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Questions connected with the admissibility of rules of inference and the solvability of the
substitution problem for modal and intuitionistic logic are considered in an algebraic
framework. The main result is the decidability of the universal theory of the free modal algebra
%,(Grz) extended in signature by adding constants for free generators. As corollaries we
obtain: (a) there exists an algorithm for the recognition of admissibility of rules with
parameters (hence also without them) in the modal system Grz, (b) the substitution problem
for Grz and for the intuitionistic calculus H is decidable, (c) intuitionistic propositional calculus
H is decidable with respect to admissibility (a positive solution of Friedman’s problem). A
semantical criterion for the admissibility of rules of inference in Grz is given.

The need for simplification of derivations in formal systems has led to the
consideration of the class of all inference rules that do not increase the set of
provable formulas. The rules of this class are called admissible rules of inference.

Investigations into admissible rules of inference have mostly dealt with
intuitionistic propositional calculus H. A number of conditions for admissibility
and derivability of rules in H have been obtained in [15, 16, 36, 37]; a description
of quasi-characteristic admissible rules in H has been given in [34]; the
structurally pre-complete extensions of H have been given in [35]. The connection
between admissible rules in extensions of H and admissible rules of modal logics
was observed in [17]. This connection draws attention to admissible rules of
modal logics. A number of results regarding admissible rules in modal logics have
been presented in [17, 18, 19].

The general problem of finding an algorithm which recognizes admissibility of
rules in H was posed by Friedman [5, problem 40]. Kuznetsov formulated a
related problem: Does there exist a finite basis of admissible rules of H? The
positive solution of Friedman’s problem is given in [20,23,27]. Kuznetsov’s
problem and it’s analogues for the modal systems $4, Grz have negative solutions
[21, 24]. The approach to the solution of these problems is based on properties of
universal theories of free topo-boolean and pseudo-boolean algebras. The
problem of substitution (or the problem of logical equations) may also be
formulated in terms of properties of universal theories.

The substitution problem (or problem of logical equations) for a propositional
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logic A consists in recognizing for an arbitrary formula A(x,, p;) (the x; are
variables, the p; are propositional letters) whether there exist formulas B; such
that A(B;, p;) is a theorem of the logic A. The problem of logical equations has so
far not been investigated satisfactorily. The decidability of the substitution
problem for the modal system S4 has been obtained recently [25, 26].

The aim of this article is a proof of the algorithmical decidability of
admissibility in modal systems Grz of rules of inference (with parameters) of
generalized form, and a proof of decidability of the substitution problem for Grz
and for intuitionistic logic H.

The main result of the paper is a proof of the decidability of the universal theory
of the free modal algebra %,(Grz) (the variety of modal algebras corresponding
to the logic Grz), in signature extended by adding constants for free generators.
As simple corollaries of this result we obtain the following facts: (a) there exists
an algorithm for recognition of admissibility in Grz of rules of inference with
parameters (hence also without parameters), (b) the substitution problem for Grz
and H is decidable, (c) the algorithmical decidability of admissible rules in H (so
we have another positive solution to Friedman’s problem). A semantical criterion
for the admissibility of rules of inference in Grz is found and examples of its use
are given.

We suppose the reader to be familiar with the main principles and conventions
of first-order theories. Familiarity with Kripke semantic for modal logic is
required. In Section 1 we will review some definitions and notations. All
undefined terms can be found in {29, 2].

1. Introduction

As usual we understand by a modal logic (m.l.) a set of modal propositional
formulas containing all axioms of the minimal normal system K and which is
closed under substitution, modus ponens and rule of necessitation: A/CA.
Similarly a superintuitionistic logic (s.l.) is a set of propositional formulas
containing all axioms of Heyting’s intuitionistic calculus H and which is closed
under modus ponens and substitution.

We shall use a combination of the algebraic semantics and the relational
semantics of Kripke. A modal algebra (m.a.) is a boolean algebra with an
additional unary operation [J satisfying the equations:

O1=1, 0CCx vy) v (COx v Oy)=1.

Let ¢(py, - - ., p,) be a modal prdpositional formula with propositional letters
P1, - - - » Pn- The formula @ is said to be valid in the m.a. B (notation: Bk @) if
for all tuples (a,, . . ., a,) it is true that

BE(pay,...,a,)=1) (a; €B).
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A pseudo-boolean algebra (p.b.a.) U is a distributive lattice with smallest and
greatest elements 0 and 1, and such that for arbitrary elements a, b € U there is a
relative pseudo-complement a > b (that is a greatest element x such that
aNx=<b, this element x is denoted by a > b). The element a o0 is called the
pseudo-complement of the element a and is denoted by —a. The definition of
validity in 2 for propositional formulas ¢ is similar to the modal case.

If B is a m.a. (p.b.a.) then A(B):={@ | BF ¢} is its m.L. (s.1.). According to
the completeness theorem [8, 12] (which is based on the Lindenbaum algebra) for
each m.1. (s.].) A there exists an m.a. (p.b.a.) B such that A = A(B).

Let A be a m.l. (s.1.), then Var(d) denotes the algebraic variety of m.a.’s
(p-b.a.’s) {B |V el (BE@)}. By the completeness theorem we have

pel & VYBeVar(A)(BE ).

Now we review the basics of Kripke’s semantics [7, 10]. A frame T = (T, R) is
a pair where T is a nonempty set and R is a binary relation on T. Let P be some
set of propositional letters. A model M = (T, R, V') is an 3-tuple where (T, R) is
a frame and V (valuation) is a function, mapping P into the set of all subsets of
the set 7.

The validity (or truth) of modal propositional formulas on elements x € T is
defined by induction on the formula:

xlkyp, & xeV(p),

xky(AAB) & (xlFyA)& (xlFy B),
xky(AvB) © (xIF, A)v(xlk, B),
xky74A & (xiky A),

xlhyO04 & (MyeT)([(xRy)=>yir, A),
by OA & Ay e T)((xRy) & (yikv A)),
xlFy (A= B) © (xlky,B) v (xlky, A).

A formula ¢ with propositional letters from P is said to be valid in the model
MENI @) iff Vx e T (x by @). A formula g is called valid in the frame 7 (7 I+ @)
iff @ is true for all valuations V of its propositional letters.

The set A(7):={@ | Tl ¢} for a frame T = (T, R) is a modal logic. A m.l. A
is said to be Kripke-complete [4, 33] if there exists a frame J with the property
A(J) = A. Fine [4] and Thomasson [33] showed that there exist modal logics which
are not Kripke-complete. However, Kripke semantics and its modifications (for
example refined first-order semantics [32]) turned out to be very convenient.

A few words about first-order semantics in the style of Kripke [10, 23, 32]. Let
(W,R) be a frame. We assign to this frame the associated modal algebra
(W, R)", where (W, R)"* is the boolean algebra of all subsets of the set W and
O is the operation defined by the following equation:

OX:={a|aeW,Vbe W({(aRb)>b e X)}.
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Let X,,...,X,e(W,R)*. By (W,R)* (X,,..., X,) we denote the subal-
gebra of the algebra (W, R)™* generated by the elements X, . .., X,. Arbitrary
elements of this subalgebra have the form ¢(X,,..., X,), where ¢ is a term.
Let us define the valuation of {p,,...,p,} on (W,R) by V(p):=X, If
@(X;,...,X,) is an element of (W, R)* (where ¢ is some term), then by
@(p1, - . ., p,) we mean the formula obtained from ¢ by substituting letters p; for
X; and logical connectives for the corresponding operations.

The following lemma is well-known (it is proved by induction on ¢).

Lemma 1. For arbitrary x e W,

xqu(Xl’ e ;Xn) < x"-V(p(pl’ e ;pn)'

The associated frame B" of a m.a. B is given by B* := (T, R), where T is
the set of all ultrafilters on 8 and

VxeB(OxeV,>0xeV,) & V,RVY,, V,V,eTy.

According to the inclusion theorem of Jonsson-Tarski—Stone [8] the mapping
i:B— B+ where i(a) :={V| Ve Ty, a eV} is a monomorfism “in”. If B is finite,
then i is a mapping “onto”.

The m.1. A is said to have the finite model property if A ={);; A(B;) where the
B, are finite m.a.’s. Lemmon [10] showed that this definition is equivalent to
A =ie1 M(F;) where the T, are finite frames.

Now we proceed to the rules of inference. Let A be a m.l. (s.1.) and A;, B

formulas in the language of this logic; p,, . .., p, are propositional letters from
these formulas and x,, . . ., x,, are distinct variables.
An expression of the form
Alxy, o5 X0)y oo Ay, oo )/ B(xy, ...y x,) (1)

is called a rule of inference. We note that in Polish mathematical literature
[1,11,12,31,38] a more general notion of rule of inference is used. A rule is
mapping the set of all a-tuples of formulas into the set of formulas. If o <o,
then the rule is called finite. If the rule is closed with respect to substitution, then
the rule is called structural. Each finite structural rule is a set-theoretic union of
rules which are defined by rules of the form (1), that is mappings which assign
formulas B(C;, ..., C,) to tuples A{(Cy,...,C,),..., A (Cy,...,C,). A
rule of the form (1) is said to be (finite) sequential or standard. According to the
Los’-Suzko representation theorem [12], an arbitrary standard logical conse-
quence operation is generated by a countable set of standard rules. Therefore we
mean in this paper by rules of inference rules of the form (1) only.

The rule (1) is said to be admissible in the logic A iff for all formulas
B, ...,B,

Vii<sjsm A(B,,...,B,)eA implies B(B,,...,B,)e€A.



Problems of substitution and admissibility 75

The rule (1) is called derivable in m.1. A (s.l. A) iff from A,, ..., A,, and the set
of theorems of the logic A the formula B is derivable with the help of the
necessitation rule and modus ponens (modus ponens only). It is clear that
derivability implies admissibility. Harrop’s rule [7]

Cpo(gvn)(pog)v(por)

is an example of an admissible but inderivable rule in Heyting’s intuitionistic
calculus H.

There exists an algebraic approach to admissibility. Let A be a m.l. (s.1.). Let
8i(x:), fi{x:), g(x:), f(x;) be terms of the signature of the variety Var(4) (the
constants 0 and 1 are also terms). The first-order formula of the form

VE A g/0) =) S () = (x)

is called a quasi-identity. This quasi-identity is said to be valid in the algebra B iff
for all a;€®B, Vj(l=<jsn)gia)=f(a) in B implies g(a)=f(a;). Let
r:A(x), ..., A.(x;)/B(x;) be a rule of inference. We assign to r the quasi-
identity r* of the form

<,Z\1Af(x"))=1 > B(x)=1

The following well-known proposition belongs to folklore and goes back to the
Polish method of contracting logical calculi and logical consequence operations
[11, 12, 31]. Let %,(4) denote the free algebra of rank a over Var(4).

