e t erms of the signature of the variety Var(A) (the 
constants 0 and 1 are also terms). The first-order formula of the form 

v.f A (gj(xi) =Jtxi)> + (fCxi) = gCxi)) 
j=l 

is called a quasi-identity. This quasi-identity is said to be valid in the algebra 58 iff 
for all ai E 23, Vj (1 C jCn)gj(aJ =&(CZi) in 23 implies g(ai) =f(ai). Let 
r:A,(x,), . . . , A,(xi)/B(xi) be a rule of inference. We assign to r the quasi- 
identity r* of the form 

The following well-known proposition belongs to folklore and goes back to the 
Polish method of contracting logical calculi and logical consequence operations 
[ll, 12, 311. Let &(A) denote the free algebra of rank a over Var(A). 

Lemma 2. The rule r is admissible in logic A iff the quasi-identity r* is valid in the 
free algebra SW(n). 

Proof. Let us suppose that r is not admissible in A. Then for some formulae Ci we 

have AI E A, . . . , A,(C,) E A and B(C) $ A. Therefore the identities A,(C,) = 
1 . . > 
algebra 

A,(C,) = 1 are valid on Var(A). If we view formulas as elements of the 
S&(A) and regard propositional letters as free generators of SW(A), then 

we obtain B(C,) # 1. Hence the quasi-identity r* is not valid on y”,(A). 
On the other hand let us assume that r* is not valid on SW(A). Then 

AI = 1, . s . , A,(C,) = 1 and B(Ci) # 1 in .%$,(A), where the Ci are elements 
from SW(h). If we regard, as above, B(Ci), A,(Ci) as formulas, then Aj(Ci) E il, 
1 <j G m, B(Ci) $ il. Thus r is not admissible in A. Cl 

Note also that to every quasi-identity q : A,“=1 (gj(Xi) =J(Xi)) + (f (xi) = g(xi)) 
these corresponds a rule q* of the form AT_1 (gje&)/(f ag). It is also easy to 
see that q is valid in So(A) iff the rule q* is admissible in A. 

We now turn to the substitution problem and its algebraic treatment. Let us 
remind that the substitution problem (or problem of logical equations) for a logic 
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A. (m.1. or s.1.) consists in the recognition for arbitrary formulas A&, pi) (where 
the pi are propositional letters in A, the Xi are variables substituted for other 
letters) whether there exist formulas Bi such that A(Bi, pi) E 3L. As above we view 
formulas as elements of the free algebra %,(I.) and letters as free generators of 

%(A). 

Lemma 3. There exist formulas Bi such that A(Bi, pi) = 1 iff the equation 
A&, pi) = 1 is solvable in the free algebra S_(k). 

Proof. Suppose that A(Bi, pi) E A. Then we regard the formulas Bi as elements of 
SW(k) and because A(Bi, pi) E 3L, the identity A&, pi) = 1 holds in Var(n). 
Moreover SW(n) E Var(k). Therefore the Bi are solutions of A&, pi) = 1 in 
gW(k). Now let A(Xi, pi) = 1 have a solution in Pm(n). Then there exist 
Ci E &,(A) with the property A(Ci, pi) = 1. Because SW(n) is a free algebra on 
Var(n), we have A(Ci, pi) = 1 in Var(n), and by the completeness theorem 

A(Ci, pi) E A. 0 

Thus questions about the decidability of the substitution problem in logics A are 
reduced to problems of the solvability of equations in free algebras SW(A). Hence 
the problems of logical equations and of admissibility of rules (Lemma 2) are 
reduced to questions concerning the universal (or dually, existential) theory of 
the algebra sU(n) extended in signature by the addition of constants for free 
generators. 

Giidel’s translation T provides a connection between admissible rules of s.1. 
and of m.1. We remind that the Gijdel translation T of propositional formulas 
into modal propositional formulas is defined by induction on the length: 

T(Pi) = Qi, 

T(A A B) = T(A) A T(B), T(A v B) = T(A) v T(B), 

T(A 2 B) = q (T(A)-+ T(B)), 

T(-A) = q lClT(A). 

Let 3L be a s.1. The modal associate for A is a m.1. Izl (arbitrary m.1.) such that 
VA (A E he T(A) E A,). 

By Dummet-Lemmon’s strengthening [3] of Giidel’s translation theorem, for 
an arbitrary s.1. H + X (where H is Heyting’s intuitionistic calculus and X a set of 
formulas, and H + X the smallest s.1. containing H U X) 

AEH+X e T(A)ES~+T(X). 

Thus S4 + T(X) is the smallest modal associate for the s.1. H + X (among the 
extensions of S4). There exists a greatest modal associate (among extensions of 
the m.1. S4) for each s.1. Let us turn to its construction. 
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Let $?I be a p.b.a. The wrapping modal algebra S(‘2I) is constructed as follows 

[cf. 131: it is the boolean algebra defined by the set ,U as generating elements and 

with the lattice identifies true in 9-l as the generators’ relations. On this boolean 

algebra the operation Cl is given by 

q ((lU, v 6,) A * * * A (Tz, v b,)) := ((a, 3 b,) A * * * A (a, 3 b,)). 

The correctness of this is easily seen from the fact that uj 3 bi is the greatest 

element in ?l which is less than la; v b,. Also it is obvious that S(8) as an algebra 

is generated by elements of the form q u where a E ?I. Maksimova proved the 

following lemma. 

Lemma 4 [13]. For arbitrary s.1. A. the modal logic 

a(n) : = {C ] V% (2l E Var(n) j S(%) It C)} 

is the greatest modal associate for I. (among extensions of S4). 

We need next 

Lemma 5. Let A(p,) be a modal propositional formula. There exists a proposi- 
tional formula C such that the formula q A(Upi) is equivalent to T(C)(pj) in S4. 

Proof. Induction on the length of A. If A =pi then T(pi) = Upi. Thus we can 

take C to be pi. Suppose that for formulas with length less than length of A the 

lemma is proved. For A = q B the induction step is obvious. Another case A is 

constructed by applying connectives 1, +, A, v to subformulas of A of the form 

q Sj and to propositional letters pi. Thus 

A(pi) = D(uBl, . . . 7 q B/c, PIP * * . > Pr) 

where D is a formula without occurrences of 0. Thus the formula q A(Opi) has 

the form 

q DPB,(~p,), . . . , q &PP,), UPI, . . . , Up,). 

We transform D to a conjunctive normal form and obtain a formula F, where 

here Er, Gr are distinct formulas from {Bi, . . . , Bk, pI, . . . , p,}. It is clear that 

F is equivalent to q A(Upi) in S4. But F is also equivalent to the formula 

By induction hypothesis, the formulas q E~(Op,) and q G~(Opi) are equivalent 

in S4 to the formulas T(CT)(p,) and T(DT)(p,), for some Cy and 07. Therefore 
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L is equivalent to 

and this formula is equivalent to 

Now the lemma is proved. El 

Now we can make the connection between admissibility in s.1. and m.1. Since 
for arbitrary ml. or s.1. A it is true that A A B E Ae(A E A) A (B E I,), we will 
consider henceforth the rules with one premisse only. 

Theorem 6. The rule Al B is admissible in the s. 1. k iff the rule T(A)/ T(B) is 
admissible in the greatest modal associate a(A) of A. 

Proof. Let us assume T(A)/T(B) is admissible in a(A). Suppose that A(B,) E 3L. 
Then T(A(Bi)) E a(k) as a(n) is a modal associate of 3c. But T(A(B,)) is 
equivalent in S4 (and S4 c a(n)) to T(A)(T(Bi)). Therefore the last formula is a 
theorem of a(n), that is T(A)(T(B,)) E a(n). By our assumption about admis- 
sibility we have T(B)(T(Bi)) E a(A) and T(B(B,)) E a(n). Hence B(Bi) E u(n). 

Now let A/B be admissible in A. and let T(A)(C,) E u(n) but T(B)(C,) $ u(k). 
By the definition of u(A) there exists ?I E Var(h) such that s(2l) It-i(T(B)(C,) = 
1). As we noted, the algebra s(‘2I) is generated by elements of the form q a 
where q la E 2I. Therefore there exist Oxj E ?I and terms Dk such that 

T(B)(Ci(Dk(nxi))) f 1. 
In order to avoid complications in notation we shall denote the formulas in the 

language of A and the corresponding terms of the variety Var(n) by the same 
symbols. According to Lemma 5 the formulas q Ci(D,(Opj)) are equivalent in S4 
to the formulas T(A,)(pj). From this we get by regarding the T(Ai) as terms, 

S(3) IF (UCi(Dk(OXj)) = T(Ai)(Xi)). 

Hence 

T(B)(Ci(Dk(nxj)) = T(B)(T(Ai)(xj))* 

Therefore T(B)(Ai)(Xj) # 1. S ince we know that all formulas from a(n) are 
valid in s(a), we get T(B(Ai)) $ u(n), that is B(A,) $ A. This conclusion gives us 
A(A,) $3L in view of our assumption about admissibility of A/B. Since u(n) is a 
modal associate of A we obtain T(A(Ai)) $ u(n). 

But we have assumed that T(A)(Ci) E u(A) and this together with closure of 
u(n) under substitution gives us 

T(A)(nCi(Dk(Qj))) E o(n). 
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We obtain T(A)(T(A,)) E o(n), by using the equivalence of q Ci(Dk(Opj)) and 

T(A,)(p,), which contradicts T(A(A,)) I$ a(n). •i 

The problem of finding an algorithm for the recognition of admissible rules in 

intuitionistic propositional calculus H was posed in Friedman’s paper [5, problem 

401. From this problem and Theorem 6 it follows that the greatest modal associate 

for H, i.e. a(H), is interesting. It is well known that a(H) = Grz where 

Grz := S4 + q (O(p --, Up)+ Up)+ op. 

is the modal system of Grzegorczyk (this follows for example from the finite 

model property of Grz [29] and from o preserving arbitrary intersections of logics 

[13]). Therefore from Theorem 6 we obtain: 

Corollary 7. The rule A JB is admissible in H iff the rule T(A)/T(B) is admissible 
in Grzegorczyk’s modal system Grz. 

