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SUMMARY

Communication of mitochondria with the rest of
the cell requires b-barrel proteins of the outer mem-
brane. All b-barrel proteins are synthesized as pre-
cursors in the cytosol and imported into mitochon-
dria by the general translocase TOM and the sorting
machinery SAM. The SAM complex contains two pro-
teins essential for cell viability, the channel-forming
Sam50 and Sam35. We have identified the sorting
signal of mitochondrial b-barrel proteins that is uni-
versal in all eukaryotic kingdoms. The b-signal initi-
ates precursor insertion into a hydrophilic, proteina-
ceous membrane environment by forming a ternary
complex with Sam35 and Sam50. Sam35 recognizes
the b-signal, inducing a major conductance increase
of the Sam50 channel. Subsequent precursor release
from SAM is coupled to integration into the lipid
phase. We propose that a two-stage mechanism of
signal-driven insertion into a membrane protein com-
plex and subsequent integration into the lipid phase
may represent a general mechanism for biogenesis
of b-barrel proteins.

INTRODUCTION

Many organelles, like the endoplasmic reticulum, peroxisomes,

and lysosomes, are confined by one membrane, harboring

a-helical channel proteins. Mitochondria and chloroplasts are

additionally bordered by an outer membrane, which contains

channel proteins of b-barrel structure (Schleiff and Soll, 2005;

Dolezal et al., 2006). The precursors of most mitochondrial pro-

teins are synthesized on cytosolic ribosomes and transported to

the translocase of the outer mitochondrial membrane (TOM

complex). From here, transport pathways diverge and the pre-

cursor proteins are transported to their submitochondrial desti-

nation with the help of target-specific recognition sequences

(Rehling et al., 2004; Neupert and Herrmann, 2007). N-terminal

or internal signals direct a-helical membrane proteins to the inner
mitochondrial membrane, into which they are inserted by

translocases of the inner membrane (TIM).

The precursors of outer membrane b-barrel proteins are trans-

ferred from the TOM complex to the sorting and assembly

machinery (SAM complex) (Wiedemann et al., 2003; Johnson

and Jensen, 2004; Dolezal et al., 2006; Neupert and Herrmann,

2007). The SAM complex contains two proteins that are essential

for cell viability, the integral membrane protein Sam50 (Tob55/

Omp85) (Kozjak et al., 2003; Paschen et al., 2003; Gentle et al.,

2004; Humphries et al., 2005) and Sam35 (Tob38/Tom38), which

behaves as a peripheral membrane protein (Ishikawa et al., 2004;

Milenkovic et al., 2004; Waizenegger et al., 2004). The third sub-

unit of the SAM complex, Sam37, is not essential for cell viability.

The mechanism of sorting and membrane integration of mito-

chondrial b-barrel proteins is poorly understood. Sam50 is homol-

ogous to Omp85/YaeT from Gram-negative bacteria, implying

that these proteins function ina relatedmanner in b-barrel insertion

(Schleiff and Soll, 2005; Dolezal et al., 2006; Robert et al., 2006;

Sklar et al., 2007). Bacterial b-barrel proteins contain a C-terminal

signature motif that interacts with Omp85. The motif typically

consists of the terminal amino acid phenylalanine and further hy-

drophobic residues close to the C terminus (Robert et al., 2006).

Despite extensive searches, the signal has not been identified in

mitochondrial b-barrel proteins. Mutational analysis yielded vari-

ous regions spread over the mitochondrial precursors that influ-

enced the formation of mature b-barrel proteins; however, no con-

sensuswas found (Court etal., 1996; Rapaportand Neupert, 1999;

Rapaport et al., 2001; Taylor et al., 2003; Humphries et al., 2005;

Sherman et al., 2006). Habib et al. (2007) concluded that a linear

consensus sequence as a sorting signal is unlikely in the case of

mitochondria. The membrane environment for b-barrel proteins

changed during evolution, as the outer leaflet of the bacterial but

not the mitochondrial outer membrane is composed of lipopoly-

saccharides. Omp85/YaeT forms a complex with four lipoproteins

(Sklar et al., 2007), yet the SAM complex does not contain homo-

logs of those proteins (Dolezal et al., 2006). Thus the similarity be-

tween bacterial and mitochondrial b-barrel biogenesis seems to

be limited to the homology of Omp85 and Sam50 while the sorting

signal, membrane environment, and partner proteins are different.

Mutants of Sam50, Sam35, and Sam37 are impaired in

substrate interaction with the SAM complex in organello
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Figure 1. Sam50 POTRA Domain Is Dispensable for b-Barrel Protein Biogenesis

(A) Scheme of wild-type (WT) and Sam50 POTRA yeast deletion mutants.

(B) Growth of WT and Sam50D120(pFL39) yeast on YPG.

(C) Growth of WT, Sam50D120(pRS413), and Sam50D102 yeast on YPG.
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(Kozjak et al., 2003; Paschen et al., 2003; Wiedemann et al.,

2003; Gentle et al., 2004; Ishikawa et al., 2004; Milenkovic

et al., 2004; Waizenegger et al., 2004; Chan and Lithgow,

2008); however, a molecular mechanism of function has only

been reported for Sam50. The large b-barrel domain forms

a channel like Omp85 (Paschen et al., 2003; Robert et al.,

2006) while the N-terminal a-helical domain contains one poly-

peptide transport associated (POTRA) domain, which is present

in five copies in Omp85/YaeT (Sánchez-Pulido et al., 2003; Do-

lezal et al., 2006; Bos et al., 2007; Kim et al., 2007). Habib

et al. (2007) reported that deletion of a major portion of the N-ter-

minal domain of Sam50 inhibited the growth of yeast cells and

the interaction of b-barrel precursors with SAM. They concluded

that the POTRA domain plays a receptor-like function in b-barrel

biogenesis. Chan and Lithgow (2008) proposed that the two pe-

ripheral membrane proteins Sam35 and Sam37 provide a protec-

tive environment for assembly of the extramembrane (cytosolic)

domains of mitochondrial b-barrel proteins. As the mitochondrial

outer membrane contains only three proteins essential for cell

viability, the two channel-forming proteins Tom40 and Sam50

and Sam35 (Milenkovic et al., 2004; Dolezal et al., 2006), it will

be of particular importance to understand the molecular role of

Sam35 in b-barrel biogenesis.