Lemma 2. The rule r is admissible in logic A iff the quasi-identity r* is valid in the
free algebra #,(A).

Proof. Let us suppose that r is not admissible in A. Then for some formulae C; we
have A|(C) €A, ..., A, (C) e A and B(C,) ¢ A. Therefore the identities A,(C;) =
1,...,A,.(C)=1 are valid on Var(1). If we view formulas as elements of the
algebra %,(A) and regard propositional letters as free generators of %,(A), then
we obtain B(C;) # 1. Hence the quasi-identity r* is not valid on %,(2).

On the other hand let us assume that r* is not valid on #%,(4). Then
A(C)=1,...,A,(C)=1 and B(C;)#1 in %,(A), where the C; are elements
from #,(A). If we regard, as above, B(C;), A;(C;) as formulas, then A;(C)) € A,
1=<j<m, B(C) ¢ A. Thus r is not admissible in .. [

Note also that to every quasi-identity q: /-, (g,(x,) =fi(x:))=> (f(x) = g(x.))
these corresponds a rule ¢* of the form A}, (g; & f)/(f ©g). It is also easy to
see that q is valid in %, (A) iff the rule ¢* is admissible in A.

We now turn to the substitution problem and its algebraic treatment. Let us
remind that the substitution problem (or problem of logical equations) for a logic



76 V.V. Rybakov

A (m.1. or s.l.) consists in the recognition for arbitrary formulas A(x;, p;) (where
the p; are propositional letters in A, the x; are variables substituted for other
letters) whether there exist formulas B; such that A(B;, p;) € A. As above we view
formulas as elements of the free algebra %,(1) and letters as free generators of
F,(1).

Lemma 3. There exist formulas B; such that A(B;, p))=1 iff the equation
A(x;, pj) = 1 is solvable in the free algebra F,(A).

Proof. Suppose that A(B;, p;) € A. Then we regard the formulas B; as elements of
%.,(A) and because A(B;, p;) €A, the identity A(x;, p;)=1 holds in Var(A).
Moreover %,(A) € Var(4). Therefore the B; are solutions of A(x;, p;,)=1 in
%,(1). Now let A(x;, p,)=1 have a solution in %,(A). Then there exist
C; € %,(1) with the property A(C;, p;) =1. Because %,(4) is a free algebra on
Var(A), we have A(C, p;)=1 in Var(1), and by the completeness theorem
A(C,p)ei. O

Thus questions about the decidability of the substitution problem in logics A are
reduced to problems of the solvability of equations in free algebras %,(1). Hence
the problems of logical equations and of admissibility of rules (Lemma 2) are
reduced to questions concerning the universal (or dually, existential) theory of
the algebra %,(A4) extended in signature by the addition of constants for free
generators.

Godel’s translation T provides a connection between admissible rules of s.l.
and of m.l. We remind that the Godel translation T of propositional formulas
into modal propositional formulas is defined by induction on the length:

T(p:)=Up;,
T(AAB)=T(A) A T(B), T(Av B)=T(A) v T(B),
T(A>B)=0(T(A)— T(B)),
T(n4)=0-0T(A).
Let A be a s.1. The modal associate for A is a m.l. A, (arbitrary m.l.) such that
VA(Ae Ao T(A) e Ay).
By Dummet-Lemmon’s strengthening [3] of Gddel’s translation theorem, for

an arbitrary s.1. H + X (where H is Heyting’s intuitionistic calculus and X a set of
formulas, and H + X the smallest s.l. containing H U X)

AeH+X © T(A)eS4+ T(X).

Thus $4 + T(X) is the smallest modal associate for the s.I. H + X (among the
extensions of S4). There exists a greatest modal associate (among extensions of
the m.1. S$4) for each s.l. Let us turn to its construction.
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Let A be a p.b.a. The wrapping modal algebra S(2) is constructed as follows
[cf. 13]: it is the boolean algebra defined by the set 2l as generating elements and
with the lattice identifies true in 2 as the generators’ relations. On this boolean
algebra the operation O is given by

O(Ca, vb)Aa--- A(ha,vb,)):=a,o2b))Ar-+-Ar(a,2b,)).

The correctness of this is easily seen from the fact that a; > b; is the greatest
element in U which is less than —a; v b;. Also it is obvious that S(2) as an algebra
is generated by elements of the form Oa where a € 2. Maksimova proved the
following lemma.

Lemma 4 [13]. For arbitrary s.l. A the modal logic
o(1):={C |V« (A e Var(A) > SA) I C)}

is the greatest modal associate for A (among extensions of 54).
We need next

Lemma 5. Let A(p;) be a modal propositional formula. There exists a proposi-
tional formula C such that the formula DA(Op;) is equivalent to T(C)(p;) in S4.

Proof. Induction on the length of A. If A =p, then T(p;)=0p;. Thus we can
take C to be p,. Suppose that for formulas with length less than length of A the
lemma is proved. For A =B the induction step is obvious. Another case A is
constructed by applying connectives 7, —, A, v to subformulas of A of the form
OB; and to propositional letters p;. Thus

A(p))=D@B,,...,OB,,ps...,p)

where D is a formula without occurrences of [J. Thus the formula OA(Op;) has
the form

DD(DBI(Dpl), ey DBk(Dpl), Dpl; ey Dp,)

We transform D to a conjunctive normal form and obtain a formula F, where
M

Fel /m\ ((\/ -IDET(DP:')> v <r<:71 DG:"(DPi)>),

r=1

here E7", G are distinct formulas from {B,, ..., B, p;, ..., p.}. It is clear that
F is equivalent to OA(Op;) in S4. But F is also equivalent to the formula

my, ko
L= A0 A OEZ@p)— V 0G7@p) ).

By induction hypothesis, the formulas OE;*(Op;) and OG?(Op;) are equivalent
in §4 to the formulas T(C7)(p;) and T(D7)(p;), for some C” and D". Therefore
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L is equivalent to

AO( A 1)~ V TONG)),

- r=1

and this formula is equivalent to
m, K
(A (A cro)= N prp))).
Now the lemma is proved. [

Now we can make the connection between admissibility in s.l. and m.l. Since
for arbitrary m.l. or s.l. A it is true that AABeA<(Aei) A(Bel), we will
consider henceforth the rules with one premisse only.

Theorem 6. The rule A/B is admissible in the s.l. A iff the rule T(A)/T(B) is
admissible in the greatest modal associate o(A) of A.

Proof. Let us assume T(A)/T(B) is admissible in o(4). Suppose that A(B;) € A.
Then T(A(B;))e o(A) as o(A) is a modal associate of A. But T(A(B))) is
equivalent in $4 (and S4 c 0(4)) to T(A)(T(B;)). Therefore the last formula is a
theorem of o(A), that is T(A)(T(B;)) € o(4). By our assumption about admis-
sibility we have T(B)(T(B;)) € o(4) and T(B(B;)) € (). Hence B(B;) € o(A).

Now let A/B be admissible in A and let T(A)(C;) € () but T(B)(C;) ¢ a(A).
By the definition of o(A) there exists U € Var(4) such that S(A) (T (B)C) =
1). As we noted, the algebra S(2) is generated by elements of the form Ca
where OaeU. Therefore there exist Ox;e? and terms D, such that
T(B)(CADW(Ox,))) # 1.

In order to avoid complications in notation we shall denote the formulas in the
language of A and the corresponding terms of the variety Var(A) by the same
symbols. According to Lemma 5 the formulas OC;(D,(Op;)) are equivalent in S4
to the formulas T'(A,)(p;). From this we get by regarding the T(A;) as terms,

S(A) IH(OC(De(Oxy)) = T(A)(x;)).
Hence
T(B)(CADw(Ox;)) = T(B)(T(A)(x)))-

Therefore T(B)(A;)(x;)# 1. Since we know that all formulas from o(4) are
valid in S(), we get T(B(A;)) ¢ o(A), that is B(A,) ¢ A. This conclusion gives us
A(A;) ¢ A in view of our assumption about admissibility of A/B. Since o(1) is a
modal associate of A we obtain T(A(A))) ¢ o(A).

But we have assumed that T(A)(C;) € 6(A) and this together with closure of
o(A) under substitution gives us

T(A)(DC(D(Op)))) € o().
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We obtain T(A)(T(A;)) € o(4), by using the equivalence of OC;(D,(0p;)) and
T(A;)(p,), which contradicts T(A(A;)) ¢ o(A). O

The problem of finding an algorithm for the recognition of admissible rules in
intuitionistic propositional calculus H was posed in Friedman’s paper [5, problem
40). From this problem and Theorem 6 it follows that the greatest modal associate
for H, i.e. o(H), is interesting. It is well known that o(H) = Grz where

Grz:= S84+ 0O(0O(p— Op)— Op)— Op.

is the modal system of Grzegorczyk (this follows for example from the finite
model property of Grz [29] and from o preserving arbitrary intersections of logics
[13]). Therefore from Theorem 6 we obtain:

Corollary 7. The rule A/B is admissible in H iff the rule T(A)/T(B) is admissible
in Grzegorczyk’s modal system Grz.

The problem of logical equations (substitution problem) for the calculus H may
also be reduced to the corresponding problem for Grz. Let, as above, %,(1) be
the free algebra of rank « over the variety Var(4) (here A is m.l. or s.l.). By Z,
we denote the signature of Var(1) extended by a countable set of constants for
free generators of %, ().

Lemma 8. The equation A(x;, p;) =1 is solvable in the free algebra F,(H) iff in
the algebra %,,(Grz) the equation T(A)(Ox;, Op;) =1 is solvable.

Proof. Let A(B, p))=1 in %,(H) for some B;e %,(H). Then we have
A(B;, pj))e H. The m.l. Grz is a modal associate for H, therefore we have
T(A)T(B,), Op;) € Grz. From this property we obtain T(A)(T(B;), Op;)=1 in
the free modal algebra %,(H). But it is clear that T(B;)=U0T(B;). Therefore
the equation T'(A4)(Ox;, Op;) =1 is solvable in %,(Grz).