The problem of logical equations (substitution problem) for the calculus H may 

also be reduced to the corresponding problem for Grz. Let, as above, &(A) be 

the free algebra of rank cy over the variety Var(A) (here A is m.1. or s.1.). By Cf 

we denote the signature of Var(n) extended by a countable set of constants for 

free generators of SW(h). 

Lemma 8. The equation A(x;, pi) = 1 is solvable in the free algebra &(H) iff in 

the algebra Sm(Grz) the equation T(A)(l&, q pj) = 1 is solvable. 

Proof. Let A(B,,pj) = 1 in S,,(H) for some Bj E SW(H). Then we have 

A(B,, p,) E H. The m.1. Grz is a modal associate for H, therefore we have 

T(A)(T(Bi), Qj) e G rz. From this property we obtain T(A)(T(B,), Opj) = 1 in 

the free modal algebra SW(H). But it is clear that T(Bi) = q lT(Bi). Therefore 

the equation T(A)(OXi, Opj) = 1 is solvable in &(Grz). 

Conversely, let T(A)(ElC,, Up,) = 1 in SU(Grz). Then T(A)(UC,, Up,) E Grz. 

The m.1. Grz is closed under substitution and we obtain T(A)(CIC,(OpE), Opj) E 
Grz. According to Lemma 5 there exist formulas Di which are constructed 

effectively from q C,(Op~) and q Ci(OpE) ++ T(Q) E S4. Therefore (using that 

S4 s Grz) we obtain T(A)(T(D,), q pj) E G rz. By the property of the modal 

associate we have A(D;, p,) E H, that is A(Di, pj) = 1 in SW(H). Cl 

Lemmas 3 and 8 give us a reduction of the substitution problem for H to the 

substitution problem for Grz. 

Thus the problems of admissibility and substitution for H, on basis of Lemmas 

2, 3, 8 and Corollary 7, are reduced to properties of the free modal algebra 

Sm(Grz). This leads us to investigate the structure of this algebra. 
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2. Description of the structure of &(Gn) 

The well-known method [6, 17, 18,301 for the description of the free algebra 
from Var(n), where 3L is a m.l., by means of models is as follows. Let 
Y= (W, R, V) be a model where V: P,,+ 2w. The model Y is said to be 
n-characteristic for the m.1. A iff for an arbitrary formula A with propositional 
letters from P, (P, : = {pl, . . . , P,>), A E A- (W, R V> LA. 

From Lemma 1 it immediately follows that: 

Lemma 9. Let (W, R, V) be an n-characteristic model for the m.1. A. The free 
algebra &((n) is isomorphic to a subalgebra of (W, R)+(V(P,,)) of the modal 
algebra (W, R)+ and this subalgebra is freely generated by elements V(pi), 
l=SiSn. 

Thus the description of Sri(n) depends on the choice of the n-characteristic 
model. 

Let us fix some more notation and definitions. Let 5 = ( W, R, V) be a model 
and X E W. We denote by (X) the set (6 1 3a E X (a R 6)). If X = {a} we 
write (u) for ({a}). Let X be a subset of W and (X) = X. The set X with the 
related R inherited from Y (i.e. the pair (X, R)) is called an open subframe of 
the frame (W, R). The tuple (X, R, V’) where V’(pi) := V(pi) 11 X is called an 
open submodel of the model 9. 

The main property of open submodels is the following: for each formula A with 
letters from P, V : P+ 2w and a E X it holds that a Ilv A eu kvA (in model 9). 
The proof of this property is easily obtained by induction on A. 

A subset X of a reflexive transitive frame (W, R) (henceforth we shall often 
identify frames and their sets of elements) is called a circle (or cluster) if 
3x Vy ((xRy) & (y Rx)ey E X). The depth of a E W is the maximal length of 
chains of circles starting with the circle including a. By 9&(( W, R)) we denote 
the set of all elements of W with depth in. Zn(( W, R)) denotes the set of all 
elements of W which have depth n (this set is called the n-layer of W). 

Now we turn to the construction of a n-characteristic model for Grz. We shall 
construct a sequence of models U, = (U,, dk, V,), where sk is a partial order 
and (+J = (dk+i ) n U:, U, = ‘3&(Uk+,) and V k+l restricted to U, coincides with 
V, (that is (U,, Sk, V,) is an open submodel of the model I/,+,). 

A subset of an arbitrary partially ordered set is said to be an anti-chain if every 
two elements of this subset are incomparable. ni denotes the projection of 
the Cartesian product on the ith factor of the product. 

Let P, := {p,, . . . , pn} be a set of propositional letters. We introduce the set 
U, : = (0) x 2p” x {l} and assume that U, is an anti-chain with respect to pi. The 
valuation V, of the set P, in U, is given by 
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Suppose that the models U,, . . . , ilk with the desired properties have already 
been constructed. Let us denote by T the set of all anti-chains from U, containing 
at least one element from Zk(Uk). Consider the set T x Zp” x {k + 11. The tuples 
of this set we shall add to Uk; the first element of these tuples shows to which 
anti-chain this element corresponds, the second element of the tuple shows its 
valuation. We choose a subset ‘3 of T X 2pn X {k + l}, where 

9 := {(X, Y, {k + 1)) 1 x = {b}, b E &(U,), n,(b) = Y} 

(i.e. in tuples from 9 the first element is a one-element anti-chain and this 
element has depth k in U, and the valuation V, on b is the same as it would be on 
these tuples. Define the set 

I3 k+l = (T x 2p” x {k + 1})\9. 

We denote by U,,, the set U, U Ok+,. The relation Sk+] on Uk+, is given 

bY 

v.X e e/c+, VY E Uk,, 

x q+ly e (x =y) v (y E u, A 32 E n,(x)@ sky)). 

Let 

(c k+*) = (Sk) u (Sk+l)* 

v_x E ok+1 (x E V,+*(Pi)@Pi E J%(x)>9 

vk+,(pi) fl Uk = v,(Pih 

U k+l= (U,+,, %+I> V/c+,). 

Lemma 10. The relation sk+l is a partial order. 

Proof. It is clear that ck+l is reflexive and anti-symmetric. If x sk+, y G k+, t and 
x$Ok+,, then xS,yCkt and xGkt as sk is transitive. Let us suppose that 
XZk+iys k+l t, then y E U, and y Sk t. By definition of Zk+, there exists 
z E ni(x) such that z sky. But ck is transitive, therefore z sk t, and by definition 
of Z/&l we obtain x %k+l t. This proves the lemma. 0 

Moreover, it is easy to see that elements of Ok+, form an anti-chain with 
respect to 6k+l and that the depth of the elements of Ok+, is k + 1. That is, 

Uk = %(Uk+J and Uk+, has the required properties. 
We introduce the model U(n) = (U(n), S, V) by constructing a sequence of 

models U,, k < CO, where 

u(n) := kQl uk, v:= (=j v,. 
k=l 
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Let (W, S, V) be a model, where S is a partial order. The element b E W is 
called a duplicate of the element a E W if a is the smallest element in (b ) \{b} 
and V(a) = V(b) (that is Vpi aIkvpieb kvpi). It is clear that in the model 
( W, S, V) the formula A is valid in a iff A is valid in b (induction on A). If we 
change the model by removal of the duplicate b from the model ( W, 6, V), then 
the validity of formulas on elements of the resulting model will coincide with 
validity in the initial model. (This property is easy to prove by induction on the 
length of formulas, using the preceding proposition). We shall use these facts in 
proving the next theorem. 

Theorem 11. The model U(n) Lv n-characteristic for the modal system Grz. 

Proof. First we note that every formula of the set of theorems of Grz is valid in 
U, as U, is a finite poset. This implies that such formulas are valid in U(n). 

Let us assume that A(p,, . . . , pn) is not a theorem of Grz, that is, A $ Grz. By 
the finite model property of Grz [29] there exists a finite model (poset) 
aT = (22, S, V) on which A is not valid. Let Z0 = 2Z and suppose that the model 
%i = ( Zi, S, V) such that gi(%i) is an open submodel of U(n) and such that the 
depth of 2+$ is not more than the depth of 2 and such that A(pl, . . . , pn) is not 
valid in Zi has already been constructed. We construct the model %i+1 as follows: 

First we remove from pi all duplicates to start with the minimum all the way to 
the top and we obtain a model (2Q, S, V), 2%‘: E %i in which A is also not valid. 
But 2: has no duplicates. Since U(n) has no duplicates, our removal does not 
concern the elements of &j&(2$) and pi = !&(S?~). 

On the model 2??: we introduce an equivalence relation -i, where two elements 
from 2; are equivalent under -i if they both have depth i + 1, and both have the 
same sets of strictly larger elements and the valuation V on them is the same. 

Construct the factor-set 2?j/-i under this equivalence relation. On 2Zj/-i the 
relation s is inherited from 28:: 

[u]_i S [b]_, G 3r E [a]_, 3f E [b]_, (r s f) 

and the valuation V is also copied from 2;. We obtain a model &+i = (pi+,, 
S, V). It is easy to see that s is a partial order and that 23i(Zi+,) = pi, thus 
?&(2Zi+,) is an open submodel of the model U(n), and for every two elements 
from 2’i+1(Z~+l) which have the same sets of strictly larger elements, they differ 
one from another under the valuation V (choice of -i). Moreover, the duplicates 

in %i+17 if any have depth more than i + 1. Therefore 9i+l(%i+l) is an open 
submodel of the model U(n). 