Unexpectedly, we found that deletion of the entire N-terminal

domain of Sam50 did not inhibit growth of yeast cells and precur-

sor binding to SAM, excluding that the POTRA domain was

crucial for recognition of b-barrel precursors. We identified the

b-sorting signal that is present in mitochondrial b-barrel proteins

of all eukaryotic kingdoms. We show that Sam35 recognizes the

b-signal, inducing opening of the channel formed by Sam50.

Our findings imply a two-step mechanism for recognition and

insertion of b-barrel precursors.

RESULTS

The POTRA Domain of Sam50 Is Dispensable
for Cell Growth and b-Barrel Biogenesis
The predicted POTRA domain of Saccharomyces cerevisiae

Sam50 consists of amino acid residues 29–120 (Sánchez-Pulido

et al., 2003). We deleted the entire POTRA domain, but the re-

sulting mutant yeast grew like wild-type (WT) cells (Figure 1A)

and the mitochondria efficiently imported precursor proteins

(data not shown), in difference to the findings by Habib et al.

(2007). In that study the first N-terminal 80 or 102 residues,

respectively, were deleted, raising the possibility that the N-ter-

minal 28 residues of Sam50 were crucial for b-barrel biogenesis.

We deleted the entire N-terminal domain of Sam50 (120 residues

in front of the predicted b-barrel domain), yet the yeast mutant

still grew like WT (Figure 1B). To exclude a cloning artifact, we

generated a second Sam50D120 strain using different vectors

and markers yet obtained the same WT growth (Figure 1C). We

thus generated the D102 partial deletion of the POTRA domain
used by Habib et al. (2007) and indeed observed a severe growth

defect (Figure 1C), indicating that the remaining 18 residue

POTRA segment was responsible for the reported defect. The

truncation of Sam50D120 was confirmed by PCR (Figure 1D)

and western blot analysis (Figure 1E). The steady-state levels

of the b-barrel proteins Tom40 and porin, as well as of marker

proteins for different mitochondrial subcompartments, were un-

changed between WT and Sam50D120 mitochondria (Figure 1E).

We used the radiolabeled precursors of Tom40 and porin to

study the biogenesis of b-barrel proteins in isolated mitochondria

and analyzed them by blue native electrophoresis (BN-PAGE) of

digitonin-lysed mitochondria. The precursor of Tom40 assem-

bles via two intermediate stages, first an intermediate-I of

�250 kDa, representing interaction of the precursor with the

SAM complex, and second an intermediate-II of �100 kDa, rep-

resenting insertion of Tom40 into the lipid phase of the outer

membrane (Model et al., 2001; Paschen et al., 2003; Wiedemann

et al., 2003; Gentle et al., 2004; Ishikawa et al., 2004; Waizeneg-

ger et al., 2004). Subsequently, the mature TOM complex of

�450 kDa is formed (Figure 1F). Sam50D120 mitochondria effi-

ciently formed the SAM intermediate of Tom40, which migrated

faster on the native gels in agreement with the truncation of

Sam50 (Figure 1F). The precursor of porin does not form stable

intermediates with SAM (Wiedemann et al., 2003) and thus

assembly into the mature porin complexes was monitored (Fig-

ure 1G). The formation of mature porin and TOM complexes

occurred in the mutant mitochondria with an efficiency that was

close to that of WT mitochondria (Figures 1F and 1G). As ex-

pected, control proteins transported to the intermembrane

space (Figure 1H) and matrix (Figure 1I) were not affected in

Sam50D120 mitochondria. We conclude that the POTRA domain

does not play an essential role for precursor binding to SAM

and mitochondrial protein import.

Identification of the Mitochondrial b-Signal
To screen for a potential sorting signal of b-barrel precursors, we

systematically deleted N- and C-terminal segments of Tom40

and monitored import of the radiolabeled constructs into isolated

mitochondria by BN-PAGE (Figures 2A–2C). Thereby, binding to

SAM and formation of the mature TOM complex could be di-

rectly differentiated. N-terminally truncated versions of Tom40

led to formation of a SAM intermediate while the subsequent as-

sembly steps were blocked (Figure 2B). To directly determine if

the truncated versions were bound to SAM, we used mitochon-

dria carrying a hemagglutinin (HA)-tagged Sam35 (Milenkovic

et al., 2004). Anti-HA antibodies depleted the N-terminally trun-

cated versions of Tom40 as well as WT Tom40 on BN-PAGE,

demonstrating the accumulation at SAM (Figure 2B). In contrast,

Tom40 constructs with C-terminal truncations were blocked

in association with SAM (Figure 2C, upper panel); the constructs

were still targeted to mitochondria, determined as total mito-

chondria-bound precursor (Figure 2C, bottom panel), excluding
(D) DNA was isolated and used for verification of POTRA deletions by PCR.

(E) Mitochondria were isolated from WT and Sam50D120 yeast and subjected to SDS-PAGE and immunodecoration.

(F and G) Isolated mitochondria were incubated with [35S]Tom40 or porin, solubilized in digitonin, and analyzed by BN-PAGE and autoradiography. SAM,

precursor-SAM complex intermediate-I; Int-II, 100 kDa assembly intermediate-II.

(H and I) Mitochondria were incubated with [35S]precursors, treated with proteinase K, and analyzed by SDS-PAGE. p, precursor; i, intermediate; m, mature.
Cell 132, 1011–1024, March 21, 2008 ª2008 Elsevier Inc. 1013



Figure 2. C-Terminal Fragment of Tom40 Is Sufficient for SAM Binding

(A) Scheme of truncated Tom40 constructs.

(B) Isolated WT mitochondria were incubated with [35S]precursors and analyzed by BN-PAGE (left panel). Samples 10–21, mitochondria from WT and Sam35HA

yeast were used; where indicated anti-HA antibody was added.

(C) Precursors were imported into WT mitochondria and analyzed by BN-PAGE (upper panel) and SDS-PAGE (lower panel).