Conversely, let T(A)(OC,, Op;)=1 in %,(Grz). Then T(A)OC;, Op,) € Grz.
The m.l. Grz is closed under substitution and we obtain T(A)(JC;(Opg), Op;) €
Grz. According to Lemma 5 there exist formulas D, which are constructed
effectively from OC;(Op:) and OC;(Op:) <> T(D;) € S4. Therefore (using that
S4 < Grz) we obtain T(A)(T(D;), Op;) € Grz. By the property of the modal
associate we have A(D,, p;) e H, that is A(D,, p;)=11in &,(H). O

Lemmas 3 and 8 give us a reduction of the substitution problem for H to the
substitution problem for Grz.

Thus the problems of admissibility and substitution for H, on basis of Lemmas
2, 3, 8 and Corollary 7, are reduced to properties of the free modal algebra
%,(Grz). This leads us to investigate the structure of this algebra.
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2. Description of the structure of %,(Grz)

The well-known method {6, 17, 18, 30] for the description of the free algebra
from Var(A), where A is a m.l., by means of models is as follows. Let
J=(W,R,V) be a model where V:P,—2% The model J is said to be
n-characteristic for the m.l. A iff for an arbitrary formula A with propositional
letters from P, (P,:={py, ..., p,}), A€cAS (W, R, V)EA.

From Lemma 1 it immediately follows that:

Lemma 9. Let (W, R, V) be an n-characteristic model for the m.l. A. The free
algebra %,(A) is isomorphic to a subalgebra of (W, RY*(V(P,)) of the modal
algebra (W, R)* and this subalgebra is freely generated by elements V(p,),

1=si<n.

Thus the description of %,(1) depends on the choice of the n-characteristic
model.

Let us fix some more notation and definitions. Let = (W, R, V) be a model
and X c W. We denote by (X) the set {b|JaeX (aRb)}. If X ={a} we
write (a) for ({a}). Let X be a subset of W and (X ) = X. The set X with the
related R inherited from J (i.e. the pair (X, R)) is called an open subframe of
the frame (W, R). The tuple (X, R, V') where V'(p,):=V(p,) N X is called an
open submodel of the model .

The main property of open submodels is the following: for each formula A with
letters from P, V:P—2" and a € X it holds that alt,- A S alky A (in model 9).
The proof of this property is easily obtained by induction on A.

A subset X of a reflexive transitive frame (W, R) (henceforth we shall often
identify frames and their sets of elements) is called a circle (or cluster) if
xVy (xRy) & (yRx)©oy e X). The depth of a € W is the maximal length of
chains of circles starting with the circle including a. By %,({W, R)) we denote
the set of all elements of W with depth <n. %,((W, R)) denotes the set of all
elements of W which have depth » (this set is called the n-layer of W).

Now we turn to the construction of a n-characteristic model for Grz. We shall
construct a sequence of models U, = (Uy, <, Vi), where =, is a partial order
and (<) = (Sg41) N U3, U= D (Uy,) and V., restricted to Uy coincides with
Vi (that is (Uy, <, Vi) is an open submodel of the model U, ,,).

A subset of an arbitrary partially ordered set is said to be an anti-chain if every
two elements of this subset are incomparable. &; denotes the projection of
the Cartesian product on the ith factor of the product.

Let P,:={p,, ..., p.} be a set of propositional letters. We introduce the set
U, := {0} x 2% x {1} and assume that U, is an anti-chain with respect to <,. The
valuation V, of the set P, in U, is given by

Va € Uy (a € Vi(p;) & p; € my(a)).
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Suppose that the models U, ..., U, with the desired properties have already
been constructed. Let us denote by 7 the set of all anti-chains from U, containing
at least one element from %, (U,). Consider the set T x 2% x {k +1}. The tuples
of this set we shall add to U,; the first element of these tuples shows to which
anti-chain this element corresponds, the second element of the tuple shows its
valuation. We choose a subset & of T x 2™ x {k + 1}, where

2:={{x, Y, {k+1}) |x = {b}, b € £(Uy), m>(b) = Y}

(i.e. in tuples from & the first element is a one-element anti-chain and this
element has depth k& in U, and the valuation V, on b is the same as it would be on
these tuples. Define the set

O = (T X 25 x {k + 1)\ D.
We denote by U,y the set U, U 6,,,. The relation =,,; on U, is given
by
Vx €O Vye U,y
i1y © (x=y)v(yelUy A3z em(x)(z=ky))
Let
(Ske1) = (S U (Sea)s
Vx € Orsy (x € Virr(pi) S pi € ma(x)),
Viear(p:) N U = Vi(py),
Uir1 = (Ui ts Sirrs Vier1)-

Lemma 10. The relation <, | is a partial order.

Proof. It is clear that <, ., is reflexive and anti-symmetric. If x <, ,, y <,,,¢ and
x¢0,,, then x<,y=<,t and x<,¢ as =<, is transitive. Let us suppose that
XSVt then yel, and y<,t. By definition of =<.,, there exists
z € my(x) such that z sk y. But < is transitive, therefore z <, ¢, and by definition
of <,,, we obtain x <, , t. This proves the lemma. []

Moreover, it is easy to see that elements of 6,,, form an anti-chain with
respect to <,.,, and that the depth of the elements of 8,,, is kK + 1. That is,
Uy = 9(U,) and U, has the required properties.

We introduce the model U(n) = (U(n), <, V) by constructing a sequence of
models U, k < w, where

U(n)‘:,g Us, (S):=O (<a), V:=k91 Ve
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at I = Y7\ ha o svndal wrhoana - fal Ardosr Thae alawmaaes L o~ LI 3o
Lcl. \VV, ==, ¥ ) UC a lIuucl, WllClC = lb a Pd 1dl OIUCI, 11IC CICIICIIL U € YY IS
called a duplicate of the element a € W if a is the smallest element in (b)\{b}
and V(n\_ V(b)) (that is ¥n. alkyp; by, n\ Tt is clear that in the model

P+ 018 3 YAV (MEas 5 Ve FLAN N B TS RV T A O ¢ 1} a 2z

(W, =, V) the formula A is valid in a iff A is vahd in b (induction on A). If we
change the model by removal of the duplicate b from the model (W, <, V), then
the validity of formulas on elements of the resulting model will coincide with
validity in the initial model. (This property is easy to prove by induction on the
length of formulas, using the preceding proposition). We shall use these facts in
proving the next theorem.

Theorem 11. The model U(n) is n-characteristic for the modal system Grz.

Proof. First we note that every formula of the set of theorems of Grz is valid in
U, as U, is a finite poset. This implies that such formulas are valid in U(n).

Let us assume that A(p,, . .., p,) is not a theorem of Grz, that is, A ¢ Grz. By
the finite model property of Grz [29] there exists a finite model (poset)
Z = (%, <, V) on which A is not valid. Let %, = % and suppose that the model
%, = (%, <, V) such that Z,(%,) is an open submodel of U(n) and such that the
depth of %, is not more than the depth of & and such that A(p,, ..., p,) is not
valid in %, has already been constructed. We construct the model %, as follows:

First we remove from &, all duplicates to start with the minimum all the way to
the top and we obtain a model (&), <, V), & c &, in which A is also not valid.
But &; has no duplicates. Since U(n) has no duplicates, our removal does not
concern the elements of %,(Z;) and D(Z;) = D(X}).

On the model &; we introduce an equivalence relation ~;, where two elements
from &; are equivalent under ~; if they both have depth i + 1, and both have the
same sets of strictly larger elements and the valuation V on them is the same.

Construct the factor-set &;/~; under this equivalence relation. On Z;/~; the
relation < is inherited from %;:

[a]-,<[b]l-, & 3relal.3f e[b]- (r<f)

and the valuation V is also copied from Z;. We obtain a model &,,,= (%1,
<, V). It is easy to see that < is a partial order and that P(Z,,,) = D(Z;), thus
DA(%:+1) is an open submodel of the model U(n), and for every two elements
from %, (%) which have the same sets of strictly larger elements, they differ
one from another under the valuation V (choice of ~;). Moreover, the duplicates
in &, if any have depth more than i+ 1. Therefore @;.,(%..,) is an open
submodel of the model U(n).

The depth of %, coincides with the depth of Z;, hence the depth of Z,., is
not more than the depth of £. By induction on the length of the formula B it is
not difficult to check that

Vx e Z; ([x]- Ity B&Sxiky B).
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Therefore A is not valid in &,..,. Continuing the construction of the models %,
we obtain the model &, where m is the depth of Z,. Then %, (%,,) = %, and &,
is an open submodel of the model U(n) and A is not valid in &,,. Thus A is not
valid in U(n). O

The element x of an arbitrary model (W, R, V') is said to be expressible if there
exists a formula A such that Vy e W (y by A (x = y)). Similarly X < W is called
expressible if Vy e W (y Ik, A&y € X) for a certain formula A.

We need next

Lemma 12. All elements of the model U(n) are expressible.

Proof. For a € U(n) we denote by p(a) the set {i|alF,p;}. Let A, be the
formula
A\ Opin A O7p;.

iep(a) igp(a)
It is easy to see that Ya € @,(U(n)), alty A, holds and if b e @ (U(n)), b #a,
then (b -y A,). If b € U(n) and b has depth more than 1, then either there exist
elements b;, b, with depth 1, b, #b,, b;, b€ (b) and obviously bl-, A4, or
there is a maximal element in (b) (only one: b;). In the last case there exists an
element ¢ with depth 2 such that b <c¢ <b,. By the construction of U(n), ¢ has
no duplicates, hence p(c) # p(b,). Therefore b I+, 71A,. Thus all depth-1 elements
are expressible. Suppose that all depth <k elements are expressible, and let us
denote by f(x) the formula which defines x. Let ¢ be some element of
Zre1(U(n)). We introduce some formulas:

Be = /\ i A /\ P,

Di
ieP(e) i¢P(e)

F=B.n )\ (OF &) A~f (),

E.=EAD(V 1) v E) A=V 0f )

It is clear that el E,, and if a € U(n) then
alkyE, © (a)NZ(U(n))=(e) N D(U(n)).

Therefore if alry E,, then the sets of minimal elements in (e)\{e} and in
(a)\{a})N 2, (U(n)) coincide. If a € % ,,(U(n)), then the valuation V is the
same on a and on e. By the construction of U(n) we have a =e.

Assume that a € %, ,,,(U(n)) and m =2. Then there exists an element b with
depth k + 2 such that a < b. We consider the set {(b)\{b}. If among the minimal
elements of this set there are two elements with depth k + 1, then one of them,
say d, is distinct from e. In this case al-y E, implies {d) N U, = {e) N U, and
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di+y B.. Then p(d)#p(e), by the construction of U(n), therefore dlI-,B,.
Contradiction.