The depth of 2$+, coincides with the depth of 2X!?,!, hence the depth of Xi+1 is 
not more than the depth of 2Z. By induction on the length of the formula B it is 
not difficult to check that 

vx E 2?; ([xl-, lb” B ex II-” B). 
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Therefore A is not valid in ZEj+,. Continuing the construction of the models Z$., 

we obtain the model %m where m is the depth of %,,. Then kQ(Z&) = & and %& 

is an open submodel of the model U(n) and A is not valid in Em. Thus A is not 

valid in U(n). 0 

The element x of an arbitrary model ( W, R, V) is said to be expressible if there 

exists a formula A such that Vy E W (y ltvA a (x = y)). Similarly X c W is called 

expressible if Vy E W (y ltvA my E X) for a certain formula A. 
We need next 

Lemma 12. All elements of the model U(n) are expressible. 

Proof. For a E U(n) we denote by p(a) the set {i 1 a Itvpi}. Let A, be the 

formula 

A 
iv(a) 

OPi A JdO, q TPi* 

It is easy to see that Va E ?Jd,( U(n)), a IlvA, holds and if b E 5?&( U(n)), b # a, 
then l(b It,A,). If b E U(n) and b has depth more than 1, then either there exist 

elements bl, b, with depth 1, bl # b2, b,, bZ E (b) and obviously bll,lA, or 

there is a maximal element in (b) (only one: b,). In the last case there exists an 

element c with depth 2 such that b 6 c < b,. By the construction of U(n), c has 

no duplicates, hence p(c) #p(b,). Therefore b It-,lA,. Thus all depth-l elements 

are expressible. Suppose that all depth Sk elements are expressible, and let us 

denote by f(x) the formula which defines x. Let e be some element of 

&+,( U(n)). We introduce some formulas: 

It is clear that e ltll E,, and if a E U(n) then 

aIt,E, e (a) fl Lj&(U(n)) = (e) f~ CB~(U(n)). 

Therefore if a IF” E,, then the sets of minimal elements in (e)\{e} and in 

((a)\{a>) f-3 Mu(n)) coincide. If a E .Z~+l(U(n)), then the valuation V is the 

same on a and on e. By the construction of U(n) we have a = e. 
Assume that a E .5&+,,,(U(n)) and m 2 2. Then there exists an element b with 

depth k + 2 such that a c b. We consider the set (b) \ {b}. If among the minimal 

elements of this set there are two elements with depth k + 1, then one of them, 

say d, is distinct from e. In this case a It” E, implies (d) fl U, = (e) fl U, and 
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dlk”B,. Then p(d) #p(e), by the construction 
Contradiction. 

Now suppose that there is only one element 
(b)\(b). In view of aIt,& we have 

of U(n), therefore d Ity-lB,. 

d which is minimal in the set 

(d) n U, = (b) n U,, dh& b It” B,. 

Then p(d) =p(b), which contradicts the construction of elements of depth k + 1 
in the model U(n) (it has no duplicates). So every element of the model U(n) is 
expressible. •i 

Note that Lemma 9 and Theorem 11 immediately imply: 

Theorem 13. The free modal algebra of rank n in the variety Var(Grz) is 
isomorphic to the subalgebra (U(n), <)‘(V(P,J) of the algebra (U(n), s)’ 
which is freely generated by the set V(P,). 

3. The universal theory of the free modal algebra 9JGrz) 

As above, if SW(n) is the free algebra from Var(n) then Zf denotes the signature 
of $,(A) extended by constants for free generators. In this section quasi-identity 
is always in the signature J$ of the algebra %,(Grz). 

Two quasi-identities are called equivalent if they are equivalent as universal 
formulas in the class Var(Grz). First we show that it is sufficient to consider only 
quasi-identities in a special, rather simple form. In this part it is convenient to 
use the modal operator 0 as basic (keeping the identities Ox =101x, OX = 
101~ in mind). It is easy to see that an arbitrary quasi-identity of the form 

Ai(.L=gi)+(f =g) 9 is e uivalent to a quasi-identity of the form (Ai (f; ++gi)) = 
1 + (f ++g) = 1. Therefore it is sufficient to consider only quasi-identities of the 
formA=l+B=l. Letusdenotex’:=x,x’:=lx. 

Theorem 14. There exists an algorithm which constructs for an arbitrary quasi- 
identity q an equivalent quasi-identity r(q) of the form 

r(q) = [(v vi) = 1 + 10x0 = 11, 

where 
m 

cpi = ibI x;W.l) A X (OX.)Wt.i.2) 
i=fJ 1 , 

k(j, i, 11, k(j, i, 2) E (0, I>, xi are either variables or constants from I$. Moreover, 
r(q) and q have the same constants and all variables from q are variables from 
r(q). Zf r(q) is not valid in !-8 E Var(Grz) where the variables from r(q), xi, take 
values ai E 58, then q is also not valid in % when its variables xi take the same 
value ar E !I3. 
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Proof. Let q = (A = 1) 3 (B = 1) be a quasi-identity. Then q is equivalent to the 
quasi-identity A = l+ q IB = 1. By introducing the additional variable xc, we 
obtain the quasi-identity 

[(A A (O-3 -O-G)) = 1 3 10x,, = 1 

which is equivalent to the preceding one. Thus we have that q is equivalent to a 
quasi-identity of the form 

f=l * lox”=1 (2) 

in which the variable x,, occurs only in the subterm 0x0. We transform the 
premise of (2). We introduce a variable x, for each subterm of the premise of (2). 
If t is a variable or a constant we take x, = t. Let us consider the quasi-identity 

XfA A (x,++x,,*x,*)A A (xf++*xI,)=l j lox”=l. (3) f=f,*Q t=**n 

From the construction of (3) we easily obtain that (2) and (3) are equivalent. The 
use of this method of transformation of premise goes back to Waisberg, as it 

seems. Note that x0 in (3), as in (2), occurs only in subterms 0~~. Thus q is 
equivalent to a quasi-identity of the form 

“I’(OYj, yk, 0x0) = 1 3 10x0 = 1, 

where ‘If is a boolean term, Yj, yk, k # 0 are either variables or 
transform the premise of (4) into disjunctive normal form. Thus 
equivalent quasi-identity 

ye,=1 + 10x0=1. 

(4) 

constants. We 
we obtain the 

(5) 

We can assume that every variable and every constant (of (5)) x5 and Oxs, 
Ox0 occur in each of the disjunct @. Otherwise, we replace a disjunct 8; by 
disjuncts that are obtained from the original by prefixing conjunctions of the 
missing elements with all possible distributions of 1. It is clear that the resulting 
quasi-identity 

r(q)=[(Vrp,=l)JIOx,=l] 
j (6) 

is equivalent to (5) and has the required form. 
Let r(q) not be valid in % E Var(Grz) when Xi = Ui and when the constants also 

take fixed values. It is easy to see that under the chosen values of the variables 
the quasi-identities (S), (4), (3) 1 a so are not valid in EJ. The fact that (3) is not 
valid when x, = a, gives us a, = *a,, and a, = a,, * urz. Then ur = 1 and (2) is not 
valid in B when Xi = Ui. SO A(u,) = 1, B(Ui) # 1 in 58. 0 

We call the quasi-identity r(q) the reduced form (notation: R.F. or r.f.) of q. If 
a quasi-identity has the form r(q), we say that it has reduced form or that it is in 
reduced form. 
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If q is a quasi-identity, then P(q) is the set of constants from Xf which occur in 

4. 
Let q=[V~j=l+~OX~=l] b e a quasi-identity in r.f. We introduce the 

additional notations: 

el(Vj,,.) := Ixi I Ck(J, . i,1)=O&i>O)v(i=O&k(j,0,2)=0)}, 

O*(qj) := {Xi 1 k(j, i, 2) = O}. 

9(q) denotes the set of disjunction members of the premise of q which have 

the property e,((Pi) z e,(Vj). 
Pl(qj) and Pz(qj) denote the sets el(qj) fl P(q) and &(cpi) II P(q) 

respectively. 
If (W, R, V) is an arbitrary model, where the domain of the valuation V 

contains the set P(q) (which we now consider as consisting of propositional 
letters), then P(a) denotes the set 

{piIpi~P(q)&aIl,pj} foraEW. 

We turn to basics for further results in constructing models on the members of 

9(q)* 

Models on subsets of 9(q) 

Let S!YG 9(q). We introduce the model (Z, U, V), where Vqi, Qli E 8 

qia(Pj e (Q& = qj,,.) V (bh4 2 U%).)) 

and the valuation V on the set P(q) and the set of all variables from q (both 
these sets we consider as consisting of propositional letters) is determined by 
equality: 

v(xi) := {Vj 1 X E %(vj,,.)>. 

The reader will note that the relation 4 is a partial order, that is (2, 4) is 
poset . 

Let for each qj E % the subset T(qj) of the set 9(q) be fixed (e.g. T(qj) = 0 
is allowed) such that qj $ T(qj) and 

We consider elements from distinct T(~j) and 3? as distinct elements: T(qj) n 

T( q,i) = 0, T( qj) n ST = 0 ( even if these sets had non-empty intersections, for the 
sake of notation). 

On the set B? U [lJvjpiez T(qj)] the relation s is determined such that: s is the 
reflexive, transitive closure of the relation (a) U (sJ where 

It is easy to see that s is a partial order. On the frame (Z’U [iJqjEa T(qj)], s) 

the valuation V is defined as above: V(xJ = { qj I x E B,(rpi)}. 
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Let us recall that the constants from P(q) are interpreted on &(Grz)(Sm(Grz)) 
as distinct free generators. 