(D) Tom40 and Tom40D1-278 were incubated with WT mitochondria and analyzed by BN-PAGE.

(E) Tom40 and Tom40D1-278 were incubated with Sam35HA mitochondria. Where indicated anti-HA antibody was added.

(F and G) Tom40 constructs were incubated with WT mitochondria.

(H) Alignment of last predicted b-strand (underlined). S. cerevisiae (Sc), Candida glabrata (Cg), Schizosaccharomyces pombe (Sp), Neurospora crassa (Nc),

Caenorhabditis elegans (Ce), Homo sapiens (Hs), Arabidopsis thaliana (At). Po, polar; Hy, hydrophobic.
a degradation of the constructs. A fragment consisting of the

C-terminal 109 residues of the 387 residue Tom40 formed a com-

plex with the expected size of a SAM intermediate (Figure 2D).

When imported into Sam35HA mitochondria, anti-HA antibodies

shifted the complex formed by Tom40D1–278, demonstrating that

it was accumulated at SAM (Figure 2E, lane 4). Thus, the

C-terminal 109 amino acid residues contain sufficient and

necessary information for directing Tom40 to SAM.

We performed a detailed residue per residue truncation of

Tom40 fromthe C terminus.Deletionof the C-terminal 27 residues

(361–387) did not impair SAM targeting and membrane insertion
1014 Cell 132, 1011–1024, March 21, 2008 ª2008 Elsevier Inc.
(intermediate-II), only the final maturation to the mature TOM

complex was delayed (Figure 2F). However, the additional dele-

tion of residues 360 and 359 severely affected the sorting of

Tom40. Upon lack of Glu360, the precursor was still targeted to

SAM, yet formation of assembly intermediate-II was inhibited

(Figure 2F). Deletion of Phe359 blocked sorting to SAM and the

further assembly steps of Tom40 (Figure 2F). Residues 359 and

360are located in the C-terminal region of the predicted last trans-

membrane b-strand of Tom40. A deletion of N-terminal residues

of this predicted b-strand also inhibited sorting of Tom40 to

SAM (Figure 2G). A detailed search using different mitochondrial



b-barrel proteins led to identification of a conserved sequence

located in the last predicted transmembrane b-strand (Figure 2H).

Characteristic features of the consensussequence, termed b-sig-

nal, are a large polar residue (predominantly lysine or glutamine),

an invariant glycine, and two large hydrophobic residues.

Two-Step Sorting of Tom40
We replaced each of the four conserved residues of the Tom40

b-signal by alanine. The radiolabeled constructs were incubated

with isolated mitochondria and analyzed by BN-PAGE. Tom40

precursors lacking Lys352, Leu357, or Phe359 were significantly

inhibited in formation of the SAM intermediate and the subse-

quent assembly steps (Figures 3A–3C, lanes 4–6). The initial

targeting of these constructs to mitochondria occurred with an

efficiency close to that of the WT precursor (Figures 3A–3C, bot-

tom panels). We replaced conserved polar and large hydropho-

bic residues in other predicted b-strands of Tom40. Each of the

precursors with amino acid replacements outside the last

b-strand still formed the SAM intermediate (Figures 3D and

3E), supporting a critical function of the residues in the last

b-strand for Tom40 sorting to SAM.

When Gly354 of the b-signal was replaced by alanine, the

precursor accumulated at SAM while membrane insertion at in-

termediate-II and maturation to the mature TOM complex were

inhibited (Figure 3F). We replaced all other invariant glycines of

Tom40. Replacement of Gly83 and Gly212, which are located

in predicted transmembrane b-strands, also led to a SAM arrest,

while replacement of Gly129 (interstrand loop) did not inhibit

Tom40 import and assembly (Figure 3F). WT Tom40 accumu-

lated at SAM is extracted at alkaline pH since it is not inserted

into the lipid phase of the membrane, while fully assembled

Tom40 in the mature TOM complex as well as a major fraction

of intermediate-II are resistant to extraction at pH 11.5, indicating

integration into the lipid phase (Figure 3G, lane 2; Model et al.,

2001). Tom40G354A and Tom40G83A, accumulated at the SAM

complex, were extracted at pH 11.5, while Tom40G129A was effi-

ciently integrated into the TOM complex and not extracted (Fig-

ure 3G), demonstrating that the b-strand glycines were critical for

membrane insertion.

We conclude that the four conserved residues of the b-signal

are involved in distinct steps. The three large residues are re-

quired for sorting to SAM, while the subsequent membrane in-

sertion depends not only on the b-signal but also on other re-

gions of Tom40. The conserved glycine residues in b-strands

of Tom40 are required for membrane insertion.

General Role of the b-Signal for Biogenesis
of b-Barrel Proteins
We analyzed the critical residues of the b-signal in two further

b-barrel proteins, Mdm10 and porin, which do not show se-

quence homology to Tom40 besides the similarity in the b-signal.

Stable SAM intermediates have not been reported for yeast

b-barrel proteins other than Tom40. Therefore assembly of the

radiolabeled proteins was monitored by formation of the mature

complexes on BN-PAGE (Paschen et al., 2003; Wiedemann

et al., 2003; Gentle et al., 2004). We generated C-terminal trunca-

tions of both precursors. When the truncations included the last

hydrophobic residue of the b-signal (Tyr491 of Mdm10, Phe281
of porin), formation of the mature complexes was blocked (Fig-

ures 4A and 4B, upper panels) while the mutant precursors

were still targeted to mitochondria (Figures 4A and 4B, lower

panels). (In case of porin and Tom40, deletion of residues C-ter-

minal to the b-signal delayed formation of the mature complexes

[Figures 2F and 4B], suggesting that these residues were in-

volved in membrane integration or assembly.) The predicted

b-signals of Mdm10 and porin, like the one of Tom40, possess

one conserved polar residue (Lys484 of Mdm10/Lys274 of porin)

and two conserved hydrophobic residues (Phe489 and Tyr491/

Leu279 and Phe281) (Figure 2H). Replacement of these residues

impaired formation of the mature complexes (Figures 4C and 4D,

upper panels), demonstrating that the conserved residues of the

b-signal are crucial for b-barrel biogenesis.

