
Information and Computation 207 (2009)699–725

Contents lists available at ScienceDirect

Information and Computation

j ourna l homepage: www.e lsev ie r .com/ loca te / i c

Quantifying information leakage in process calculi�

Michele Boreale

Dipartimento di Sistemi e Informatica, Università di Firenze, Viale Morgagni 65, I-50134 Firenze, Italy

A R T I C L E I N F O A B S T R A C T

Article history:

Received 10 January 2007

Revised 31 March 2008

Available online 23 January 2009

Keywords:

Process calculi

Secrecy

Information leakage

Information theory

Building on simple information-theoretic concepts, we study two quantitative models of

information leakage in the pi-calculus. The first model presupposes an attacker with an

essentially unlimited computational power. The resulting notion of absolute leakage, mea-

sured in bits, is in agreement with secrecy as defined by Abadi and Gordon: a process has

an absolute leakage of zero preciselywhen it satisfies secrecy. The secondmodel assumes a

restricted observation scenario, inspired by the testing equivalence framework, where the

attacker can only conduct repeated success-or-failure experiments on processes.Moreover,

eachexperimenthasacost in termsof communicationeffort. The resultingnotionof leakage

rate,measured inbitsperaction, is inagreementwith thefirstmodel: themaximumamount

of information that can be extracted by repeated experiments coincides with the absolute

leakage A of the process. Moreover, the overall extraction cost is at least A/R, where R is the

rate of the process. The compositionality properties of the twomodels are also investigated.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In thefieldof language-based security, properties likenon-interference [17]have traditionally been studied in a functional,

all-or-nothing formulation. Only in recent years have models been proposed that enable forms of quantitative reasoning on

such properties. Our interest here is inmeasuring leakage of sensitive information due to program execution. For a sequential

program, it is natural to quantify this leakage by measuring the flow of information between secret ("high") and public

("low") variables induced by the computed function. An elegant theory of quantitative non-interference in this vein has been

proposed by Clark et al. [10,12]. A comparison with this and other proposals in the literature is deferred to the concluding

section.

In this paper, we study quantitative models of information leakage in concurrent programs, that is processes described

in a process calculus. Processes come with no natural notion of computed function. Indeed, given a process, one is typically

interested in quantifying the leakage arising from its interactionwith the environment, hence in its observable behaviour. The

difference in intentwith respect to sequential programs can be illustrated by the following analogy. A smart-card implements

a function that takes documents as input and releases documents signedwith a secret key as output. However, typical attacks

targeting the secret key do not focus on the function itself, but rather on the behaviour of the card, in terms e.g. of observable

time variance of basic operations [20], or observable power consumption [21].

The starting point of our study is the notion of secrecy as formalized by Abadi and Gordon [1]. We will subsequently refer

to this particular formulation as ag-secrecy. This is a fairly general concept, although in [1] it was defined in connection

with the spi- and, limited to some introductory examples, the pi-calculus. In this paper, we shall stick for simplicity to the

pi-calculus. Informally, ag-secrecy holds of a process P whose code mentions a parameter x representing a piece of sensitive

information, if the observable behaviour of P does not depend on the actual values xmay take on. In other words, an attacker

� Extended and revised version of [4].
E-mail address:boreale@dsi.unifi.it

0890-5401/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2008.12.007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82710416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic
mailto:boreale@dsi.unifi.it

700 M. Boreale / Information and Computation 207 (2009) 699–725

cannot infer anything about x by interacting with P. The notion of "observable behaviour" is formalized in terms of a suitable

behavioural equivalence, such as may testing equivalence [14,5].