Theorem 15. Zf the quasi-identity q has reduced form and is not valid in 9,(Grz), 
then there ex&s a set %, where % E 9(q), and for each vi E %? there exists the set 

T(qj) s 9(q) such that tlq, E T(qj)( 0,(q,) = e,(cP,)) and the model (% U 

[U,,EZ T(Vj)], 6, V> satisfies: 
(1) There exists ~j E % such that k(j, 0, 2) = 0. 

(2) For each element ~j from thti model, ~j It” ~j. 

(3) Zf X is a subset of this model and A is a subset of the P(q), then there exists 

an element I&%‘, A) from this model such that P,((p(X, A)) = A and 

Proof. If q is not valid in &(Grz), then q is also not valid in Sk(Grz) for some k, 

where k is greater than the number of elements in P(q). By Theorem 13 we then 
see that q is not valid in (U(k), s)‘. So there exist subsets Bi of the set U(k) 

such that 

y Vj(Bi) = l, OBO # 0. (7) 

Let Y be the set (Q7i / qj(Bi) # O}. Th en Y G 9(q). For each qj E Y we 
introduce the set [Cpi] c U(k) where 

[Vjl:= U {Vm(Bi) I ~)rn E Y& ~,bd = h(cp,)>. 

We denote by max([qj]) the set of maximal elements of the set [~j] (in the frame 

U(k)). 
Each element a of U(k) is included in a unique set ~pl(Bi) (recall that the sets 

Q~,,,(BJ are disjoint). We fix for each element a E max([qj]) the set ql(Bi) such 

that a E Q+(&), VI(&) E [Vj], VI E Y, and denote this qr by qO (that is 

a E %(4)X 
For an arbitrary member qj of the set Y we introduce the set I’, 

c(Vj) := {% I a E max([%l)~~ 
Now we may define the set 2%‘: 

For each Qli E 2 let T(qj) denote the set 

{V/C 1 Q)k E Y, h(qk) = @dVj)}\{(?‘j,,.>. 

Now our aim is to prove that the model (%‘U [lJ,+ T(qj)], s, V) has the 
desired properties. 
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By (7) we have &#0. Let x E Bo, then by (7), x E qj(Bi) for some i. So 

k(j, 0, 2) = 0 and ~j E Y. If we take an arbitrary qE E I’, then k(& 0, 2) = 0 

and qg E 3% Thus property (1) is true. 

Before we turn to property (2), we shall prove the following result. 

Lemma 16. In the frame (2, a), O,(qj) = O,(vj) ho&for each qj E 9a,(aQ). 

Proof. Let qj be a member of 5?&(%). By the construction of %‘, qj is a member 

of c(vj) and Cpi = qII, a l max(]~J), a l ~)n(Bi) = Vj(Bj)* 
Consider the maximal element v of the frame (U(k), G) such that a G r~. By 

(7) there exists qE E Y such that v E qE(Bj). If X, E &(q~), then v E OB,. This 

implies that v E B, as v is a maximal element of U(k). But v E Q+(B,), therefore 

x, E I. Consequently &(Q@ = e,(q,,). 
We claim that qs = 91i. Let X, be a member of O,(q,,). Then we have v E OB,, 

as v E p(B,). Therefore as v implies a E OB,. We recall that a E va(Bi), 

therefore 0.q E &(qJ. Since qPa = Cpi, we obtain x, E &(qj). Hence O,(qj) z 
O,(q,,). Let us assume ez(qj) $ e,(&. Then u is clearly maximal in [qE]. Hence 

qE E c(qE) and qs E 3% Then from the assumption &(qj) $ &(q+) it follows that 

qjUqE, qj # qE which contradicts qj E 5?&(a”). 

So MVj) = e,(q,,) and [ cpE] = [qj]. Therefore from a E max[q+], a G u, u E 

[IJQ] we conclude that a = 21. Then from u E qj(Bi) and v E qE(Bi) we conclude 

that ~15 = qj and ei(qj) = Oz(qj). 0 

Now we need the next lemma. 

Lemma 17. In the model (2, 4, V) qa It” qLy holds for each vor E 22 

Proof. We prove this lemma by induction on the depth of the element q~& in the 

model (a”, a, V). If qa has depth 1 then by Lemma 16, rp, ItVqp,. Suppose that 

the claim of lemma holds for all qE E 9&(Z). Let qa be a member of _5&+i(%). By 

definition of the model (Z, a, V), 

Therefore in Q)~ the nonmodal part of the conjunction of qa is true. Let 

qn ~t-~ox~. Then there exists q+ E 35’ such that qa Q Q+ and Q+ ItVx,, that is 

X, E e,(qP). If 99 = qorJ then x, E &(q,,) and x, E e,(q,,). Now we assume that 

qa # qP. Then qp E 9,(g) and by the induction hypothesis rps Il-,qg. 

Since the relation 4 is reflexive we obtain cps ltVOxr from cps ItVx,. Then 

x, E e,( q+) follows from qP It” vs. At the same time 82(rps) E e,(q,,) and we 

have x, E e,(qfi), and x, E 8,(q,) gives us x, E E&(97,). 

Assume now that x, E e,( qa). If x, E e,(q,,), then by definition of V on Z? we 

have qa Itvx, and qa tt&xr. Let now x, E 8,(g7,)\ &(q,); by definition of %‘it is 
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true that 

Vn = (Pa, a l max([4), a E Q&z(&). 

Corrollary: a E OB, and a $ B,. Then there exists b E U(k) such that a <b and 
b E B,. By (7) there exists vi E Y such that b E qi(Bi). The relation a <b gives us 

%(R) 2 %(Q- M oreover the relation a < b implies 0,( qj,,.) 2 &(p7,) (as a E 

max([qJ)), that is, &(G) 2 &(Q+). 
Let qfi be an arbitrary member of c(rP,). Then e,(qO) = &( qj) and Q)~ 4 qP, 

Q)~ # qP. From b E qj(Bi) and b E B, we conclude X, E &(qj), X, E &(qj). But 

ez(qP) = &(%), consequently X, E r3,(vD). By means of qol 4 Q, Q)~ # qO, 
qa E .Zk+i(Z), we conclude that Q E gk(ZZ). Then by induction hypothesis we 
may conclude that qfi It” q+. 

Hence, by X, E t!9,(q0), it is true that qP Il-VOxr. Therefore Q)~ 4 Q implies 
qLy 11~0~~. Thus we proved 

X, E e,(qE) a unbox,. 
This conclusion and the observation that on q= the nonmodal part of the 

conjunction 97, is valid gives us that (P~ IkV Q)~. 0 

On the basis of this lemma we may prove next: 

Lemma 18. For each element qol of the model (2t’U [U,,z T(Q+)], c, V) we 

have qol It” qa. 

Proof. Let qj be an element of the set 3?. Since (%?, Q, V) is an open submodel 
of the given model, we get Q7i ll-“rpi by Lemma 17 and we may conclude that 
qj II-” qj in our model. 

Assume that qk is an element of the set r(~ji). By definition of V on Q)~ the 
nonmodal part of the conjunction plk is valid. 

If X, E &(qk), then X, E &(qj). We showed above qj Itvqj. Hence ~jlk,OX,. 
But Q)k d qj, therefore qk ItVOxr. 

Assume that t&ltVO&. First suppose that Q)kkvx,. Then x, E el(qk), and 

from el(qk) E e2(q k we obtain x, E &(qk). Next suppose that qk ItVix,. In this ) 

case there exists qI: Q)k < cpr, where qrIkVx, and x, E e,(&. There exists only one 
immediate successor for qk: vj. Therefore qj ItVOxr. As we noted above qj It-” qj, 
it follows that X, E &(cpi). Since Q?k is an element of the set T(qj) we obtain 
X, E e&&). Thus X, E e&&) e Q)k ItvOX,. Therefore qk #I/ Q)k. 0 

According to Lemma 18, the model (2 U [Up,Ez T(qj)], G, V> has property 
(2) from Theorem 15. 

Lemma 19. The model (2fU [IJv,Ez T(qj)]p 6, V) has property (3) from 

Theorem 15. 
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Proof. Let X be a subset of our model and let A be a subset of the P(q). We 
may without loss of generality assume that X s 2 such that Vq, E Z’(qj) we have 
&((pj) = t9,(~,). By definition of 2f? we have 

x= {cp,Ij~k), uj E max([cpJ), aj E q,(Bi). 

Consider the set {uj ( j 6 k}. Let {aj ) j s m} be the set of minimal (in the frame 
(U(k), 6)) elements of the set {Uj ) j s k}. According to the construction of the 
model U(k) there exists x E U(k) such that 

(X)={X~U({ujl~sm~)9 Z’,(x) = A. (8) 

By (7), n E qa(Bi) for certain qe E Y. Since P,(x) =A, x E Q)n(Bi) implies 
P,(v~) = A. We claim that 

Indeed, let x, be a member of e,(q,,>, qIlj E X By the choice of x we have x c uj. 
Thus from aj E q,(Bi) and from x E Q)(y(Bi) it follows that aj E OB, and x E OB,. 
Thus we have x, E e,(q,,), which was required. 

Now we assume that x, E 02(cpn)\8i((pa). From x E q,(Bi) and from x $ B,, 
x E OB, follows. But these assumptions by (8) imply that there exists an Uj, where 
j s k, such that Uj E OB,. Therefore we have x, E &(q,,), since aj E qai(Bi). Thus 
we conclude 

It remains to note that Q)~ E Y and either Q)~ E 2? or qa E (lJP)jEZ T(qj)) and that 
Q)= is some element of our model. Corollary: we may choose the element cpo for 

q(% A). •I 

With Lemma 19 the proof of Theorem 15 is completed. We proved that the 

model (2 U [U’p,-E~ T(qj)I, S, V) has properties (l)-(3) from the formulation of 
Theorem 15. 