We also studied the role of the invariant glycine 276 of the

porin b-signal. Replacement by alanine delayed the formation

of mature porin complexes and led to formation of an additional

form at 250 kDa (Figure 4E, upper panel). Replacement of the

glycine by isoleucine blocked formation of mature porin and

led to accumulation of the 250 kDa form after a short-term import

(and turnover after longer import) (Figure 4E, upper panel). We

suspected that the 250 kDa form may represent accumulation

of porin at SAM and used sam37D mitochondria, as well as

Sam35HA mitochondria, for analysis. PorinG276A was indeed

found in a smaller form in sam37D mitochondria in agreement

with the size reduction of the SAM complex (Figure 4F; Wiede-

mann et al., 2003). In Sam35HA mitochondria, accumulated

porinG276I was shifted by anti-HA-antibodies like SAM-accumu-

lated Tom40 while the mature porin complex was not shifted

(Figure 4G). In addition, mitochondria carrying accumulated

porinG276I were incubated with the crosslinking agent 1,4-di-

[30-(20-pyridyldithio)propionamido]butane (DPDPB). One of the

crosslinking products was shifted in size when mitochondria

containing a Protein A-tag at Sam50 were used (Figure 4H, lanes

7 and 8), demonstrating that accumulated porin was in close

proximity to Sam50 (the yield of this crosslinking product was

significantly lower with WT porin precursor; Figure 4H, lanes 3

and 4). Thus, like for Tom40, the invariant glycine of the porin

b-signal is not required for recognition by SAM but for subse-

quent release of the precursor.

To obtain further evidence that the b-signal was crucial for

directing b-barrel sorting we first performed signal-swapping ex-

periments. The b-signal of porin, as well as that of Mdm10, res-

cued SAM sorting of a Tom40 construct lacking its endogenous

signal (Figure 5A). Similarly, the b-signal of Tom40 conferred

SAM sorting to a porin construct lacking the endogenous signal

(Figure 5B). Second, we searched for mutations in the b-signal

that enhanced the sorting yield over WT efficiency. We found

that replacement of Phe359 of Tom40 by Tyr stimulated SAM

binding and increased the formation of the subsequent assembly

steps by 85%–90% (Figure 5C), providing positive evidence for

the importance of the b-signal. In contrast, replacement of this

residue by Gln completely blocked formation of the SAM inter-

mediate (Figure 5C). Third, we synthesized a peptide containing

the b-signal of Tom40 and a control peptide containing the same

amino acid residues in scrambled order (Figure 5D). The b-signal

peptide, but not the scrambled peptide, inhibited formation of

the SAM intermediate of Tom40 (Figure 5E, upper panel) but
Cell 132, 1011–1024, March 21, 2008 ª2008 Elsevier Inc. 1015



Figure 3. Conserved b-Signal Residues Are Required for SAM Binding and Assembly of Tom40

(A, B, and C) [35S]Tom40 precursors were incubated with WT mitochondria and analyzed by BN-PAGE (top) and SDS-PAGE (bottom).

(D and E) Mitochondria were incubated with precursors for 5 min and separated by BN-PAGE (top). Loading control was analyzed by SDS-PAGE (bottom).

(F) Tom40 precursors were imported as in (A).

(G) Tom40 precursors were imported into WT mitochondria. Mitochondria were either directly separated by BN-PAGE or after treatment with sodium carbonate,

pH 11.5.
not the targeting of Tom40 to mitochondria (Figure 5E, lower

panel). A peptide, in which Phe359 was replaced by Gln (Fig-

ure 5D), did not inhibit formation of the SAM intermediate

(Figure 5E, upper panel, lanes 8–10). Importantly, binding of
1016 Cell 132, 1011–1024, March 21, 2008 ª2008 Elsevier Inc.
porinG276I to SAM was also inhibited by the Tom40 b-signal

peptide but not the control peptides (Figure 5F), underscoring

the general function of the b-signal for b-barrel sorting. None

of the other major mitochondrial protein import pathways were



Figure 4. Mitochondrial b-Signal Is Functionally Conserved

(A–E) [35S]precursors of Mdm10 and porin were incubated with isolated WT mitochondria and analyzed by BN-PAGE (upper panels) and SDS-PAGE (lower panels).

(F) PorinG276A and Tom40 were incubated with WT and sam37D mitochondria for 5 min, followed by BN-PAGE. Asterisk, SAM intermediate lacking Sam37.

(G) Porin, PorinG276I, and Tom40 were incubated with Sam35HA mitochondria for 5 min. HA antibody was added where indicated, followed by BN-PAGE.

(H) Porin and PorinG276I were imported into WT and Sam50ProtA mitochondria for 5 min, followed by addition of DBDPB and SDS-PAGE. Asterisks, crosslinking

products.
Cell 132, 1011–1024, March 21, 2008 ª2008 Elsevier Inc. 1017



Figure 5. Specificity of the b-Signal

(A and B) Hybrids of Tom40, porin, and Mdm10 were imported into WT mitochondria and analyzed by BN-PAGE.

(C) Tom40 precursors were imported and analyzed by BN-PAGE.

(D) b-signal peptide derived from Tom40 (residues 348–361; Cys replaced by Leu), mutant peptide, and scrambled control peptide.

(E and F) Mitochondria were incubated with Tom40 and porinG276I in the presence of peptide for 5 min, followed by BN-PAGE. Quantification by digital autora-

diography; data are represented as means ± SEM, n = 6 (E), n = 3 (F).

(G) Growth of WT and Tom40L357Q F359Q yeast cells. Trp, tryptophane.
1018 Cell 132, 1011–1024, March 21, 2008 ª2008 Elsevier Inc.



impaired by the b-signal (Figure S1 available online). We con-

clude that the b-signal is necessary and specific for sorting of

outer membrane b-barrel proteins.

To determine if the Tom40 b-signal was essential in vivo, we

performed a plasmid shuffling experiment. A haploid yeast strain

witha chromosomal deletion of itsTOM40 genewasviable as long

as Tom40 was expressed from a plasmid, but not when Tom40

containing a mutant b-signal was expressed (Figure 5G), demon-

strating that the Tom40 b-signal is essential for cell viability.