Now suppose that there is only one element d which is minimal in the set
(b)\{b}. In view of al-, E, we have

dynuU,=(b)nU,  dryB,  blyB,.

Then p(d) = p(b), which contradicts the construction of elements of depth k + 1
in the model U(n) (it has no duplicates). So every element of the model U(n) is
expressible. O

Note that Lemma 9 and Theorem 11 immediately imply:

Theorem 13. The free modal algebra of rank n in the variety Var(Grz) is
isomorphic to the subalgebra (U(n), <)*(V(P,)) of the algebra (U(n), <)*
which is freely generated by the set V(P,).

3. The universal theory of the free modal algebra &,(Grz)

As above, if %, (4) is the free algebra from Var(4) then = denotes the signature
of %,(4) extended by constants for free generators. In this section quasi-identity
is always in the signature X, of the algebra %,(Grz).

Two quasi-identities are called equivalent if they are equivalent as universal
formulas in the class Var(Grz). First we show that it is sufficient to consider only
quasi-identities in a special, rather simple form. In this part it is convenient to
use the modal operator > as basic (keeping the identities Ux =G, Ox =
-i0-x in mind). It is easy to see that an arbitrary quasi-identity of the form
N\ (f:=g)— (f =g) is equivalent to a quasi-identity of the form (/\, (fi<g)) =
1> (f «»g) = 1. Therefore it is sufficient to consider only quasi-identities of the
form A=1=>B=1. Let us denote x°:=x, x!:="x.

Theorem 14. There exists an algorithm which constructs for an arbitrary quasi-
identity q an equivalent quasi-identity r(q) of the form

@=[(Ve)=1 > ~on=1],
where

m . m L.
Q= /\lx'l‘(l,l,l) A /\O(Oxi)k(""z),
= =

k(j, i, 1), k(j, i, 2) € {0, 1}, x; are either variables or constants from Z,. Moreouver,
r(q) and q have the same constants and all variables from q are variables from
r(q). If r(q) is not valid in B € Var(Grz) where the variables from r(q), x;, take
values a; €8, then q is also not valid in B when its variables x; take the same
value a; € %B.
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Proof. Let g =(A =1)= (B =1) be a quasi-identity. Then g is equivalent to the
quasi-identity A =1=>0B =1. By introducing the additional variable x, we
obtain the quasi-identity

[(AA(OCTBaOx))=1 > Ox=1

which is equivalent to the preceding one. Thus we have that ¢ is equivalent to a
quasi-identity of the form

f=1 > Oxe=1 ()
in which the variable x, occurs only in the subterm x,. We transform the
premise of (2). We introduce a variable x, for each subterm of the premise of (2).
If ¢ is a variable or a constant we take x, =t. Let us consider the quasi-identity
A\ (Xex, kx,) A t/\t x,eo*xx)=1 > Oxp=1. 3)
=ty =+t
From the construction of (3) we easily obtain that (2) and (3) are equivalent. The
use of this method of transformation of premise goes back to Waisberg, as it

seems. Note that x, in (3), as in (2), occurs only in subterms >x,. Thus g is
equivalent to a quasi-identity of the form

VOV Yi, Oxg) =1 = Ox=1, 4)

where 7" is a boolean term, y;, y,, k#0 are either variables or constants. We
transform the premise of (4) into disjunctive normal form. Thus we obtain the
equivalent quasi-identity

\i/ei=1 > Ox=1 (5)

We can assume that every variable and every constant (of (5)) xz and Oxg,
xo occur in each of the disjunct 6;. Otherwise, we replace a disjunct 6; by
disjuncts that are obtained from the original by prefixing conjunctions of the
missing elements with all possible distributions of —. It is clear that the resulting
quasi-identity

r(q)= [(\/ @ = 1) >3O, = 1] (6)

is equivalent to (5) and has the required form.

Let 7(q) not be valid in B € Var(Grz) when x; = a; and when the constants also
take fixed values. It is easy to see that under the chosen values of the variables
the quasi-identities (5), (4), (3) also are not valid in 8. The fact that (3) is not
valid when x, = a, gives us a,=*aq, and a,=a, *a,,. Then a; =1 and (2) is not
valid in 8 when x; =a;. So A(a;)=1, B(g)#1in 8. O

We call the quasi-identity r(q) the reduced form (notation: R.F. or r.f.) of q. If
a quasi-identity has the form r(g), we say that it has reduced form or that it is in
reduced form.
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If g is a quasi-identity, then P(q) is the set of constants from X, which occur in

q.
Let ¢ =[V ¢;=1>70x,=1] be a quasi-identity in r.f. We introduce the
additional notations:

0:(¢;):={x;| (k(j, i, 1) =0&i>0) v (i=0 & k(j, 0, 2) = 0)},
92(%) = {xi | k(]’ i 2) = O}

%(q) denotes the set of disjunction members of the premise of g which have
the property 0,(@;) 2 61(g;).

P(9) and P(g;) denote the sets 6:(¢;)NP(q) and 6x(q;) N P(q)
respectively.

If (W,R, V) is an arbitrary model, where the domain of the valuation V
contains the set P(q) (which we now consider as consisting of propositional
letters), then P(a) denotes the set

{p:|pieP(q) &altyp;} foraeW.

We turn to basics for further results in constructing models on the members of
2(9)-

Models on subsets of 9(q)
Let ¥ ¢ 2(q). We introduce the model (&, <, V), where V¢, ¢; € &

¢<dg;, & (pi=¢) Vv (0:p)20A(9))
and the valuation V on the set P(g) and the set of all variables from g (both

these sets we consider as consisting of propositional letters) is determined by
equality:

V(x):={e; |x € 6,(@)}-

The reader will note that the relation <I is a partial order, that is (%, 1) is
poset.

Let for each @; € Z the subset T(g;) of the set 2(q) be fixed (e.g. T(p)=9
is allowed) such that @, ¢ T(¢;) and

V@i € T(g;) (02(@r) = 02(9))-

We consider elements from distinct T(¢;) and & as distinct elements: T(g;) N
T(@) =8, T(g;) N & =9 (even if these sets had non-empty intersections, for the
sake of notation).

On the set Z U [,z T(@))] the relation < is determined such that: < is the
reflexive, transitive closure of the relation (<) U (=<,) where

Vi e T(@;) (9 <1 9))-

It is easy to see that < is a partial order. On the frame (Z U [Ug.cx T(®))], <)
the valuation V is defined as above: V(x;) = {@; | x € 0,(@;)}.
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Let us recall that the constants from P(q) are interpreted on %, (Grz)(%,(Grz))
as distinct free generators.

Theorem 15. If the quasi-identity q has reduced form and is not valid in %,,(Grz),
then there exists a set &, where = %(q), and for each @; € Z there exists the set
T(p) = 9(q) such that Vo, € T(@;)(0:(@r) = 0®;)) and the model (¥
[Ugex T(®)], <, V) satisfies:

(1) There exists @; € Z such that k(j, 0, 2) =0.

(2) For each element @; from this model, @;i+y @;.

(3) If ¥ is a subset of this model and A is a subset of the P(q), then there exists
an element (¥, A) from this model such that P\(@(¥, A)) = A and

09 (3, 4) = 0:(9 (3, A) U ( U 0:(y)).

Proof. If g is not valid in %,(Grz), then q is also not valid in %,(Grz) for some %,
where k is greater than the number of elements in P(q). By Theorem 13 we then
see that g is not valid in (U(k), <)*. So there exist subsets B; of the set U(k)
such that

\,'/ @(B)=1, OBy #0. @)

Let Y be the set {@;| @;(B)#0}. Then Y <= P(q). For each ¢;€Y we
introduce the set [¢;] ¢ U(k) where
[9]:=U{@m(B) | @m € Y & 0:(@,) = 6:(9))}-

We denote by max([¢;]) the set of maximal elements of the set [¢;] (in the frame
U(k)).

Each element a of U(k) is included in a unique set ¢,(B;) (recall that the sets
@(B;) are disjoint). We fix for each element a € max([¢;]) the set ¢,(B;) such
that ae @(B;), @(B)<le], @€Y, and denote this ¢, by ¢, (that is

ae (pa(Bi))' _
For an arbitrary member ¢; of the set Y we introduce the set C(g)),

C(@) = { . | a e max([g;])}.

Now we may define the set -
Z:= U C(g).
@;eY
For each @, € & let T(g;) denote the set

{ P« | €Y, 6x(@) = 0:(@)} \{g}.

Now our aim is to prove that the model (XU [Ugex T(9)], <, V) has the
desired properties.
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By (7) we have B,#8. Let x € By, then by (7), x € ¢;(B;) for some j. So
k(j,0,2)=0 and @; € Y. If we take an arbitrary @: € C(g;), then k(§, 0,2)=0
and @ € . Thus property (1) is true.

Before we turn to property (2), we shall prove the following result.

Lemma 16. In the frame (%, <), 0,(¢;) = 6:(q;) holds for each @; € D\(X).

Proof. Let @; be a member of %,(Z). By the construction of &, ¢, is a member
of C(g;) and @; = @,, a e max([g;]), a € @.(B)) = ¢;(B)).

Consider the maximal element v of the frame (U(k), <) such that a <v. By
(7) there exists @g € Y such that v € @s(B)). If x, € 6,(¢¢), then v e OB,. This
implies that v € B, as v is a maximal element of U(k). But v € @:(B;), therefore
x, € 0,(@g). Consequently 6,(@g) = 62(g)-

We claim that @ = ;. Let x, be a member of 0,(¢¢). Then we have v e OB,,
as v e @g(B;). Therefore a<v implies a € {B,. We recall that a e ¢,(B),
therefore Ox, € 6,(@,). Since @, = @;, we obtain x, € 6,(¢;). Hence 0,(@)) =2
0,(@¢). Let us assume 65(@;) ¢ 62(@:). Then v is clearly maximal in [@;]. Hence
@: € C(@:) and @; € Z. Then from the assumption 6,(@;) ¢ 0(x) it follows that
@; <@g, @; # @ which contradicts @; € 9,(Z).

So 6x(¢;) = 0,(@:) and [@:] =[@;]. Therefore from a e max{@:], a<v, ve
[@:] we conclude that a =v. Then from a € ¢;(B;) and v € @¢(B;) we conclude

that @z = @; and 0,(¢;) = 6,(¢;). O
Now we need the next lemma.
Lemma 17. In the model (%, <, V) @.IFy @, holds for each ¢, € %.