Although elegant and intuitive, ag-secrecy is in practice too strict. The behaviour of virtually any useful program that

protects a sensitive piece of information depends nontrivially on this information. Nevertheless, many such programs are

considered secure, on the grounds that the amount of leaked information is, on average, negligible. The average is taken here

over all possible values the sensitive informationmay take on. Consider a pin-checking process P(x) that receives a code from

a user and checks it against a 4-digits secret pin x, in order to authorize, or deny, a given operation. An attacker could easily

submit a specific code of its choice to P(x), say 4811, receive a deny and hence acquire negative information about x, i.e. "x

is not 4811". However, assuming x has been chosen at random, such a small leak of information should be of no concern. In

another scenario, an attacker could be allowed to query repeatedly P(x), so that, given enough time, he/she could determine x

with certainty. In this case, one is interested in quantifying the overall effort, in terms of interaction units (actions), necessary

for the attacker to do so. Or, in other words, one’s interest is in determining at which rate P(x) leaks sensitive information.

In the present paper, we propose two quantitativemodels of leakage for processes that address the issues outlined above.

The first model is designed for measuring absolute leakage of P, while the secondmodel is designed for measuring the rate at

which information is leaked by P. As explained below, the twomodels correspond to different assumptions on the control an

attacker can exercise over P. The connections between these twomodels will also be clarified. We will take an unconditional

security approach. Roughly, a "small leak" implies absence of attacks, while a "large leak" points to existence of attacks,

without implying that such attacks can be mounted in practice. A more precise account of our work follows.

After quickly reviewing a few notions from Information Theory that will be used in the paper (Section 2), we introduce

our reference language, a pi-calculus with data values (Section 3). In the first model (absolute leakage), we presuppose an

attackerwith full control over the process. Implicitly, we assume the attacker: (a) knows the process code P(x), and (b), can, at

no cost, produce asmany copies as desired of the instance of P under consideration and run them. The role of these two strong

assumptions is twofold: on the one hand, they set up aworst-case scenario, providing security guarantees independent from

the computational power of actual attackers; on the other hand, they help to simplify the treatment of nondeterminism

in processes. In particular, a consequence of assumption (b) is that all possible ways in which P’s nondeterminism can be

resolved should be experienced by the attacker. Idealizing this, one can say that the attacker can tell the equivalence class (of

behaviours) the observed instance of P belongs to. A third assumption, commonly found when reasoning about protection

of confidential data, is that: (c) the probability distribution of the data x is known to the attacker.

Weare interested in the average amount of information about x that is leaked to the attacker by P under these assumptions.

The average is taken over all values xmay take on. In the language of unconditional security, this scenario can be formalized

as follows. A piece of sensitive information is modeled as a random variable, say X . The a priori uncertainty of an adversary

about X is measured by the Shannon entropy H(X), expressed in bits [13]. For full generality, it is assumed that some "side-

information" Y , possibly related to X , is publicly available: the conditional entropy H(X | Y)measures the uncertainty about

X given that Y is known. To illustrate these notions in a concrete case, consider the pin-checking example. There, X represents

a randomly chosen 4-digits secret code, hence H(X) = log(104) ≈ 13.29 bits. Y might represent whether X = 4811 or not,

a piece of information the attacker might easily learn. Note that observing the event (X = 4811) reduces the uncertainty

about X to 0, while observing (X /= 4811) rules out one possibility reducing the uncertainty to log(104 − 1): on the average,

observing Y reduces the uncertainty of the attacker to H(X | Y) = 0 · Pr(X = 4811)+ log(104 − 1) · (1− 1
104
) ≈ 13.28.

Any process P(x, y) and any two r.v.’s X and Y induce a new a random variable Z = P(X ,Y): following the discussion above,

it is reasonable to stipulate that Z takes as values "observable behaviours", that is, equivalence classes of a fixed behavioral

equivalence (Section 4). Now, the conditional entropy H(X | Y , Z) quantifies the uncertainty on X left after observing both Y

and Z . Hence the difference I = H(X | Y)− H(X | Y , Z) is the amount of uncertainty about X removed by observing Z = P(X ,Y),

that we take as the absolute leakage of P relative to X ,Y (Section 5). We prove that this notion is in full agreement with the

functional notionofag-secrecy. In the special casewhen there is no side-information, thismeans thatP(x) respectsag-secrecy

if and only if P(X) has an absolute leakage of 0 for every random variable X . We also offer two alternative characterizations

of zero-leakage, hopefully more amenable to automatic checking.