Response of the Sam50 Channel to the b-Signal
Requires a Further SAM Subunit
Recombinant Sam50 was purified and reconstituted into lipo-

somes. Upon fusion with a planar lipid bilayer, a channel activity

was observed (Figure 6A). The reversal potential of the channel

Figure 6. The SAM Complex but Not Puri-

fied Sam50 Forms a b-Signal-Sensitive

Channel

(A) Single-channel current recordings of Sam50 ±

b-signal peptide at a holding potential of �60 mV.

(B) Current recordings of a single SAM complex.

(C) Gating transitions in main conductance

(50–250 pS) of Sam50 and SAM complex depend

on the direction of the electric field (referring to

transcompartment; ngating > 1500).

(D) Purified SAM complex: mean current differ-

ences plotted against their variances.

(E) Conductance distribution of the SAM complex.

was 30 mV, reflecting a slight preference

for cations (K+/Cl� of 4:1). Addition of

the b-signal peptide did not exert a major

effect on the activity of the Sam50 chan-

nel (Figure 6A). We thus purified the

SAM complex and reconstituted it into

liposomes. Upon fusion with a planar lipid

bilayer, we observed a channel with the

same basic characteristics as recombi-

nant Sam50 (Erev = 30 mV; PK
+: PCl

� =

4:1) (Figure 6B). Recombinant Sam50

and SAM complex showed the same

asymmetric dependence on the direction

of the electric field (Figure 6C), indicating

that both were reconstituted in the same

orientation. Addition of the b-signal pep-

tide significantly altered the activity of

the SAM complex channel by reducing

the gating frequency (Figures 6B) and in-

ducing the formation of channel activities

with higher conductance (Figures 6D and

6E). As control, the scrambled peptide

did not alter the channel properties of

the SAM complex (Figure 6D). The major

conductance of the SAM complex of

160 pS in the absence of the b-signal

peptide was shifted to 320 pS in the pres-

ence of the b-signal (Figure 6E). Additionally, a less frequent

large conductance state of �640 pS was observed only in the

presence of the b-signal (Figure 6E). As purified Sam50 did not

show this reactivity to the b-signal peptide, we conclude that

a further subunit of the SAM complex is required for regulation

of the SAM channel by the b-signal.

Role of Sam35 in Recognition of the b-Signal
In order to identify the b-signal binding subunit(s) of the SAM

complex we fused the C-terminal 51 residues of Tom40, including

the b-signal, to glutathione-S-transferase (GST). The fusion pro-

tein was bound to sepharose beads and incubated with lysed mi-

tochondria. Sam50 and Sam35 efficiently bound to GST-Tom40C

but not to GST, while Sam37 and various control proteins did not

bind (Figure 7A). To probe for the specificity of interaction, we
Cell 132, 1011–1024, March 21, 2008 ª2008 Elsevier Inc. 1019



Figure 7. Sam35 Recognizes the b-Signal

(A) GST-Tom40C (Tom40 residues 337–387) was incubated with digitonin-lysed WT mitochondria. The C terminus of Tom40 was eluted and analyzed by SDS-

PAGE and Coomassie blue staining (top panel) or immunodecoration.

(B and C) b-signal GST-fusion proteins (Tom40 or Por1) were analyzed as in (A).

(D) GST-b-signal was incubated with digitonin-lysed WT mitochondria or isolated SAM complex.

(E) Binding of Sam35 and Sam50 to GST-b-signal analyzed with WT and Sam50D120 mitochondria.

(F) WT and Sam50D120 mitochondria were incubated with PorinG276I, followed by BN-PAGE.

(G) WT and Sam50-depleted mitochondria were treated with trypsin (33 mg/ml) and proteinase K (5 mg/ml) with and without Triton X-100 lysis. mg, mitochondrial

protein.

(H) WT mitochondria resuspended in SM buffer or solubilized in Mega-9 were incubated with AMS and separated by SDS-PAGE.

(I) Import of Tom40G354A and PorinG276I into mitochondria. Left panels, incubation in isotonic or hypotonic buffer in the presence of proteinase K. Middle panels,

incubation with antibodies. Right panels, treatment with 0.1 M Na2CO3. All samples were lysed in digitonin and analyzed by BN-PAGE.

(J) WT and sam35-15 yeast were grown at 24�C. Isolated mitochondria were heat-shocked for 15 min at 37�C and incubated with precursors for 15 min at 25�C.

Analysis was by BN-PAGE and autoradiography (top and middle panels) or immunodecoration (bottom panel). SAM0, smaller SAM complex.

(K) Binding of Sam50 to GST-b-signal was analyzed with WT mitochondria (25 mg protein) and Sam35-depleted mitochondria (100 mg protein).

(L) GST-b-signal constructs were incubated with Sam35His.
replaced Phe359. The binding of Sam50 and Sam35 to the

mutant form of GST-Tom40C was inhibited (Figure 7A). We

then fused the segment corresponding to the Tom40 b-signal to

the C terminus of GST. The resulting fusion protein (GST-b-signal)

selectively bound Sam50 and Sam35 like GST-Tom40C; replace-

ment of Phe359 or Leu357 inhibited the interaction (Figures 7B

and 7C). Similarly, the porin b-signal bound Sam50 and Sam35

while replacement of Phe281 inhibited the binding (Figure 7C).
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Thus, the b-signal is sufficient for specific binding of Sam proteins

and selectively pulls out a core complex containing Sam35 and

Sam50. The purified SAM complex similarly bound to the b-signal

(Figure 7D), demonstrating that no other mitochondrial proteins

were needed for the interaction.

To directly test that the POTRA domain of Sam50 was not

required for recognition of b-barrel proteins, we performed the

GST-b-signal pulldown assay with mitochondria from Sam50D120



yeast. The truncated Sam50, as well as Sam35, efficiently bound

to GST-b-signal (Figure 7E), demonstrating that recognition of

the Tom40 b-signal does not depend on the POTRA domain.