Proof. We prove this lemma by induction on the depth of the element ¢, in the
model (¥, <, V). If ¢, has depth 1 then by Lemma 16, ¢, -y ¢,. Suppose that
the claim of lemma holds for all ¢ € Z,(Z). Let @, be a member of £, ,(¥). By
definition of the model {%Z, <, V),

V(pj € X (P, "'er = X, € 91(¢j)

Therefore in ¢, the nonmodal part of the conjunction of ¢, is true. Let
@s kv Ox,. Then there exists @g € & such that ¢, I ¢g and @glhyx,, that is
x, € 0,(@g). If s = @,, then x, € 6,(¢,) and x, € 6,(@,). Now we assume that
@ # @p. Then @ € Z;(Z) and by the induction hypothesis @4 Iky @;.

Since the relation <{ is reflexive we obtain @gltyOx, from @glky x,. Then
x, € 0x(@g) follows from @zl @g. At the same time 0,(gg) < 6,(@,) and we
have x, € 0,(@g), and x, € 6,(@g) gives us x, € Ox(@,).

Assume now that x, € 8,(@,). If x, € 6,(¢,), then by definition of V on & we
have @, IFy x, and @, i+, Ox,. Let now x, € 8,(¢,)\0,(@,); by definition of Z it is
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true that

Q.=@,, aemax([g,]), aeq@.B).

Corrollary: a € OB, and a ¢ B,. Then there exists b € U(k) such that a <b and
b € B,. By (7) there exists @; € Y such that b € ¢,(B;). The relation a <b gives us
0:(®,) = 0:(@;). Moreover the relation a <b implies 0,(@,) 2 0(@.) (as ae
max([@,])), that is, 0,(@,) 2 02(;). )

Let @z be an arbitrary member of C(¢;). Then 6,(¢g) = 6.(¢;) and ¢, < g4,
@ # @p. From b € g;(B;) and b € B, we conclude x, € 6:(¢;), x, € 0(¢;). But
0,(pp) = 0,(@;), consequently x, € 6,(¢z). By means of ¢, @z, @, @g,
Qo € Ly i1(¥X), we conclude that @z € 9 (Z). Then by induction hypothesis we
may conclude that @g bty @g.

Hence, by x, € 6;(gg), it is true that gl Ox,. Therefore ¢, < @p implies
@4 IFy Ox,. Thus we proved

X, €0)(@.) © @l x,.

This conclusion and the observation that on ¢, the nonmodal part of the
conjunction ¢, is valid gives us that @, -, @,. O

On the basis of this lemma we may prove next:

Lemma 18. For each element @, of the model (XU [Ugex T(9)], <, V) we
have @, -y, @,.

Proof. Let ¢; be an element of the set Z. Since (&, <1, V') is an open submodel
of the given model, we get ¢;IFy @; by Lemma 17 and we may conclude that
@; Ik @; in our model.

Assume that ¢, is an element of the set T(g;). By definition of V on ¢ the
nonmodal part of the conjunction g, is valid.

If x, € 6,(@«), then x, € 0;(@;). We showed above ¢; Iy ;. Hence gk, Ox,.
But @, =< ¢;, therefore @, Ik, Ox,.

Assume that @k, Ox,. First suppose that ¢, by x,. Then x, € 8,(¢,), and
from 8,(@;) < 6,(@:) we obtain x, € 6,(¢,). Next suppose that g, I, 7x,. In this
case there exists ¢;: ¢, < ¢;, where @Ity x, and x, € 0,(¢;). There exists only one
immediate successor for ¢,: @;. Therefore ;- Ox,. As we noted above g;lky @,
it follows that x, € 6,(¢;). Since @, is an element of the set T(¢;) we obtain
x, € 0,(@,). Thus x, € 0,(@,) © @ Ik, Ox,. Therefore @ik @, O

According to Lemma 18, the model (¥ U [, .« T(¢)], <, V) has property
(2) from Theorem 15.

Lemma 19. The model (XU[UyexT(@)], <,V) has property (3) from
Theorem 15.
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Proof. Let 3 be a subset of our model and let A be a subset of the P(g). We
may without loss of generality assume that # < & such that V¢, € T(¢;) we have
0(®;) = 0,(@,). By definition of & we have

#*= {(pa,- | ] = k}: aj € max([(pai])’ a; € (pa,-(Bi)'

Consider the set {a;|j=<k}. Let {a;|j<m} be the set of minimal (in the frame
(U(k), <)) elements of the set {4, |j<k}. According to the construction of the
model U(k) there exists x € U(k) such that

(xy={x}u{gljsm}), P =A. (8)

By (7), x € @,(B;) for certain ¢, €Y. Since Pi(x)=A, x € @,(B;) implies
P(¢,) = A. We claim that

0:(7.) 2 6:(0) U ( U_6:()

Indeed, let x, be a member of 8,(¢,), @, € . By the choice of x we have x <a;.
Thus from g; € ¢,(B;) and from x € @,(B;) it follows that a; € OB, and x € OB,.
Thus we have x, € 8,(@,), which was required.

Now we assume that x, € 0,(¢,)\8,(p,). From x € ¢,(B;) and from x ¢ B,,
x € OB, follows. But these assumptions by (8) imply that there exists an a;, where
j <k, such that a; € OB,. Therefore we have x, € 65(,), since g; € @,(B;). Thus
we conclude

0:(2:) = 1) U U 0:(@)).

It remains to note that @, € Y and either @, € Z or @, € (Uq,x T(¢;)) and that
@, is some element of our model. Corollary: we may choose the element ¢, for
(¥, A). O

With Lemma 19 the proof of Theorem 15 is completed. We proved that the
model (Z U [Ug,c2 T(@;)], <, V) has properties (1)—(3) from the formulation of
Theorem 15.

The next theorem is basic for the remaining results of this paper.

Theorem 20. Let g be a quasi-identity in reduced form (in the signature ;). If
there exists a set &, where X < 9(q), and for each @;e€ & there exists a set
T(®) = D(q), where Vo, € T(9)(0pi) = 0x9)), @ ¢ T(g;), such that the
model (X U[Uy,ex T(®,)], <, V) has properties (1)—(3) from Theorem 15, then
q is not valid in %,(Grz).

Proof. Suppose that &, T(¢;), ¢; € & with properties from the condition of the
theorem have been chosen. We take an n-characteristic model {(U(k), <, V) for
Grz (see Theorem 11) where k is the sum of the number of elements in
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FUN TN, o € ¥ and of the elements in P(aY We ctinulate that P(a) ig
U T(g)], 9;€ X and of the elements in P(g). We stipulate that P(q) is
included in the domain of V, that is constants from g under valuation V are

mapped into subsets of the set U(k). First we prove the following lemma.

Lemma 21. The frame &, = (Z U [U,cx T(@;)], <) may be included in the frame
(U(k), <, V) as an open subframe. Moreover,

Vo, € (% U LUI T(qo,-)]), Vpi € P(q)

peP(g) © geV(P),

where V is the valuation on U(k).

Proof. We shall prove by induction on n that the claim of the lemma is true for
9,(%,). First we assign to members ¢; of the frame &, distinct propositional
letters p(g;) from (P\P(q)) (where V:P,—2Y®). Consider the set %,(%,) of
elements of depth 1. Recall that if ¢ € U(k), then by P(c) we denote the set
{p|peP(q), ciryp}. By the construction of U(k) and U, there exist elements
a; € 2,(U(k)) such that P(a,) = P(¢;) and Vp; € (PAP(q)), a;lFy ps ps = P(g)).

Therefore 9,(%,) may be considered an open subframe of the frame @,(U(k)).
Suppose that 9,(&,) satisfies the claim of the lemma. Let ¢; € Z,.(%)). By our
assumption the set (@;)\{@;} is a subset of the set Z(U(k)). By the construction
of U(k) we may conclude that there exists g; € £, ,(U(k)) such that

(aj>\{aj} = ()@},
P(a;) = {pe | Ity pe, pe € P(q)} = Pi(g)),
Vps € (PAP(q)) a;lty ps & ps = P(@)
(a; is not a duplicate so that ¥b € (gq;) bl-, P(¢;) &b =a)).
We assign to ¢; an element g; € %, ,,(U(k)) for each @; € £,.,(%,). We obtain

that 9, (%)) is an open subframe of the frame %,,,(U(k)) and the desired
properties are true. O

Now we fix the inclusion of &, into U(k) (as an open subframe) which exists by
Lemma 21. Thus we regard the ¢, € &, as elements of the model U(k).

We now turn to the construction of a special sequence of subsets ¢, = U(k),
P €Xy, teZ, —1=<t<m; where m, is the number of elements in the set &,.
This sequence will have the properties:

(a) If a# B, then @, N @p=40. 9)
(b) For each ¢,, ¢4, c ¢4 (10)
() Vae ., P(a)=P(g). (11)
(d) The sets @}, are expressible in U(k). (12)

(e) Ift=0, thenVx e U(k) (x ¢ U 9%), @, € &,, implies that there exist distinct
@ @, suchthat x e O@j, 1sr<t¢+1. (13)
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Let (V@, € %)) @' be {@,} < U(k). By Lemma 21 we have P,(¢,) = P(¢,),
where we recall that P(@,):={p|p € P(q), ®.Fvp}. Therefore (11) is true. By
Lemma 12 all elements of U(k) are expressible, so is therefore @', and (12) is
also true.

Consider the first layer of the model U(k) without elements of the chosen sets
@' Letx e LUKY\U {@:"'| @, € Z}. By property (3) from the conditions of
Theorem 15, there exists for # =@ and A = P,(x) a (%, A) such that

0:(@(8, A)) = 0,(9(0, A)), P(e(¥, A))=A.
We fix such a @(, A) for each A = P(x) and we put

@@, A):={®, A)}U{y |y e (LUINUL 9. | 9 € 1)), P(y) = A}.

If @; # (@, A) for all the above fixed @(B, A), then we make @ = @; . It is
obvious that @;', ¢}, @, €% have the properties (9) and (10). Moreover, if
x € p(@, A)°, then P(x)=A=P(@(@, A)), so that (11) is true for @@, A)".
Therefore ¢!, @; € %, also have the property (11). Property (12) follows for ¢?,
@; € &, from the finiteness of #,(U(k)) and Lemma 12.