The next theorem is basic for the remaining results of this paper. 

Theorem 20. Let q be a quasi-identity in reduced form (in the signature Xf). Zf 

there exists a set 2, where 2%’ E 9(q), and for each qj E 2’ there exists a set 

T(qj) G g(q), where Vq, E T(Qli)(%(vk) = 62(qj)), qj $ T(qj), such that the 

model (ST U [Uq,Ez T(Vj)l, S, V) has properties (l)-(3) from Theorem 15, then 

q is not valid in &(Grz). 

Proof. Suppose that a”, T(qj), qj E 2? with properties from the condition of the 
theorem have been chosen. We take an n-characteristic model (U(k), S, V) for 
Grz (see Theorem 11) where k is the sum of the number of elements in 
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2’~ [IJ T(c+I~)], qj E L?i? and of the elements in P(q). We stipulate that P(q) is 

included in the domain of V, that is constants from q under valuation V are 

mapped into subsets of the set U(k). First we prove the following lemma. 

Lemma 21. The frame %?I = (E U [LJ,,% T(qj)]> s) may be included in the frame 

(U(k), s, V) as an open subframe. Moreover, 

~~,~(~U[~‘zT(~j)])~ VPiEf’(q) 

pi E pl(Vj) Ie Fj E v(E:.)J 

where V is the valuation on U(k). 

Proof. We shall prove by induction on n that the claim of the lemma is true for 

9&(%,). First we assign to members qj of the frame 2, distinct propositional 

letters p(qj) from (P,\P(q)) (where V: Pk+ 2 U(k)). Consider the set 9J(Ei) of 

elements of depth 1. Recall that if c E U(k), then by P(c) we denote the set 

{p 1 p E P(q), c lkvp}. By the construction of U(k) and ZJ,, there exist elements 

aj E .?8l(U(k)) such that P(Uj) = Pl(qj) and VP~ E (Pk\P(q)), Ujlk,pc eps = P(Cpi)- 

Therefore 9,(%‘,) may be considered an open subframe of the frame C&(U(k)). 
Suppose that gfi(%i) satisfies the claim of the lemma. Let qj E Z,+,(%,). By our 

assumption the set (Cp,) \{ vi} is a subset of the set S(U(k)). By the construction 

of U(k) we may conclude that there exists aj E &+,(U(k)) such that 

(aj)\{aj>= (Vj)\{cpi>y 

p(aj) = {PC I ajltVPE, PE E p(q)) = pI(qj)J 

VPE E (4Wq)) ajltvPcePc =p(cP,) 

(aj is not a duplicate SO that Vb E (qj) b It, P(qj)e b = a,). 
We assign to qj an element aj E L&+,(U(k)) for each qj E ZH+r(Z1). We obtain 

that 9&+,(%‘r) is an open subframe of the frame C?&,+,(U(k)) and the desired 

properties are true. Cl 

Now we fix the inclusion of %‘r into U(k) ( as an open subframe) which exists by 

Lemma 21. Thus we regard the Q)~ E Z?, as elements of the model U(k). 
We now turn to the construction of a special sequence of subsets q,t~ U(k), 

Q)aE%;, tez, -1 G t s m, where m, is the number of elements in the set 2,. 

This sequence will have the properties: 

G-4 
(b) 
(cl 
Cd) 
(4 

If a#/3, then q7r,n &=0. (9) 
For each F~, qp’,~ ~2’. (10) 

Vu E cP,f P(a) = Pi(Q&X). (11) 

The sets q& are expressible in U(k). (12) 
If t 2 0, then Vx E U(k) (x 4 U q,h), Q)~ E ZI, implies that there exist distinct 

q;,, . * * > rpj,,, such that x E oq,t, 1s r 6 t + 1. (13) 
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Let (Vq,, E 2,) Q);’ be {rp,} E U(k). By Lemma 21 we have P,(v~) = P(v~), 

where we recall that P(v~) := {p 1 p E P(q), cpn Itvp}. Therefore (11) is true. By 

Lemma 12 all elements of U(k) are expressible, so is therefore vii, and (12) is 

also true. 

Consider the first layer of the model U(k) without elements of the chosen sets 

v;‘. Let n E %(Vk))\U {vi1 I qPa E 2?,}. By property (3) from the conditions of 

Theorem 15, there exists for ,Z#? = 0 and A = P,(x) a Q?( %‘, A) such that 

0,(&O, A)) = %(~(0, A))> P~(v(% A)) = A. 

We fix such a ~(0, A) for each A = P(x) and we put 

~(0, A)“:= {d0, A)) U {Y (Y E (%(U(k))\U {~,a’ 1 ~)n e Z)), P(Y) =A). 

If Eli f ~(0, A) f or all the above fixed ~(0, A), then we make q,” = q,;‘. It is 

obvious that qzr’, q,), qi E %I have the properties (9) and (10). Moreover, if 

n E q(0, A)‘, then P(x) =A = Pl(q@, A)), so that (11) is true for Q@, A)“. 
Therefore vu, vi E Z1 also have the property (11). Property (12) follows for IJ$‘, 

qi E Z, from the finiteness of .Yi(U(k)) and Lemma 12. 

If x E U(k), then there exists y E Zr(U(k)) such that x my. By the construction 

of 9% (pm E $8,, we have y E ‘pp for some qj E gl. Therefore x E OQ$‘. Thus 

property (13) holds for Q$, vj E 21. 

Let us assume that subsets Q.& Q?~ E Z&, with the required properties (9)-(13) 

have been constructed (t < ml). 

Let qEl, . . . , va~t+~) be some members of the set Z&. We introduce the set 

where from now on f(X) denotes the formula defining the expressible set X (Q& 

is expressible by our assumption). In order to simplify notation we shall often 

denote the formula and what it defines by the same symbols. The formula at the 

right-hand side of the equation is denoted by q(X) (where E#? := 

{qorl, . . . , q,~+~))), the set [Q)A . . . , v~(~+~)I is denoted by 2. 
Our goal now is to construct the sets &+l, QJ~ E 2. An important point is to 

obtain the fulfilment of (13). So, we must “force out” the elements of U(k) not 

belonging to lJ qf+’ to the set of elements each of which has at least t + 2 

attainable by G sets (PC’. For this reason the construction below is called the 

force-out method. 

Force-out method 

We consider all sets X of the form { cprrl, _ . . , cpacr+lj} and all subsets A of the 

set P(q). By property (3) of Theorem 15 for all 5Y and all A there exists 



q(X, A) E Z, such that property (3) is fulfitfed We fix q(X, A) for all R and A. 

in the next stage of the proof we consider only X for which the following hol&. 

(A) 3A E P(q) such that q(Z, A) E /SY. 

For A c P(q) we denote by rp(A) the formula 

If A c P(q) and ~(2, A) E Z then put 

If A c P(q) and g@, A) $ Z then put 

W(X A) = q(A) A V(X) A Q(V(X)- ~64) v Q), (15) 

where 8 is the disjunction of alI formulas of the form (14) related to the same 2. 
We introduce the sets (cp:>‘, qi E %,, by setting 

The obtained sets are expressible since the new sets (14): (15) are expressible 
and there is only a finite number of these sets. We need: 

Lemma 22. In the cuse X satisfies (A), the arbitrury maximui elemerlt from 2 is 
included in the set u (q,1)‘, qj E S?[. 

Proof. Let x be a maximal element of % in the frame U(k). Then x II-” v,v(~Z)_ 
Consider P(X) where 

if rp(X, P(X)) E BE then x is included in the set defined by (14), therefore 
X E Crp(Z P(n))‘)‘. 

If q(X, P(X)) $ Z, then x is inciuded in the set defined by (I:), therefore 
X E W(SV, P(X)) E (C&z, P(X))‘)‘. Cl 

Proof. If X1, & are t + I-element subsets of the set 2’, and Zl # & and both 
satisfy (A), then R’, and %i are disjoint. For this reason the sets added to q~; 
which are defined by formulas T(&,A), W(Rt,A) and T(&,A), W(&,A) 
have no common elements as subsets of the sets ,%$ and k@ respectively_ 

If A,, A,c_P(q) and A, #A 2, then in &W of the formulas cp(A,) and cp(A,), 
the sets T(Z,A,)(W(X,A,)) and T(X,A2)(W(X’,A,)) also have no common 
elements. 
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Thus all added sets are disjoint. All added sets are subsets of she sets of the 
form v(X). But ~(3”) and U cp,‘,, q* E T,, have no common elements. 
Therefur 2, if qpp f yP, then (glh)’ n (c&J = $. q 

Lemma 25. Jf X is t + I-elemenr subset of tha set SE’, and 2 has &he property (A) 
andxEi??andx$CJ(q’,)‘, Q?~E%, then thereexist(t+2)members rpa,, l~j< 
t + 2). of the set 2, such that 

Vj (1 S j St + 2) X E o((Cf&)‘). 

Proof. It is easy to see that it is sufficient to prove the lemma assuming that x is a 
maximal (in U(k) under 6) element satisfying the condition of the lemma. Thus 
let x be maximal, then by Lemma 22, ((x)\(x)) n % is not empty. 

Consider the set ((x)\(x)) fl %‘. If Y is an element of this set, then Y is 
included in one of the sets in (14) or (15) (by the assumption of maximality for x). 