Moreover, to test for the recognition of porin by the SAM complex,

we used the porin precursor with replaced Gly276. The precursor

accumulated at the SAM complex of Sam50D120 mitochondria as

in WT mitochondria (Figure 7F). Thus, the POTRA domain of

Sam50 is not critical for recognition of the b-signal.

Since electrophysiological and biochemical analyses indicated

that Sam50 does not function as b-signal receptor, we reasoned

that Sam35 is crucial for signal recognition. However, it has

been assumed that Sam35 is located on the cytosolic surface of

the outer membrane (Ishikawa et al., 2004; Milenkovic et al.,

2004; Waizenegger et al., 2004), while b-barrel precursors are

inserted into the outer membrane from the intermembrane space

side (Model et al., 2001; Wiedemann et al., 2003; Hoppins and

Nargang, 2004), raising a topological problem with regard to

recognition of the b-signal. Sam35 does not contain a predicted

transmembrane segment; its secondary structure includes pre-

dominantly a-helical elements and a small content of b-structure.

Sam35 remains membrane-associated upon sonication but is

extracted from the outer membrane at alkaline pH, suggesting

that it is not integrated into the lipid phase but associated with

the membrane by interaction with other proteins. When Sam35

was expressed with a tag at either the N or C terminus, low con-

centrations of protease added to isolated mitochondria digested

the tags like surface-exposed Tom receptors, supporting the view

that Sam35 is located on the cytosolic surface of mitochondria

(Ishikawa et al., 2004; Milenkovic et al., 2004; Waizenegger

et al., 2004). We noted, however, that significantly higher concen-

trations of protease were needed to digest nontagged Sam35 and

that Sam50 also became accessible to protease (Waizenegger

et al., 2004; Habib et al., 2005). Thus the studies with tagged

Sam35 only demonstrated an exposure of both termini at the

cytosolic surface. It has been shown that some proteins, which

areextractedat alkaline pH, are integrated intomembranes bybe-

ing embedded in a proteinaceous environment (Truscott et al.,

2003). As our pulldown experiments indicated a close association

of Sam35 and Sam50, we speculated that Sam35 may be embed-

ded into a proteinaceous membrane environment via its tight in-

teraction with Sam50. We used antibodies recognizing untagged

Sam35 and treated mitochondria with protease under conditions

that degraded the surface receptor Tom70. Sam35 was not di-

gested by the proteases, even after lysis of the membranes with

detergent (Figure 7G, middle panel). We isolated mitochondria

from a yeast strain where the SAM50 gene was placed under an

inducible promoter such that the mitochondrial levels of Sam50

were reduced to �5% of WT level. The levels of Sam35 were

reduced to�25%–30%. Under these conditions Sam35 became

partially accessible to proteases and was digested upon deter-

gent lysis (Figure 7G, lower panel). Thus, Sam35 is protected

against proteolytic attack by Sam50 both in mitochondria and

detergent micelles. As Sam50 does not expose domains on the

cytosolic side of the membrane but consists of an outer mem-

brane-embedded b-barrel domain and a hydrophilic domain in

the intermembrane space (Habib et al., 2007), we conclude that

Sam35 is embedded into the outer membrane by its close

association with the membrane domains of Sam50 molecules.
To obtain independent evidence for a protected localization of

Sam35, we used the membrane-impermeable cysteine-modify-

ing reagent 4-aceto-40-maleimidylstilbene-2,20-disulfonic acid

(AMS; 500 Da). When mitochondria were lysed with the nonionic

detergent nonanoyl-N-methylglucamide (Mega-9), leading to

dissociation of the SAM complex, the size of Sam35 shifted sig-

nificantly in the presence of AMS, indicating that the majority of its

eight cysteines were modified (Figure 7H, lanes 6–8) (Mega-9 is

a detergent of choice for renaturation of membrane proteins,

and mitochondrial membrane proteins were shown to retain their

activity in Mega-9; Becker et al., 2005). In mitochondria, however,

only a minor shift of Sam35 was observed (Figure 7H, lane 3),

demonstrating that most cysteines were not accessible to AMS

when the outer membrane was intact. As control we show that

the cysteine-free Tom22 was not affected by AMS and the inner

membrane protein Tim23 was only modified by AMS in Mega-9

(Figure 7H). Thus most cysteines of Sam35 only became

accessible to AMS when the outer membrane was lysed.

To study the topology of precursors in the SAM complex, we

accumulated the Gly mutants of Tom40 and porin. The precur-

sors were protected against added proteinase K in mitochondria

but became accessible upon swelling (Figure 7I, lanes 1–6 and

13–18) (swelling exposes the intermembrane space of a majority

of mitochondria). Thus the precursors exposed protease-acces-

sible sites to the intermembrane space but not to the cytosolic

side in agreement with studies of WT Tom40 (Model et al.,

2001). We speculated that the b-signal is bound to Sam35 and

thus may span through the SAM complex and potentially be ex-

posed at the cytosolic side. We thus searched for independent

means to probe for an accessibility of the precursor from the

cytosolic side and succeeded with antibody-shift BN-PAGE

(Wiedemann et al., 2003). Polyclonal antibodies directed against

Tom40 and porin, which were added to the intact mitochondria,

efficiently shifted the SAM intermediate while control antibodies

against Tom22 and Tim23 did not (Figure 7I, lanes 8–10 and 20–

22). Thus the accumulated precursors exposed antigenic epi-

topes at the cytosolic side. According to our prediction the

precursors would be bound to Sam35 and thus should traverse

the outer membrane within the SAM complex in a hydrophilic en-

vironment. Indeed, the precursors were fully extracted at alkaline

pH (Figure 7I, lanes 12 and 24) whereas the mature assembled

proteins were resistant to extraction at pH 11.5 (Figure 3G; Court

et al., 1996; Model et al., 2001).