If x € U(k), then there exists y € Z,(U(k)) such that x <y. By the construction
of ¢S @,€%, we have ye @) for some @, eZ;. Therefore x € O@f. Thus
property (13) holds for ¢}, ¢, € &,.

Let us assume that subsets ¢, @, € %, with the required properties (9)-(13)
have been constructed (¢ < m,).

Let @.4, . . -, @ue+1y be some members of the set &,. We introduce the set

[Pars > Facenli= (0 V. Fat)

Pa€Xy

AN oU@nA( A =0U),
l=sist+1 p#+u«l,..., a(t+1)

where from now on f(X) denotes the formula defining the expressible set X (¢,

is expressible by our assumption). In order to simplify notation we shall often

denote the formula and what it defines by the same symbols. The formula at the

right-hand side of the equation is denoted by w(¥) (where X:=

{@ats -+ - » Paqry}), the set [@ar, . . ., Pogs] is denoted by F.

Our goal now is to construct the sets @;*', @, € £ An important point is to

obtain the fulfilment of (13). So, we must “force out” the elements of U(k) not
belonging to (U ¢;*' to the set of elements each of which has at least ¢+ 2
attainable by < sets ¢%'. For this reason the construction below is called the

force-out method.

Force-out method

We consider all sets # of the form {@,,, ..., @a¢+1y} and all subsets A of the
set P(q). By property (3) of Theorem 15 for all # and all A there exists
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@{(%, A) € &, such that property (3) is fulfilied We fix ¢(3, A) for all ¥ and A.
In the next stage of the proof we consider only # for which the following holds.
(A) 3A < P(q) such that (¥, A)e ¥.
For A < P(q) we denote by ¢(A) the formula
Apin N\

ieA p.s{Plg)\A}

If Ac P(q) and @(#, A) € # then put
T(#, A):= @(A) A p(F) A O(y(H)— » ”\;()E  #(B). (14)

If Ac P(q) and @(#, A) ¢ ¥ then put
W(H, A) = @(A) A y(3) A T(¢(#)— p(A) v 6), (15)

where 6 is the disjunction of all formulas of the form (14) related to the same .
We introduce the sets {¢])’, @; € Z;, by setting

@y=gu| U reealo] U wea)
F(H,A)=¢q, g(X.A)=q,
(¥, A)eH g(H.A)e X
The obtained seis are expressible since the new sets (14), (15) are expressible

and there is only a finite number of these sets. We need:

Lemma 22. In the case ¥ satisfies (A), the arbitrary maximal element from 9 is
included in the set \_j (@), @; € &,.

Proof. Let x be 2 maximal element of ¥ in the frame U(k). Then x Ik, y(%).
Consider P(x) where

P(x)={p,|p: € P(q), xEvp.} c P(q).

If @(J, P(x))e & then x is included in the set defined by (14), therefore
x € (@(¥, P(x)))'.

I @(3, P(x)) ¢ #, then x is included in the set defined by (12), therefore
xe W%, P(x))c(@(&, P(x))). O

Lemma 23. If @, * ¢5. then (p,) N (@p)’ =0.

Proof. If 7, #, are t + l-element subseis of the set &, and %, # #, and both
satisfy (A), then #; and 3, are disjoint. For this reason the sets added to ¢}
which are defined by formulas T(%,, A), W(%,, A) and T(3, A), W(3,, A)
have no common elements as subsets of the sets ¥, and %, respectively.

If A;, A, P{q) and A, # A4,, ihen in view of the formulas @(A,) and @(A,),
the sets T(#, A, }(W(¥, A;}} and T(#, A,(W(¥, A,)) also have no commor
elements.
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Thus all added sets are disjoint. All added sets are subsets of the sets of the
form (). But (#) and Jo@,, @,€, have no common elements.
Thereforz, if @, # @g, then (pl) N(gp)' =8 O

Lemma 25, If X is t + l-element subset of the set X, and & has the property (A)
and x € £ and x ¢ \ U (¢L)', @, € %), then there exist (t + 2) members Qo 1Sj<
t +2), of the set &, such that

Vi(lsj<st+2) xe O(((p;,)’).

Proof. It is easy to see that it is sufficient to prove the lemina assuming that x is a
maximal (in U(k) under =) element satisfying the condition of the lemma. Thus
let x be maxiral, then by Lemma 22, ({x)\{x}) N & is not empty.

Consider the set ({(x)\{x})N . If y is an element of this set, then y is
included in one of the sets in (14) or (15) (by the assumption of maximality for x).

First we assume that there exists a y e ({x)\{x}) N ¥ such that (¥, P(y)) ¢
3. Then y is not included in a set of the form (14), therefore y is an element of a
set of the form (15). Therefore y € (@(#, P(y))')'. but @(3, P(y))¢ X andx <y
imply the conclusion of our lemma.

Now let

Vye((O\xhHN& @, P(y)) e #. (16)

Then each such y is included in a set defined by a formula of the form (14).
Hence y -y 6, where @ is a formula from (15).

If P(x) is such that @(, P(x)) ¢ %, then by y I} 0 and by (15) it follows that x
is an element of the set defined by formula W(3, P(x)). Thus we have
x ¢ (p(3, P(x)))" which contradicts x ¢ L (@), @, € &,.

If P(x} is such that @(%, P(x)) € ¥, then we again obtain a contradiction.
Indeed in this case x i, @(P{x)) A w(3¢). If x <y and yir, @ (), then as we
noted above, by assumption (16) we get yi, 8. Then yi, @(A) for some
A c P(q), where @(3, A) e #. Thus

yitv  \/  o(B).
K, B)e X

This fact and the above observation give us
xty, T(3, P(x)).

Then x was included in (@(%, P(x)))’ and this is in contradiction to x ¢ | (¢4)’,
@ € &,. Thus (16} is impossible. 0O

We now turm to the proof of Theorem 20. Now we make the second step of the
consiruction of the set @%''. We consider only those ¢+ l-element subsets of
the sct Z, which do not satisfy (A). That is, we consider all < &, H=t+1
satisfying the condition

(B) VA P(q) @(%, A)e #.
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We fix for each such # and for A c P(q) the formula (3, A) of the
form

E(F. A) := @(A) A Y(F) A D(y(%)— @(A)) a7

where the formula @(A) is defined just before (14).
We introduce the sets (¢;)", @; € Z;, by putting

@yr=au| U Eee ]
P(H.A)=g;
O(H.A)e K
Note that formula (17) differs from (15) only by the absence of 8. Therefore
Lemmas 26-29 are proved similarly as Lemmas 22-25. We had the possibility not
to split the cases (A) and (B) by the correspon-ing union of (15) and (17). But
our construction is rather complicated and difficult to trace. For this reason we
have chosen to break the construction into a number of simple steps, although we
see a certain repetition.

By the construction of (@;)” all these sets are expressible.

Lemma 26. If ¥ satisfies (B), then every maximal element x of the set I is
included in the set \U {(¢})" | @, € %1}

Proof. Let x be a maximal element in % (in the frame U(k) under <). Then
xlky @(P(x)) and x i, y(3). Assume that y € U(k) and x <y, x #y. Then by the
maximality of x in %, we have y ¢ 9 and y I, —(3). This observation gives us
xl-y E(¥, P(x)). As a consequence x € (@(H, P(x)))". O

Lemma 27. if @, # @3, then (¢4)" N (¢p)" =9.
The proof is a reformulation of the proof of Lemma 23.
Lemma 28. If a € (9. )"\¢',, then P(a) = P\(p,)-

Proof. For a satisfying the premise of the lemma we have @, = @(#, A), and
alFy @(A) by the construction of (¢3,)’. By the definition of @(¢, A) in the
condition of Theorem 15, we have P(@(¥, A)) =A. From alty ¢(A) we obtain
P(a)= A, P(a)=P(@(5¢ A)) = P(p,). O

Lemma 29. If 5 is a t + 1-element subset of the set ¥, with property (B), xe %
and x ¢ \U{(@%)"| 9. € Z:}, then there exists g in the set Z\¥ such that
x € OU(@R)")-

Proof. If x satisfies the condition of the lemma, then by Lemma 26 the set
({x)\{x}) N & is non-empty. We consider a maximal element z of J which is a
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member of the set ({(x)\{x}). By Lemma 26, z ¢ U {(¢3)" | . € Z1}, therefore
zIFy w(3¢) and z ¢ U (%) | 9. € &}

Thus z was included in the set of the form (17). So zl-, E(J, A) and
z € (@p(%, A))". But @(¥, A)¢ ¥, by (B). Moreover, x=2z and so we have

x e O(@(¥, A))). O

Thus we have constructed the sets (@), (¢.)", @, € &, and we have proved

some of their properties. We define the sets @i, @, € &, as follows

P = (@) U (9)"

Lemma 30. The sequence of sets @4, @, €%, —~1<r<t+1, has the properties
(9)-(13).

Proof. Since (¢,)’ and (¢%.)” are expressible, the sets ¢, are also expressible
and (12) is true. The sets defined by (14), (15) and the sets defined by (17) have
no common elements in view of the conjunct (). For (14), (15) it is true that
3A c P(q) (%, A) € ¥, and for (17) it is true that VA c P(q) @(3, A) ¢ ¥ (that
is: the & in (14), (15) and in (17) are distinct. Using this fact and Lemmas 23, 27
we obtain that (9) is true.

Property (10) is obvious and (11) follows from Lemmas 24, 28 and from the
induction hypothesis.

Let us assume that x ¢ U {95 | 9. € %}. Then x¢U {¢.| 9. € Z1}, and
since (13) is true for ¢, @, €%, —-1<j=1, we get xeO@);, 1sisr+1.
Therefore either x € O@f,. where a ¢ {j1, ..., j(z+ 1)} and (13) is true for x and
@Y, or xi, Y(F), wheie #:={@;, ..., @igen)- Let xlky p(F). If the set ¥
satisfies (A), then by Lemma 25 there exists a @g € &,, where @g¢ % and
x € O(@h)". Then x € Ol and we obtain that (13) holds for x, and @5 is true.
Suppose that (A) is not satisfied for #. Then (B) is satisfied. Then by Lemma 29
there exists a @z € &\ such that x € O(@p). Then x € O(@5') and we again
obtain that (13) is true for x and @%"'. Thus (13) is true. 0O

Continuing the described constru.iion we construct the sequence ¢}, @, € &,
—1=<1r<m,, with properties (9)-+:3).
We claim that
U o= U(k). (18)
P
Indeed let x € U(k) and x ¢ U {@7'"| @. € 24}. Then by (13), x e Oof'!
for each @g € &,. Therefore for 3 := &; we have x Iy, y(3). Note that for all
A c P(q) it is true that @(3, A) € # (that is, at the construction of the sets @7
(A) always takes place). We take A:=P(x) (where P(x):={p;|p:e P(q) &
xlkyp;}). Then xit,@(P(x)) A p(%) and in this case \/,p)ex P(B)=



Problems of substitution and adrnissibility 97

V acpq) P(A). Therefore for z € U(k)

2y (w0 ?(5))
P(¥.B)eX

holds, and therefore x I+, T (3, A).