First we assume that there exists a y E ((x j\(x)) II &such that q(X’, P(Y)) $ 
2. Then Y is not included in a set of the form (14), therefore y is an element of ;? 
set of the form (15). Therefore y E (~(2, P(y))‘)‘, but q(X, P(y)) 9 X and x my 
imply the conclusion of our lemma. 

Now let 

vy t5 ((x)i{+ n 2 ~(ae, p(y)) E z. (16) 
Then each such y is included in a set defined by a formula of the form (14). 

Hence y It” 6, where 8 is a formula from (15). 
if P(x) is such that QI( LTV?, P(x)) $ & then by =; Il-y t? and by (15) it follows that x 

is an element of the set defined by formula W(%, P(x)). Thus we have 
x $ (q(X, P(x))‘)’ which contradicts x $ U (q$)‘, q& E Z’,. 

If P(xj is such that tp(%‘, P(x)) E X, then we again obtain a contradiction. 
Indeed in this case x~t~gs(P(x)) A q?(X). If x CY and _~II-~IJJ(%‘), then as we 
noted above, by assumption (16) we get yt~yf3. Then yIt”q(A) for some 
A E P(q), where q1(2Z, A) E 2%‘. Thus 

Y 1~V p(zy,,;y P(B). 

This fact and the above observation give us 

x II-V T(%, P(x)). 

Then x was included in (rp( X, P(x))‘)’ and this is in contradiction to x $ LJ (cp:)‘, 
pa E EI. Thus (16) is impossible. El 

We now turn to the proof of Theorem 20. Now we make the second step of the 
cunstruction of the set tpz’. We consider only those t + l-element subsets of 
the set 37, which do not satisfy (A). That is, we consider all Xc_ RI, b? = t + 1 
satisfying the condition 

(B) VA cr P(q) q(% A) 8 %- 
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We fix for each such X and for A c P(q) the formu!a E(X, A) of the 

form 

E(X A) := V(A) A Q(Z) A 0(@(x)-, V(A)) 

where the formula v(A) is defined just before (14). 
We introduce the sets (vi)“, Cpi E E,, by putting 

(17) 

Note that formula (17) differs from (15) only by the absence of 6. Therefore 
Lemmas 26-29 are proved similarly as Lemmas 22-25. We had the possibility not 
to split the cases (A) and (B) by the corresponding union of (15) and (17). But 

our construction is rather complicated and difficult to trace. For this reason we 
have chosen to break the construction into a number of simple steps, although we 
see a certain repetition. 

By the construction of (#)” all these sets are expressible. 

Lemma 26. If 2%' satisfies (B), then every maximal eiement x of the sei %’ is 

included in the set IJ { ( Q$)” 1 qj E %I;). 

Proof. Let x be a maximal element in %’ (in the frame U(k) under s). Then 

x It” q(P(x)) and x II-” q(Z). Assume that y E U(k) and x s y, x # y. Then by the 
maximality of x in %‘, we have y $ %? and y It- Vlly(X). This observation gives us 
x ttV E(SZ, P(X))_ As a consequence x E (q( 2, P(x))‘)“. Cl 

Lemma 27. if cpa # rpp, then (9:)” n (C&J = 0. 

The proof is a reformulation of the proof of Lemma 23. 

Lemma 28. !fa c (c&)“\c& then P(a) = PI(qn). 

Proof. For a satisfying the premise of the lemma we have Q)= = q(%‘, A), and 
alkv v(A) by the construction of (yb-)“. By the definition of &;iE, A) in the 
condition of Theorem 15, we have P,(@(X’, A)) =A. From a WV&A) we obtain 

P(a) = A, P(a) = J’,(9(%, A)) = p,(cp,). 0 

Lemma 2!l. [f 2%’ is a t + l-element subset of the set B?, with property (B), x E %? 

and x $ U bO” 1 (PP E if,}, then there exists qP in the set Z’, \X such that 

x f O((fPplsy?- 

Proof. If x satisfies the condition of the lemma, then by Lemma 26 the set 

((x)\{x)) n 2 - IS non-empty. We consider a maximal element z of %? which is a 
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member of the set ((x)\(x)). By Lemma 26, z nil {(Q):)” 1 q-b E %I}, therefore 
z 1~” ~(2) and z $ U {((P’,) 1% E %I. 

Thus z was included in the set of the form (17). So z It-,E(%‘, A) and 
z E (9(X, A)‘)“. But q(X, A) $ X, by (B). Moreover, xsz and so we have 
x E O((q(%‘, A)‘)“). 0 

Thus we have constructed the sets (Q-Q’, (&)“, qa E X,, and we have proved 
some of their properties. We define the sets q~,‘,“, rp= E ZI, as follows 

Qq’ := (CpL)’ u (q.$)“. 

Lemma 30. The sequence of sets q& (P* E St’, , - 1~ r =S t + 1, has the properties 

(9)-(13). 

Proof. Since (p:)’ and (9&)” are expressible, the sets q;‘p” are also expressible 
and (12) is true. The sets defined by (14), (15) and the sets defined by (17) have 
no common elements in view of the conjunct ~(8’). For (14), (15) it is true that 
3A E P(q) CJI( Z’, A) E FX’, and for (17) it is true that VA c P(q) g~(k?if, A) 6 X (that 
is: the X in (14), (15) and in (17) are distinct. Using this fact and Lemmas 23, 27 
we obtain that (9) is true. 

Property (10) is obvious and (11) follows from Lemmas 24, 28 and from the 
induction hypothesis. 

Let us assume that xttU{~$+*I tpa~2Zl}. Then x~l___J{&,~~~~~~}, and 
since (13) is true for @i, rp,EZ&, -l<jct, we get xEO& lGiGt+l. 
Therefore either x E @&. where LY F { jl, . . . , j(t + 1)) and (13) is true for x and 
p:‘: or x Z-V I$ (Xj, where X:= {vi,, . . . , Qlj(,+*)}. Let XII-“t/J(X). If the set X 
satisfies (A), then by Lemma 25 there exists a ‘ps E ZG, where p@ $ X and 
x E O(q$)‘. Then x E Orpi+’ and we obtain that (13) holds for x, and QJ~’ is true. 
Suppose that (A) is not satisfied for X. Then (B) is satisfied. Then by Lemma 29 
there exists a qfl E &\X such that x E O(q,;S). Then x E O(@‘) and we again 
obtain that (13) is true for x and q,bt’. Thus (13) is true. 0 

Continuing the described construction we construct the sequence q,‘,, q= E Z’i, 
-1 G t em,, with properties (9)~tZ3). 

We claim that 

&J%, 977 = W). (18) 
I 

Indeed let x E U(k) and x 4 U {Q)ZI-’ 1 QI~ E %‘,}. Then by (13), x E O9$t-’ 
for each qs E 2~‘~. Therefore for F?i? ;= ii!‘, we have x IkV I/J(%). Note that for all 
A c_ P(q) it is true that q(%‘, A) E iiZf (that is, at the construction of the sets qz’ 
(A) always takes place). We take A := P(x) (where P(x) := {pi 1 pi E P(q) & 

xIkvpi}). Then x+.,q(P(x)) A ty(%‘) and in this case VQ(x.XP.S)Ez q(B) = 
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vAspCq) q(A). Therefore for z E U(k) 

holds, and therefore x Itv T(% A). 

So we have x E cp(%‘, P(x))“~ and (18) is proved. 
So the “force-out” method is now complete. 

We now introduce the special valuation S of the constants from P(q) (which we 
consider here as propositional letters) and of the variables from q in the frame 
U{k). As before we use the same notations-xi-for variables from q and for 

constants. Let 

vx E q7:’ xlksxj e XiE O*(qa)* 

In view of (ll), the valuations S and V on the set P(q) coincide. The correctness 
of the definition of S follows from (18) and (9). 

Lemma 31. In the model (U(k), G, S) we have Vx E ~7:’ (x II-s qa). 

Proof. We shall conduct the proof by induction on the minimal t such that x E Q&. 
Suppose that x E Q;* (qp, E %;), that is t = - 1. We recall that by Lemma 21, 2, is 
au open subframe of the frame U(k) and Vpi E P(q)pi E Pr(rP,)Q cpi E V(pi) 

where V is the valuation of the model (U(k), s, V). 

If we consider qi E Ei as elements of U(k) and consider the valuation S on qjp 
then by definition of S, qj Iksxi iff Cpi Ii-v .xi in the model (%I, G, V). In the last 

model, by property (2) from the condition of Theorem 15, we have Qli lkv qj* As 
we noted above, the valuations V and S on elements of Z’, (Z?r c U(k)) coincide. 
From qjlkv9Jj (in Er) and the fact that a3, is an open subframe of the frame U(k) 

and the coinciding of V and S, we obtain qj ks qj in the model ( U(k). 6, S). But 
XEQ),’ implies x = qa and x IFS Q&. 

Let us assume that t =0, x E <q$\q;‘)_ Then x E .&(U(k)) and by the 

construction of qt we have qm = q(0, P(x)). Moreover, O,(q&) = &(p7,). 
Therefore x lbsxi iff xi E O,(rpu). Since x is maximal in U(k) we obtain xlt,cp,. 

Now let for all y E U {q’, 1 tpa E SYl}, the claim of our lemma be true and 

let x E (qp’i”\q+). Then either x E (rp;)‘, or x E (&&“. First we consider the 
case x E (q&y. 

I. x (5 ((&$\&). (19) 

Then x kv E(%‘, A) and qE = rp(#, A). Therefore we have A = P(x) and 
x II-,, qr( X). By the definition of S, x IFS xi axi E &(g+). Therefore the nonmodal 
part of the conjunction Q is valid on x under S. Now consider the modal part. 