We generated two different sam35 yeast mutants to further

test the proposed role of Sam35 in b-recognition. First, we gen-

erated the temperature-sensitive yeast mutant strain sam35-15

that led to a partial dissociation of the 210 kDa SAM complex

such that a defined Sam50 complex (�150 kDa) was detectable

on BN-PAGE (Figure 7J). The mutant cells were grown at low

temperature to minimize indirect effects and the isolated mito-

chondria were subjected to a short heat-shock treatment, lead-

ing to dissociation of SAM. The precursor of Tom40 as well as

Tom40G354A did not accumulate in the smaller Sam50-contain-

ing complex (Figure 7J). Second, we generated a yeast strain

with SAM35 under an inducible promoter and isolated mitochon-

dria with strongly reduced levels of Sam35 upon shift of the cells

to noninducing conditions (the levels of Sam50 were partially

reduced). We tested if the remaining Sam50 was able to bind
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to the purified b-signal. The pulldown assay with GST-b-signal

revealed that binding of Sam50 to the b-signal was blocked

upon depletion of Sam35 (Figure 7K), indicating that Sam50 itself

was not able to bind to the b-signal but that Sam35 was required.

To directly demonstrate b-signal binding by Sam35, we ex-

pressed a His-tagged Sam35 in E. coli. Sam35His indeed bound

to the GST-b-signal (Figure 7L, lane 3). When Phe281 was re-

placed, the binding was inhibited (Figure 7L, lane 4), demonstrat-

ing that recombinant Sam35 specifically recognized the b-signal.

DISCUSSION

We have identified the sorting signal of mitochondrial b-barrel

proteins and show that Sam35, but not Sam50, functions as a

receptor that specifically recognizes the b-signal. Since the

SAM complex is required for the biogenesis of Tom40, which

forms the central entry gate for hundreds of different mitochon-

drial precursor proteins (Wiedemann et al., 2003; Dolezal et al.,

2006; Neupert and Herrmann, 2007), the function of Sam35 in

recognizing the Tom40 b-signal provides the molecular basis

for understanding its essential role in cell viability. The b-signal

is conserved in mitochondrial b-barrel proteins from all eukary-

otic kingdoms and forms the most C-terminal b-strand of the

proteins. By detailed mutational analysis, competition with a

synthetic b-signal peptide, and pulldown experiments with puri-

fied b-signal, we demonstrate that the b-signal is necessary and

sufficient for selective recognition by the SAM complex, specif-

ically a core complex formed by Sam35 and Sam50. The channel

formed by purified Sam50 does not respond to the b-signal since

Sam35 is crucial for recognition of the signal. In the presence of

Sam35, the b-signal induces a change in the gating properties

of the channel and a significant increase in channel conductance

of the SAM complex. Comparison to the conductance and

size of channels formed by TOM and TIM proteins, as well as

chloroplast Toc75 (Kovermann et al., 2002; Becker et al., 2005;

Schleiff and Soll, 2005), indicates that the signal-induced large

SAM channel can accommodate several b-strands. In the case

of TOM and TIM channels, addition of the specific signals leads

to stimulation of the channels but not to the induction of larger

pore sizes, whereas the b-signal apparently induces a rearrange-

ment of the SAM channel such that several b-strands together

can be inserted. This fits to the view that b-barrel precursors

are not inserted into membranes as individual strands but

contain a considerable amount of partially folded elements

(Rapaport and Neupert, 1999).

The precursors of Tom40 and porin accumulated at SAM span

across the outer membrane in a hydrophilic environment since

the precursors are extracted from the membranes at alkaline

pH and expose protease-accessible sites to the intermembrane

space and antigenic epitopes on the cytosolic surface of the

outer membrane. It is currently debated both for mitochondria

and bacteria whether precursor proteins are translocated by a

channel formed within an individual Sam50/Omp85 b-barrel or

by a central channel formed between several Sam50/Omp85

molecules in an oligomeric complex (Paschen et al., 2003; John-

son and Jensen, 2004; Ryan, 2004; Tommassen, 2007). A lateral

release of a precursor, which has been inserted into a channel

formed by a single b-barrel protein, into the lipid phase would
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be highly unlikely since an opening of the numerous hydrogen

bonds that stabilize b-barrel proteins is thermodynamically

very unfavorable (Johnson and Jensen, 2004; Ryan, 2004). The

findings reported here provide important new information since

Sam35 is essential for recognition of the last b-strand of the pre-

cursor; however, Sam35 is not integrated into the lipid phase of

the outer membrane but embedded into a proteinaceous mem-

brane environment by its close association with Sam50 mole-

cules. We propose the hypothesis that translocation of b-barrel

precursors into SAM is initiated by binding of the last b-strand

(b-signal) to the hydrophilic and predominantly a-helical Sam35

located in an oligomeric ring formed by the b-barrel domains

of Sam50 molecules. Signal binding induces a conformational

change that leads to opening of the SAM channel, and thus sev-

eral b-strands can be inserted into a hydrophilic, proteinaceous

membrane environment. Subsequently, the precursor is laterally

released from the SAM complex into the lipid phase of the outer

membrane. Membrane integration strictly requires highly con-

served glycine residues in the b-signal and further b-strands.

Since glycine residues provide a high flexibility of the polypep-

tide chain, this step seems to involve conformational changes

of the precursor to ensure correct integration into the lipid phase.

The identification of the b-signal and the essential role of

Sam35 in signal recognition provide a clarification for several pre-

vious studies. (1) Numerous mutational studies of mitochondrial

b-barrel proteins suggested that regions important for b-barrel

biogenesis are distributed over various regions of the precursors

(Court et al., 1996; Rapaport and Neupert, 1999; Rapaport et al.,

2001; Taylor et al., 2003; Humphries et al., 2005; Sherman et al.,

2006), leading to the suggestion that a linear consensus signal

does not exist (Habib et al., 2007). The dissection of the sorting

process into two steps, recognition by SAM and subsequent

membrane insertion, provided the basis for identification of the

b-sorting signal that is responsible for SAM binding, while the

subsequent membrane insertion involves several regions of

the b-precursors. (2) The N-terminal POTRA domain of Sam50

is not critical for recognition of b-barrel proteins as deletion of

the complete POTRA domain did not impair cell growth and

b-barrel precursors were sorted with an efficiency close to that

of WT mitochondria. The reported defects in cell growth and

b-barrel sorting upon partial deletion of the POTRA domain

(Habib et al., 2007) are apparently caused by a negative influence

of the remaining POTRA segment on precursor transport. These

findings will also be interesting for the ongoing discussion on the

functional importance of the five bacterial POTRA domains and

the question of which domains are essential for cell viability

(Bos et al., 2007; Kim et al., 2007).