So we have x € (¥, P(x))™ and (18) is proved.

So the “force-out” method is now complete.

We now introduce the special valuation S of the constants from P(g) (which we
consider here as propositional letters) and of the variables from ¢q in the frame
U(k). As before we use the same notations—x,—for variables from ¢ and for

constants. Let
Vxegy xlhbgx; & x;€0,(@,).

In view of (11), the valuations S and V on the set P{(q) coincide. The correctness
of the definition of S follows from (18) and (9).

Lemma 31. In the model {U(k), <, S) we have Vx € ¢7' (xIF5s @,).

Proof. We shall conduct the proof by induction on the minimal ¢ such that x € @,
Suppose that x € ' (@, € L), that is t = — 1. We recall that by Lemma 21, %, is
an open subframe of the frame U(k) and Vp;e P(q) p: € P(g)) & @€ V(p)
where V is the valuation of the model (U(k), <, V).

If we consider @; € Z; as elements of U(k) and consider the valuation S on ¢;,
then by definition of S, @;lrsx; iff @;l-y x; in the model (%, <, V). In the last
model, by property (2) from the condition of Theorem 15, we have @; iy @,. As
we noted above, the valuations V and S on elements of &, (2, € U(k)) coincide.
From @; Iy @; (in &) and the fact that &, is an open subframe of the frame U(k)
and the coinciding of V and S, we obtain g; ks ¢; in the model (U(k), =<, S). But
x € @, implies x = @, and x IF5 @,.

Let us assume that =0, xe{@\@:"). Then xe £ (U(k)) and by the
construction of @% we have @,=@(®, P(x)). Moreover, 0,(@.)= 0:(g.).
Therefore x Its x; iff x; € 8,(@,). Since x is maximal in U(k) we obtain x5 q@,,.

Now let for all y el {¢% | @, €21}, the claim of our lemma be true and
let x e (@5"\@:). Then either x e (¢})’. or x e (@L)". First we consider the
case x € (@y)".

L x € ((90)"\@p). (19)

Then xl+y E(#, A) and @p = @(3¥, A). Therefore we have A= P(x) and
x by p(3). By the definition of S, xl5x; & x; € 6,(¢:). Therefore the nonmodal
part of the conjunction g is valid on x under S. Now consider the modal part.

Assume that x<y and yisx,. If yelU{@,| @, € Z,}, then y € ¢4, and by
induction hypothesis yl-s@g. Therefore ylsx; implies x; € 0,(@s) and x; €
0.(@g). Then x € O(@p), and from x ity Y(5€) we obtain @4 € 3. By Property (3)
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from the condition of Theorem 1 choice of @{%, A) we get
6.9 (%, 4)) = &:(@(3, A)U ( i, Oulon) 20)

From (20) and x; € 0x(gy; it foiiows that
x; € 0(@(, A)) = 0(@s).

Now we assume that y ¢ ¢, ¢, € .

Then by (13) we have y e O(@,), 1<j<t+1. This property and x =<y,
xiky (%) imply ¥ ={@a1, ..., Pae+r)} and so imply that yik, (). From
xl-, E(5, A) and x <y and yIFy, ¥(3) we obtain y i, @(A) and yl+, E(¥, A).
Thus y € (¢%)". Then from yik5x; we obtain x; € 0,(¢:) and x; € 0(@z).

Thus we have shown that

xibsOx; > x; € Ox(g).

Turn now to the coinverse implication. Let x; be a member of the set 6,(qg).
Then by (20), x; € 0,(@s) or x; € 8;(pg), where @g e X. In the first case xlsx;
and x ks Ox;. Assume that the second case takes place.

In view of x Ity y(3), there exists a y such that x <y, y € @}. By the induction
hypothesis, y s @z, therefore x; € 6,(gg) implies y!FsOx; and then, of course,
x i+ s Ox,'.

Thus we have proved x;e€ 0x(@:)>xlsx; and by using the converse
implication proved above, we have x; € 0,(¢;) ©x ks Ox;. This property and the
remarks made by us above about the validity of the nonmodal part of 0; allow us
to conclude that x k-5 @;. Consequently, in case (19) the claim of the lemma is
true.

Let the second assumption be

I xe((ed)'\oh. 21

As in case (19) by the definition of S, the validity in x of the nonmodal part of
@ is evident. Consider the modal part. In case (21) x will be included in the set
defined by (14) or (15). First we consider the case that x is an element of (14),
that is

xlby T3, A),  @:=@(%, A). (22)

Assume that xiFsOx;, that is x <y, yltsx; and y s x; for some y. Assume that
y kv w(3). Then y I, @(B) for a certain B where @(¥, B) € . Then it is easy to
see that yl-, T(3, A). In this case, by the construction of (@(%, B)*)’, y was
included in the set (@(¥, B)')’. Then, by the definition of § we have
x; € 0,(@(5%, B)). In view of the definition of @(3, A), (20) is the case. Since
(¥, B) e ¥, we obtain from (20) (as x; € 0,(@(%¥, B))), x;e 0,(¢p(%¥, A))=

8@z (see (22)).
Assume now that (y ik, (). If y ¢ U {94 | @ € 3}, then by (13) we have

ye(pa), l<sp=<t+1l.
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Thus, x <y and xI-y () imply yIty @ (), which contradicts our assumption.
Therefore yelJ ¢, @, €&,. So yeq!, p,e& . By induction uypothesis
yls@,, and from ylkgx; we obtain x; € 6,(@,) and x; € t2(@,). From x <y it
follows that x € O(@%). By x by (%) this implies @, € . Then from (20) (by
the definition of @(3, A) (20) is true) and x; € 6,(¢,), we may conclude that
x; € B,(p(#, A)) = 0.(@) (see (22)). Thus we obtain

xksOx; > x€ 62(‘1’5)-

Conversely, let x; be an element of 0,(@:). As we noted above, x Ik, Y(¥) (see
(22)). Therefore there exists a y such that x <y and y € ¢(3, A)". By induction
hypothesis, ylrs@(, A) holds. But we had x; € 0x(@:) = 6,(p(3, A)) (see
(22)). Therefore ylksx; and then, of course, xIksOx;. Thus we proved that
x ks Ox,; © x; € 6,(pg). Therefore it is true that x it @¢. The case (22) is completed.

Now we assume that x was included in the set defined by (15), that is

xlky W(H, A), (¥, A) = ;. (23)

Assume that x s Ox;. Then there exists a y such that x <y and yl-gx,.

Consider the case y ¢ U {¢% | @. € Z1}. By (13) we have y e Oloy), 1=<i=
t+1, and in view of xI-, () (by (23)) we obtain y -, w(9). By the form of
(15) we conclude that y I+, W(3, A) or y I+, T(%, B), where @{#, B) ¢ 9.

First we assume that the second case is true. Then y € ((@(8¢, B)")'\ (5, B)")
and we have case (22). As we showed above, in this case yI-s @(3, B). But by
assumption y lksx;, consequently x; € 6,(@(3, B)). Using (20) ((20) is true by the
definition of @(¥, A)) we obtain x; € 0(p(3, A)) = 0:(p;) (see (23)).

Now consider the case y Iy, W(3, A). Then y € ((¢(3¢, AY)'\p(%¥, A)). From
ylksx; we obtain x; € 0,(@(#, A)), and by using (23) we conclude that x, €
0:(@x)-

Now we turn to the consideration of the case y € U {¢’, | ¢, € Z3}. Then y € ¢',
for a certain @, € Z; and x € O(@),). From (23) we have x Ik, w( %), therefore
@q € . By induction hypothesis we obtain yis@,. Then x; € 0,(¢,) and
x; € 05(@,). Using @, € & ard (20), we obtain x; € 0,(@(¥, A)) = 6:(@;:). Thus
we completed the proof of the implication x ks Ox; 5 x; € 0,(@:).

Suppose that x; € 0;(@;) = 6,(@(¥, A)); by (20) we have x;€0,(@:) or
x; € 0(@g), g€ ¥K. If the first case holds, then xlsx; and xiksOx;. Let the
second case be true. Then x; € 8,(p;), where @p € X. Then from x ity Y(HK) (see
(23)) it follows that x <y, y € @}, and x € O(@)). By induction hypothesis,
yls@p and x; € 0,(@g) implies ylrsx; and xI-gx;. Thus we have proved
that x Ik Ox; iff x; € 6,(@;). Consequently x |5 @ in the case (23).

Thus we have proved that Vx € ((¢%)'\(¢%)) x -5 9. By combining this result
with the considered case (19), we obtain that Vx € (@% '"\@L) x ks ps. O

Now turn to the completion of the proof of Theorem 20. By Lemma 1, for
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arbitrary x € U(k),

X E€PuS(x)) & XitsPa 24

In view of Lemma 31 and (24) it is true that

P2’ < Pa(S(x:)).
Therefore (18) implies

According to property (1) from the conditions of Theorem 15 there exists a
@; € %, such that xp€ 8,((;3_,-), and by the definition of the set @' this set is
non-empty, that is, there exists an x € @"'. Then by Lemma 31, x k5 xq and by
(24), x € OS(x0), that is OS(xe) #0. Consequently, the quasi-identity g is not
valid on the algebra (U(k), <)* when its variables x; take values S(x;) and the
constants p, from P(q, are interpreied as S(p;).

By the definition of §

SG) =V AT | @a € {wp | xi€ 0:(g5)}}.

According to (12), all sets @7 are expressuble Consequently, by Leuma 1, ali
S(x,) are elements of the algebra (U(k), =)~ (V(p.)), which is a subalgebra of

he algebra (U(k), <)*. By Theorem 13 this subalgebra is isomorphic to the free
algebra %.(Grz) and the V(P,) are its free generators.