Assume that xsy and y&,x,. If y~lJ{q$Iq~~Er;), then ye&, and by 
induction hypothesis y Es q~,+ Therefore y IksXi implies Xi E t?,(qp) and Xi E 

Bz(qp). Then x E O(cp>), and from xtV q(Z) we obtain 9~ E ZX By Property (3) 
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from the condition of Theorem 15 by choice of a(%‘, A) we get 

(20) 

From (20) and xj E O,(qfi) it fzllows that 

X; E e,(q(x, A)) = ez(qE). 

Now we assume that y $ lJ q&, Q;~ E Xi. 
Then by (13) we have y E 0(q,h;), 1 ~j G t + 1. This property and x < y, 

Xik~ly(X) imply X= {Pai, . . . , qac,+lp) and so imply that YII-~ ly(ZX). From 
Y iky E(Z’, A) and x S y and y It-” *u(X) we obtain y KV&4) and y ICY E(%‘, A). 

Thus y E (q$)“_ Then from y ItsXi we obtain x, E 8i((ps) and Xi E 8,(~~). 
Thus we have shown that 

Turn now to the coinverse implication. Let Xi be a member of the set &(qE). 

Then by (20), xi E et(%) or xi E %(@, where Q)B E %. In the first case x Itsxi 
and x it-&xi. Assume that the second case takes place. 

Pn view of x ItVW(aYP), there exists a y such that x sy, y E rpi. By the induction 
hypothesis, y !!-, q~, therefore Xi E f32(qfl) implies y ItsOxi and then, of course, 
x II-S oxi. 

Thus we have proved xi E f3,(pE) ax ll-s_sOXi and by using the converse 
implication proved above, we have Xi E ez(f.pE) (Jx IksQXim This property and the 
remarks made by us above about the validity of the nonmodel part of f3, allow us 
to conclude that x Ws cpE. Consequently, in case (19) the claim of the lemma is 
true. 

Let the second assumption be 

II. x E ((W\<p;). (21) 

As in case (19) by the definition of S, the validity in x of the nonmodal Fart of 
pE is evident. Consider the modal part. In case (21) x will be included in the set 
defined by (14) or (15). First we consider the case that x is an element of (14), 
that is 

x Iky T( S’if, A), VE = v(K A)- (22) 

Assume that x IksOXi, that is x S y, y ItsXi and y IFS Xi for some y. Assume that 
~I~,,I#J(%). Then y IEV~(B) for a certain B where q(%?, B) E X Then it is easy to 
see that y PV T(%‘, A). In this case, by the construction of (q(X, B)‘)‘, y was 
included in the set (q(Z!?, B)‘)‘. Then, by the definition of S we have 
Xi E 8,((p(Z, B)). In view of the definition of cp( EX, A), (20) is the case. Since 
q(%‘, B) E Z’, we obtain from (20) (as Xi E 8,(q(R, B))), xi E &(~(?Z’, A)) = 

h(a (see (22)). 
Assume now that ~(y It-” v(X)). If y 4 lJ { & 1 cp, E Z’l}, then by (13) we have 

Y E O(~p’,,)P lSpGt+l. 
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Thus, x =~y and x It-” ~/J(X) imply y lkv q(X), which contradicts our assumption. 

Therefore y E U ~7b, pm E 2,. So y E cph, Q)_ E 2?,. By inductin!: ilypothesis 

Ytk%, and from y !kSxj we obtain xi E O,(q,) and xi l tiz(rpa). From x s y it 
fol!ows that x E O(&)- By x lkv t&(X) this implies qa E %‘. Then from (20) (by 
the definition of ~(2, A) (20) is true) and Xi E &(q,,), we may conclude that 
Xi E @,(q(%?, A)) = @,(tpE) (see (22)). Thus we obtain 

Conversely, let Xi be an element of O,(Q). As we noted above, x It” ?#y( X) (see 
(22)). Therefore there exists a y such that x my and y E rp(X, A)‘. By induction 
hypothesis, y lkS q(S?, A) holds. But we had xi E t3,(~) = 02(rp(%‘, A)) (see 

(22)). Therefore y lksoxi and then, of course, xlkSOxj. Thus we proved that 
x lks OX, (SX; E e,(rp,,). Therefore it is true that x !iiS 91~. The case (22) is completed. 

Now we assume that x was included in the set defined by (15), that is 

x If-v W(% A), q(x, A) = 9’~. (23) 

Assume that x Il-SOxj. Then there exists a y such that x my and y It-,wj. 

Consider the case y $ U {q,b, 1 apa E ZZ’,}. By (13) we have y E o(qQ, 1 s i =z 
t + 1, and in view of x II-,rj~(X) (by (23)) we obtain y II-” q?(X)- By the form of 
(15) we conclude that y II-” W(SV, A) or y 11” T(%‘, I:), where q(%, B) E SK 

First we assume that the second case is true. Then y E ((v(%‘, B~)‘\QJ(%‘, B)‘) 
and we have case (22). As we showed above, in this case y IFS @( Z, B). But by 
assumption y ItSxi, consequently xi E O,((p(%‘, B)). Using (20) ((20) is true by the 
definition of ~JI,!%‘, A)) we obtain x; E 6&(&X, A)) = e,(cp,) (see (23)). 

Now consider the case y 11” W(X’, A). Then y E ((q(Z, A)‘)‘\~J(%, A)‘). From 
ylt,xi we obtain Xi E O,(q(Z’, A)), and by using (23) we conclude that X, E 

%(%). 
Now we turn to the consideration of the case y E U {I& 1 cpa E Z?$}. Then y E rp’, 

for a certain (pn E d -, and x E O(&). From (23) we have x Ii-,,ly(%‘), therefore 
q, E 2. By induction hypothesis we obtain y lkS qn. Then xi E e,(q,,) and 

xi E 0,(q_). Using (pp. E X at?d (20), we obtain xi E 0,(&X, A)) = O,(tpE). Thus 
we completed the proof of the Implication x IksoXi +Xi E f3,(q,,). 

Suppose that Xi E O,(q,,) = @,(tp(%‘, A)); by (20) we have Xi E 8,(rpE) or 
Xi E t9,(qP), qP E 2. If the first case holds, then x lkSxi and x ItsOxi. Let the 
second case be true. Then Xi E e,(9+r), where q0 E %?. Then from xltv q(X) (see 
(23)) it follows that x s y, y E cpb, and x l O(qp’s). By induction hypothesis, 

Y 11s qp and xi E B,(q,s) implies y ItsOxi and x Il-SOxi. Thus we have proved 
that x IksOXi iff Xi E &(cp,-)_ Consequently x IFS tpE in the case (23). 

Thus we have proved that VX E ((&$\(&)) x II-~ qe. By combining this result 
with the considered case (19), we obtain that Vx E (I&+‘\Q&) x It, ‘ps_ 0 

Now turn to the completion of the proof of Theorem 20. By Lemma 1, for 
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arbitrary x E U(k), 

x E r&$(x;)) G x ::s qa. 

In view of Lemma 31 and (24) it is true that 

VZ’ C V,o(S(Xi)). 

(24) 

Therefore (18) implies 

According to property (1) from the conditions of Theorem 15 there exists a 
rpi E 2, such that xn E O,(gj), and by the definition of the set @“‘I this set is 
non-empty, that is, there exists an x E ~7’. Then by Lemma 31, x lIsOx,-, and by 
(24), n E OS@,), that is OS(Q) #0. Consequently, the quasi-identity q is not 
valid on the algebra (U(k), S}’ when its variables xi take values S(Xj) and the 
constants pi from P(q).are interpreted as S(pi). 

By the definition of S 

According to (12), all sets qz’ are expressible. Consequently, 5; Le~rrn i, ail 
S(X,) are elements of the algebra (Cl(k), s j- (V(pk)), which is a subalgebra of 
the algebra (U(k), s>‘. By T&&em 13 this subalgebra is isomorphic to the free 
algebra S,JGrz) and the V(&) are its free generators. 

Let pi E P(q) and x E S(pi). By (18), x E &!’ for some qz”, and pi E O,(qm). By 
(ll), P(x) = Pi, that is, we obtain xIkvpi and x c V(p;). Assume that 
conversely pi E P(q) and x E V(pi)t that is, xItvpi. By (18), x E ~2’ for some 
rpa E Zz; . Again, by (ll), P(x) = Pr(q,,) and from this equality we obtain 
pi E O,(~~)andx E S(pi)- ThusforanarbicraryconstantpifromP(q), V(pJ = S(pi). 

Therefore the S(pi) (S(pi) = V(pi)) are free generators of the algebra 

(U(k), f ) +(v(pk))- 
Consequently q is not valid on Sk(Grz) (when the P(q) are interpreted as free 

generators). Now Theorem 20 is proved. Cl 

Let I be a modal logic (or superintuitionistic logic) and let Xf be the signature 
of the algebra SW(n), extended by constants for the free generators. An obstacie 
for the universal formula A(Z) in the signature IZf is a certain tuple ii from *R,.(A) 
such that i(SW(k) kA(rT)). 