A direct comparison of the mitochondrial b-signal and the

C-terminal signature sequence of bacterial b-barrel proteins

(Robert et al., 2006) reveals why the mitochondrial signal could

not be found by homology searches although it likely evolved

from the bacterial signal (Figure S2). Both signals are formed

by the last predicted b-strand and include a large hydrophobic

residue at the end of the b-strand. However, this hydrophobic

residue forms the last C-terminal residue of the vast majority of

bacterial b-barrel proteins, while in mitochondria the residue

never represents the last residue. The additional conserved res-

idues of the signals differ between mitochondria and bacteria.



We speculate, however, that the basic principle of membrane in-

sertion has been conserved during evolution from Gram-nega-

tive bacteria to mitochondria. It is thus conceivable that the

mechanism found for mitochondrial b-barrel sorting, i.e., recog-

nition and initial insertion via a hydrophilic SAM pathway

followed by integration into the lipid phase, may also be used

by bacterial b-barrel proteins and the Omp85/YaeT complex.

EXPERIMENTAL PROCEDURES

Molecular Biological Methods

Porin, Mdm10, and Tom40 templates were obtained from yeast genomic DNA.

Mutants were obtained using the QuickChange II Site-Directed Mutagenesis Kit.

SAM50 was amplified from genomic DNA and cloned into pFL39. Sam50D29-120

and Sam50D120 were generated using pFL39-SAM50 as template and trans-

formed into a sam50 deletion strain (Kozjak et al., 2003) followed by plasmid shuf-

fling on 5-FOA plates. SAM50 was also cloned into pRS413, and Sam50D120 and

Sam50D102 were generated by inverse PCR. WT TOM40 was cloned into pRS314

and used as template to create pRS-Tom40L357Q F359Q. Constructs were trans-

formed into a TOM40 deletion strain covered by a plasmid encoding WT Tom40

(Yep-TOM40). sam35 mutants were generated by error-prone PCR (Milenkovic

et al., 2004). For regulated expression, genes were placed under the GAL1

promoter. For generation of GST-Tom40C the nucleotide sequence of Tom40

(amino acids 337–387) was amplified from genomic DNA, cloned into pGEX-4T-

1, and used to create GST-b-signal (including N-terminal linker residues). For

generation of GST-b-signalPor the Porin1 ORF was cloned into pGEX-4T-1 and

used as template.

Import and Assembly of Precursor Proteins

Proteins were synthesized in reticulocyte lysate in presence of [35S]methio-

nine. Equal radiochemical amounts of precursors were incubated with isolated

mitochondria in import buffer (3% (w/v) BSA, 250 mM sucrose, 80 mM KCl,

5 mM MgCl2, 5 mM L-methionine, 2 mM KH2PO4, 10 mM MOPS-KOH,

pH 7.2, 2 mM NADH, 2–4 mM ATP, 10 mM creatine phosphate, 0.1 mg/ml

creatine kinase) at 25�C. Synthetic peptides, blocked N-terminally by acetyla-

tion and C-terminally by amidation, were solubilized in water.

In Vitro Binding Assays

GST fusion proteins were isolated after 2 hr induction with 1 mM IPTG in DH5a

cells in LB 100 mg/ml ampicillin medium at 30�C, cell lysis (0.5 g), and glutha-

thione sepharose 4B affinity chromatography. The sepharose-bound GST pro-

teins were incubated for 30 min at 4�C with 1% (w/v) digitonin or Triton X-100

solubilized mitochondria (1 mg protein in 10 mM Mg-acetate2, 100 mM K-ac-

etate, 20 mM HEPES, 10% glycerol). After washing, bound mitochondrial pro-

teins were eluted by thrombin cleavage (10 U, 16 hr, 4�C). Load was 50% for

mitochondrial extracts and 20% for purified proteins; elution was 100%.

Reconstitution in Liposomes

and Electrophysiological Measurements

Sam50 was expressed in E. coli, purified in 8 M urea, and diluted in 1% (w/v)

SDS, 100 mM NaCl, 10 mM MOPS-Tris (pH 7). By addition of soybean phos-

phatidylcholine, mixed detergent/lipid/protein micelles with a protein:lipid ratio

of 1:30 were formed. Detergent was removed by Calbiosorb Adsorbent. SAM

complex was isolated from digitonin-lysed mitochondria containing Sam50

with Protein A-tag and TEV cleavage site (Kozjak et al., 2003). Purified SAM

complex in a buffer with 0.1% (w/v) decylmaltoside was mixed in a 1:1 ratio

with mixed detergent/lipid micelles containing a mixture of synthetic lipids cor-

responding to outer mitochondrial membranes and 0.5% (w/v) decylmaltoside

in 100 mM KCl, 10 mM MOPS-Tris (pH 7). Planar bilayers were generated by

the painting technique (Kovermann et al., 2002). Proteoliposomes were added

to the cis chamber at asymmetrical buffer conditions. After fusion, buffers were

changed to symmetrical conditions (250 mM KCl, 10 mM MOPS-Tris, pH 7.0).

Where indicated, b-signal peptides were added (10 mM for Sam50, 6 mM for

SAM complex).
Miscellaneous

Crosslinking was performed in SEM buffer (250 mM sucrose, 1 mM EDTA,

10 mM MOPS-KOH, pH 7.2) with 600 mM DPDPB for 1 hr at 4�C and quenched

by 5 mM cysteine and 50 mM Tris-HCl (pH 7.2). Mitochondria were separated

by SDS-, Tris-Tricine- or BN-PAGE. For AMS modification mitochondria were

resuspended in SM buffer or solubilized in 2.5% Mega-9, 20 mM Tris-Cl, pH

7,4, 0.1 mM EDTA, 50 mM NaCl, 10% (w/v) glycerol. Samples were incubated

on ice for 20 min followed by 15 min at 25�C in the presence of AMS. Samples

were diluted 10-fold in SM buffer, TCA precipitated, and resolved by

SDS-PAGE.
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