Let p; € P(q) and x € S(p,). By (18), x € @7 for some ¢7', and p; € 6,(¢,). By
(11), P(x)=Pi(g,), that is, we obtain xlyp; and x e V(p;). Assume that
conversely p; € P(q) and x € V(p;), that is, xlkyp;. By (18), x € @' for some
9. €%. Again, by (11), P(x)=P(¢,) and from this equality we obtain
pi € 8,(p,) andx € S(p;). Thus for an arbitrary constant p; from P(q), V (p;) = S(p:).

Therefore the S(p;) (S(p:)=V(p;)) are free generators of the algebra
(U(k), <)*(V(R))

Consequently g is not valid on %,(Grz) (when the P(q) are interpreted as free
generators). Now Theorem 20 is proved. O

Let A be a modal logic (or superintuitionistic logic) and let Z; be the signature
of the algebra %,(4), extended by constants for the free generators. An obstacie
for the universal formula A(X) in the signature Zis a certain tuple a from Z,.(A)
such that (%, (1) E A(a)).

Theorem 32. The universal theory of the free algebra %,(Grz) in the signature %,
is solvable. There exists an algorithm for the construction of obstacles for the
universal formulas in the signature X; which fail in %,(Grz).
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Proof. Let VX @ be a universal formula in the signature Z; in prenex normal
form. It is easy to see that this formula is eq..avaient to a formula A4 of the form

vz (/\ (B,- =13V (8- 1))).

i

Then VX @ is equivalent to the formula
_f .
A(vE{B.=12V B=1)).
i 1

We recall that Grz has the so-called disjunction property, that is from
0OC v 0D e Grz it foliows ihat LIC € Grz or OU € Grz [29]. Then in %,(Grz),
Oa vOb =14 (0a=1) v (Ob = 1) and moreover Ue = 1<>a = 1. Therefore the
formulas Vi (B;=1=\/{(Bi=1)) are equivalent in %,(Grz) to the quasi-
identities

Co=(ve(B=13 (\/ 08)) =1)).

Then in %,(Grz} the formula VYX @ is equivalent to the conjunction /\; C,.
Moreover, these formulas have the same sets of variabies and the same seis of
constants and the sets of obstacles for these formulas coincide. Thus

F.(CGrz)EVig © %,(Gr)EAC;

by Theorem 14, %,(Grz)tC; & %,(Grz) Er(C;). According to Thecrems 1 and
20, (%.,(Grz) Er(C;)) iff there exist a set £ where X < @(r(C;)) and Vg; e ¥
there exist sets 7(@;) c D(r(C;)) where V@, € T(@;) 0:(@:) = 0x(@;). @ ¢ T(g)),
such that in the model (X U [Ug,cx T(®;)], <, V) the properties (1)—(3) from
the condition of Theorem 15 are true. These properiies yield effeciive iesis and
give us an algorithm for checking #,(Grz)kEr(C;). Consequently, the universal
theory of %,(Grz) in the signature Z; is solvable.

Assume that V¥ @ is not valid in %,(Grz). Then for certain i, C; is not valid in
%,(Grz) and %, (Grz) § r(C;). Now by Theorem 15 we may find a model with the
required properties (1)—(3). The proof of Theorem 20 gives us an algorithm to
construct an obstacle for r(C)):

S(x;):= V {3 I P € {Pp I @ € X\, x; € 0(P3)}},
S(p):=V(p;), Vp;eP((C)).

By Theorem 14 the set of elements of this obstacle which correspond io
variables and constants from C; will be an obstacle for C; and /\; C;. As we noted
above, the sets of obstacles for VX @ and for A; C; coincide. Consequently, we
obtain the obstacle for Vx . O
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4. Admissibility and substitution problems

The above mentioned prablems will be solved first for the modal system Grz;
after all they will carry over to intuitionistic propositional calculus H.

Let A(x;)/ B(x,;) be a rule of inference. Let -'s suppose that some variables x; of
this ruic are repiaced by propusiuonal icttcrs 7, 2nd then we have an expression
of the form A(x,, p;)/B(x;, p;). A(xi, p;)/ B(x:, p;) is called a rule of inference with
paramciers. We call this rule admissible in the logic 4 iff B(B;, p;) € 4 follows
from A(B;, p;) € A for arbitrary formulas B,.

It is clear that the admissibility of rules with parameters generalizes the usual
admissibility. If the rale A(x;)/B(x;) is admissible in logic A, then the rule with
parameters A(x;, p;)/B(x;, p;) is also admissible in A. The converse is not true.
For example, the rule with parameters p/p A 7p is admissible in each nontrivial
logic 4, but the rulc x/x¥ » v is not admissible in A.

The first main corollary of Theorem 32 is

Theorem 33. The problem of adis:iBilitvy of rules of inference with parameters
(hence also without them) in the m.l. Grz is algorithmicatty svovesl!”

The proof follows immediately from the analogue of Lemma 2 for rules with
parameters: mile A(x;, 5,)/B(x;. p;) is admissible in the logic A iff the quasi-
identity A(x.. p;)=1=> B(x;, p;)=1 is valid in %,(A) where the p;’s are interpr-
eted as free generators (the proof of Lemina 2 immediately carries over to this
case), and from Theorem 32.

Theorem 33 generalizes the resuit about algorithmical recognition of admis-
sibility rules {without parameters) in the m.l. Grz [27], which (csalt was obtained
on the basis of the decidability of the universal theory of the algebra &,(Grz) in a
signature without constants. In [28] it was proved that the problem of admis-
sibility of rules in the modal provability system G is also algorithmically
decidable.

The second main corollary of Theorem 32 is the next theovicii.

Theorem M. The substitution problem for the modal system Grz is algorithmically
decidable. There exist an algorithm for the recognition of solvabilizy in the free
algebra %,(Grz) of equations (in the cignature X.) and for the construction of
some solutions for sclvable equations.

Proof. Tuc sccond part »f the theorem immediately follows from Theorem 32
and the fact that A(x;, p;) =1 is solvable in F,(Gr1z) ifi F,(Grz)§Vx 2(A(x;, p;)
=1). The first part of the theorem follows from the second part and
Lemma 3. O

Now we turn to intuitionistic propositional calculus H.
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Theorem 35. There exists an algorithm for the recognition of solvability of
equations ir the free pseudo-boolean algebra ¥..(H) (in the signcture %;) and for
constructing some solution for solvable equations.

Proof. According to Lemma 8 the equation A(x;, p;} = 1 is solvable in &, (H) iff
T(AXOx.. Op:.) =1 bas a solntion in % (Crz}. THCiCioic, vy Theorem 34 there
exists an algorithm for the recognition of solvability of equations in &, (H).

If A(x;, p;)=1 is solvable, then T(A)}Ox;, Op;) =1 is also solvable and by
Theorem 34 we may effertively construct some solution for 7(A)(Ox;, Op;) = 1.
As we proved in the second part of the proof of Lemma 8 this solution may be
effectively transformed into a solution of the same equation, and the members of
this solution have the form T(D;). Then the D; form a solution for A(x;, p,) =
1. O

Theorem 35 and Lemma 3 imply
‘Theorein 36. The substitition problem for intuitionistic logic H is decidable.

The results of Theorems 35 and 3€ were obtained in {25, 26] in the same way on
the basis of analogues of the above sutained results for the modal system 54 (that
15, sulvability of the universal theory the free algebra %,(34) in signature Z; and
solvability of the substitution problem for $4 and so on).

Let 3 be the signature of the algebra &%,(H) (without constants).

Theorem 37. The universal theory of the free pseudo-boolean algebra %,(H) in
the signature 2 is decidable.

Proof. Let VX A be a universal formula. The reader will easily note that this
formula is cquivalent (o the conjunction of formulas of the form
Vi(f=12(g =1 v - v(g.=1) (25)

It is weii knuwn thet intiitionistic logic H has the so-called disjunction property:
A v B € Himplies A € H or B € H. Therefore formuia (25) is equivalent in %..(H)
to the quasi-identity

f=1 > (»" gi)=l~
J=1

By Thecicm 6 and Lemma 2 this quasi-identity is valid in &,(H) iff the
quast-identity

/on

=1 > (1(Vs))=1

is valid in %,(Grz). According to Lemma 2 and Theorem 33 we obtain an
algorithm for the recognition of validity of (25) on &, (H). O
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By Theorem 37 and Lemma 2 we obtain a positive solution of Friedman’s
problem:

Corollary 38. There exists an algorithm for the recognition of the admissibility of
rules of inference in intutionistic logic, H.

This result was obtained earlier in the author’s papers {20, 23, 27] on the basis of
the decidability of the universal theory of the algebra %, (H).

Remark 1. Despite the decidability of universal theories ot the free algebras
%,(2), A =Grz, H (Theorems 32, 37) the first-order theories of these algebras are
heriditarily undecidable [22].

Remark 2. We note that the universal theory of free pseudo-hcolean algebra
%.(H) in the signature X, (which is extended by constants for free generators) is
decidable too. For this reason there exists an alzorithm for the recognition of the
admissibility of rules of inference with parameters in H. This result was obtained
in [26].

Finding algorithms for the recognition of admissibility in Grz and H is rather
complex. In suitable cases it is more convenient to use the following semantical
criterion.

Theorem 39. The rule A/B 1s udmissible in Grz iff (U(n), <)*E(A=1>B=1)
for each n e N.

Proof. By Theorem 13 and Lemma 2, “sufficiency’ is obvious.

Let (U(n). <)"§(A=1>B=1). Then r(q), where g=(A=1>B=1),
according to Theorem 14, is not valid in (U(n), <)*. Note that the proof of
Theorem 15 rests on just this assumption: r(q) is not valid in (U(n), <)* (see
(7)). Therefore, by Theorem 15, the-e exist a model

(zu [wg:;_, T(ep) =.v)

with properties (1)~(3) from the condition of Theorem 15.

Then. accoiding to Theorem 20, r(g) is not valid in %,(Giz). Therefore by
Theorem 14 we have (%,(Grz) E g).

Then by Lemma 2, A/B is not admissible in Grz. O

For example, using this criterion it is not hard to deduce that the ruie
goaryo>(Crvag)-gvor

is admissible in H. Of course, we first check that the translation T of this rule is
admissible in Grz. This rule is not found in the literature, as it seems. From the
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admissibility of this rule in # thc admissibility of the well-known rule of
Scott-Jankov—-Kuznetsov follows:

(Cxox)>{x v )}/ v
The admissibility of the last ruie and of Harrop’s rule
(xozvy)(x>z)v(x>Dy)

in H is also rot hard to check by our semantical criterion of admissibility in Grz.
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