Theorem 32. The universal theory of the free algebra ZF_(Grz) in the signature IZf 
is solvable. TItere exkts an algorithm for the construction of obstacles for the 
universal formulas in the signature Er which fail in &(Grz). 
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Proof. Let VX 47 be a universal formula in the signature ZJ in prenex normal 
form. it is easy to see that this formula is e$ ;,;>&ent to a formula A of the form 

VZ(A(Bi=l*V(Bj=l)))* 
i i 

Then VZ Q, is equivalent to the formula 

/+(B,=l~y(B;=l))). 
i 

We recall that Grz has the so-called disjunction property, that is fr>m 
q IC v CID E Gn it fdiuws that UC E cirz or Cl11 E Grz [29]. Then in Sti(Grz), 
q lu v q lb = 1 (j (Eta = 1) v (Ob = 1) and moreover Ua = I @a - 1. Therefore the 
formulas VZ (Bi = 13 Vj( Bi = 1)) are equivalent in Sa(Grz) to the quasi- 
identities 

Then in F_(Grzj the formula Vf Q, is equivalent to the conjunction Ai Ci. 
Moreover, these formulas have the same sets of variabies and the same stis of 
constants and the sets of obstacles for these formulas coincide. Thus 

by Theorem 14, Sm(Grz) k Cie %,(GIz) k:(Ci). ACCO~~II~ to T~zz~~s 15 and 
20, l(Sw(Grz) k r(Ci)) iff there exist a set ZZ’ where EC B(t(Ci)) and Vqi E E 
there exist sets r(~~) E S(r(Ci)) where Vq, E T(qj) f%(qk) = @z(qj): qi B T~v~), 
such that in the model (%U [U,,,i,IT(~~)], S, V) the properties (l)-(3) from 
the condition of Theorem 15 are true. These properties yield e&c&k tests and 
give us an algorithm for checking SJGrz) i=r(CJ Consequently, the universal 
theory ojf Sm(Grz) in the signature Er is solvable. 

Assume that VZ cp is not valid in &(Grz). Then for certain i, Ci is not valid in 
$$,(GTL) and .Fm(Grz) # r(Ci). Now by Theorem 15 we may find a model with the 
required properties (l)-(3). The proof of Theorem 20 gives us an algorithm to 
construct an obstacle for r(Ci): 

sCxj) := V {Q)2’ I qcx E {%3 I 9j3 E %k, xj E el(~j3~~~~ 
s(Pj) := v(Pj)9 V.j E Ptr(G))* 

By Theorem 14 the set of elements of this obstacle which correspond to 
variables and constants firm Ci will be an obstacle for Ci and Ai Ci. AS we noted 
above, the sets of obstacles for VZ cp and for Ai Ci coincide. Consequently, we 
obtain the obstacle for Vf cp. Cl 



4. Admissibility and substitution problems 

The above mentioned problems wilI be solved first for the modal system Grz; 
after all they will carry over to intuitionistic propositional calculus H. 

Let A(x,)/B(x,) be a rule of inference. Let -1s suppose that some variables x;- oi 
, , ---a s_C+^rr this ruie are repiaceu oy p~upu~;i~~~~~ .r..wAu F,, ____ 9-a ffy~ we have an eunression 1 

of the form A(x,, pj)/B(Xi, pi). A(x;, pj)/B(Xi, pi) is called a rule of inference with 
parameters. We call this rule admissible in the logic rl iff B(B,, pi) E A follows 
from A(&, p,) E A for arbitrary formulas B;. 

it is clear that the admissibility of ruIes with parameters generalizes the usual 
admissibility. If the rule A(x,)lB(x,) is admissible in logic A, then the rule with 
parameters A(xj, pj)/B(x;, pij is also admissible in A. The converse is not true. 
For example, the rule with parameters p/p h-p is admissible in each nontrivial 
logic A, but the ,A X/X .A lr is not admissible in A. 

The first main corollary of Theorem 32 is 

‘Iheorem 33. The problem 01 a&L:- i?iJih~ nf rules of inference with parameters ._ 
(hence also without them) in the m.1. GR is al~gorithmlcatly JO,‘L I: 

The proof follows immediately from the analogue of Lemma 2 for rules with 
i~~me?e,rs: r~!e. 4(ri, pi)/B(xi, _p;) is admissible in the logic A iff the quasi- 

identity A(.x!. pi) = I + B(x:, p;) = 1 is uz!id in SW(A) where the Pj’S are interpr- 
eted as free generators (the proof of Lemma 2 immediately carries over to this 
casej, and from Theorem 32. 

Theorem 33 generalizes the resuit about algorithmical recognition of admis- 
sibility rules (without parameters) in the m.1. Grz [27], Which IGZ!:~: ‘vas obtained 
on the basis of the decidability of the universal theory of the algebra SJGrz) in a 
signature without constants. In [28] it was proved that the problem of admis- 
sibility of rules in the modal provability system G is also algorithmically 

decidable. 
The second main corollary of Theorem 32 is the next theorem. 

Theorem 34. The substitution problem for the modal system Grz i.r algorithmically 
decidable. There exist an algorithm for the recognition of solvabiky in the free 
algebra &(Grz) of equations (in the +xature X,) and for the construction of 
some soiutions for solvable equations. 

hoof. iitt ssioix? ;?a? of the theorem immediately follows from Theorem 32 
and the fact that A& pi) = 1 is solvable in &(Grzj ifi 9&(Gr~) $*VZ l(A(~i, pjj 
= 1). The first part of the theorem follows from the second ~zrt and 
Lemma3. Cl 

Now we turn to intuitionistic propositional calculus H. 



T’heoren 35. There exists an aigorithrn for the rccogr,ition of soivnbi~i~ 1;J’ 
equations ir the free pseudo-boolean algebra .9_(H) (in the signcture Zf) and for 
constructing some solurion for solvable equations. 

Proof. Accordicg to Lemma 8 the equation A(xi, pi) = I is solvable in SW(H) iff 
T(A)(Ox;. q _JJ:) = 1 has a solntinn jr! @ /CLT' TL---r--- by ineorenl 34 there _ w,- __,‘ cr‘rlrl”*Z;, 

exists an algorithm for the recognition of solvability of equations in SW(H). 
If A&, pi) = 1 is solvable, then T(A)(Clx;, Opj) = 1 is also solvable and by 

Theorem 34 we may effectively construct some solution for T(A)(&, q ~j) = I. 
As we proved in the second part of the proof of Lemma 8 this solution may be 
effectively transformed into a solution of the same equation, and the members of 
this solution have the form T(Q). Then the Q form a solution for A(xi, pi) = 
1. Cl 

Theorem 35 and Lemma 3 imply 

‘Theorem 36. The substitition problem for intuitionistic logic H is decidable. 

The results of Theorems 35 and 36 *zre obtained in 125.261 in the same w iy on 
the basis of analogues of the above obtained results for the modal system S4 (that 
IS, sl;!yzbi!ity of the universai theory the free algebra s-(54) in signature Zr and 
solvability of the substitution problem for S4 and so on). 

Let Z: be ?he signature of the algebra SW(H) (without constants). 

Theorem 37. The universal theory of the free pseudo-boolean aigebra &,(H) in 
the sigrzature Z is decidable. 

Proof. Let VZ A be a universal formula. The reader will easily note that this 
formc!a is equivalent lo the conjunction of formulas of the form 

VX(f =l*(g,=l)v~~~v(g,=l)). (25) 

It is weii ~IWEI; :,L,zt ktnitionistic logic H has the so-called disjunction property: 

AvB~HimpliesA~HorB~H.The retore formula (25) is equivalent in Z.,(H) 
to the quasi-identity 

f=l j ( > ,tsi = 1. 

By Theorem 6 and Lemma 2 this quasi-identity is valid in SW(H) iff the 
quasi-identity 

is valid in 5QGrz). According to Lemma 2 and Theorem 33 we obtain an 
algorithm for the recognition of validity of (25) on ZFm(H). Cl 
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By Theorem 37 and Lemma 2 we obtain a positive solution of Friedman’s 
problem : 

Corollary 38. There exists an algorithm for the recognition of the admissibiliry of 
rules of inference in intutionistic logic, H. 

This result war obtained earher in the author’s papers [20,23,27] on the basis of 

the decidability of the universal theory of the algebra 9,(H). 

Remlrrk 1. Despite the decidability of universai theories of the free algebras 
$%_(A), I = Grz, H (Theorems 32,37) the first-order theories of these algebras are 
heriditarily undecidable [22]. 

Remark 2. We note that the universal theory of free pseudo-houiean algebra 

S_(H) in the signature Ef (which is extended by constants for free generators) is 
decidable too. For this reason there exists an s!gMthm for the recognition of the 
admissibility of rules of inference with parameters in H. This result was obtained 

in [26]. 
Finding algorithms for the recognition of admissibility in Gn and H is rather 

complex. In suitab!e cases it is more convenient to use the following semantical 
criterion. 

Tbeorem 39. The rule A/B ts udmiwible in Grz i. ( U(n), s)+ t (A = 13 B = 1) 
for each n E N. 

Proof. By Theorem 13 and Lemma 2, “sufficiency” is obvious. 
Let (U(n).~)+~(A=l~B=l). Then r(q), where q=(A=13$=11), 

according to Theorem 14, is not valid in (U(n), <)‘_ Note that the proof of 
Theorem 15 rests on just this assumption: r(q) is not valid in (U(n), s)+ (see 
(7)). Therefore, by Theorem 15, the:e exist a model 

with properties (l)-(3) from the condition of Theorem 15. 
Then, acaslding to Theorem 20, r(q) is not valid in SU(G;z). Therefore by 

Theorem 14 we have ~($~(Grz) L q). 
Then by Lemma 2, A/B is not admissible in Grz q 

For example, using this criterion it is not hard to deduce that the ru:z 

jy->rjx(lrvqj/--iqvlr 

is admissible in II_ Of course, we first check that the translation T of thi.? rule is 
admissible in Grz. This rule is TXC found in the literature, as it seems. From the 
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admissibility of this rule in H the admissibility of the we&known rule of 
Scott-Jankov-Kuznetsov follows: 

((11X 3x) 3 (x v -?r))/l-K v 1x. 

The admissibility of the last ruie and of Harrop’s rule 

(IX 2 z v y)/(--Jx 3 z) v (3 3 y) 

in H is also cot hard to check by our semanticai criterion of admissibility in G:-z. 
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