Next, we discuss the significance of absolute leakage in relation to certain security measures well-known from the

literature (Section 6). Specifically, we show how to relate absolute leakage to the attacker’s error probability of guessing

the secret X given Z , and to the guesswork of X given Z , which measures the average number of attempts before correctly

guessing X , in a scenario similar to that of dictionary attacks against password systems.

The second model we consider (rate of leakage, Section 7), refines the previous scenario by introducing a notion of cost.

Adapting the testing equivalence framework from [14], we stipulate that an attacker can only conduct upon P repeated tests

T1, T2,... each yielding a binary answer, success or failure. The attacker has full control – in the sense of the first model –

over the compound systems P||Ti, but not over P itself. The security measure we are interested in is the overall number of

synchronizations with P necessary for the adversary to extract one bit of information about X . Hence we define the rate

at which P leaks information in terms of the maximal number of bits of information per visible action conveyed by an

experiments P||Ti. We then give evidence that this is indeed a reasonable notion. First, we establish a relationship with the

first model, showing that the absolute leakage A coincides with the maximum amount of information about X that can be

extracted by repeated experiments on P, and that this costs the adversary at least A/R, where R is the rate of P. Second, in

the vein of testing equivalence, we give an experiment-independent characterization of rate that only depends on the visible

M. Boreale / Information and Computation 207 (2009) 699–725 701

traces of the observed process. Extending the discussion of the absolute leakage model, we also clarify the relation of rate of

leakage to the attacker’s error probability and guesswork after an effort of N synchronizations.

The search for principles of compositional reasoning is a major motivation for studying information leakage in a process

calculus setting. In both models, we show that the leakage (rate) attributable to a global system cannot exceed the sum of

those imputable to individual sub-systems (with the exception of the parallel composition operator, in the case of rate of

leakage). We prove that under suitable conditions iteration does preserve rate, in the sense that the rate of * P equals that of

P, which is expected from a sensible notion of rate.

We will illustrate the application of the proposed models to a non-trivial example, a message-routing system inspired by

anonymity protocols in the style of Crowds [28] (Section 8).

Some discussion on the limitations of the present approach, remarks on further research and a discussion on related

works conclude the paper (Section 9). A table summarizing themain notations used throughout the paper and a few technical

definitions and proofs are reported in separate appendices (Appendices 9, 9, 9).

2. Preliminary notions

We briefly recall a few concepts from probability and elementary Information Theory; see e.g. [13,33] for full definitions

and underlying motivations. Recall that a random variable (r.v.) is a function X : �→ U where � is a probability space, U

(called the state space) is the carrier of a σ -algebra F and for each element F ∈ F, X−1(F) is an event of � (otherwise said, X

is measurable). In this paper, we shall confine ourselves to discrete random variables, that is, random variable in which U is

an at most countable set and F is the power-set σ -algebra over U: this amounts to requiring that for each u ∈ U, X−1(u) is

an event of �. We let X ,Y , ... range over discrete random variables. We say that a r.v. X is of type U, and write X : U, if U is

the state space of X (i.e. X(�) ⊆ U); we call elements of U outcomes of X . Unless otherwise stated, we shall assume the U is

finite. We define |X| as the number of possible outcomes of X , that is |X| def= |{u ∈ U|Pr(X = u) > 0}|. We shall make use of

the concepts of independent and uniformly distributed (u.d.) random variable, defined as usual. As a function, every random

variable induces a partition into events of its domain �, which is {X−1(u) |u ∈ X(�)}: we say that two random variables X

and Y are equivalent if they induce on � the same partition (this does not imply that X and Y coincide). A vector of random

variables X̃ = (X1, ...,Xn), where the Xi : Ui for 1 ≤ i ≤ n are r.v.’s defined on the same probability space �, is just a r.v. of type

U1 × · · · × Un.

Let X : U and Y : V be r.v. The entropy of X and the conditional entropy of X given Y are defined, respectively, as:

H(X)
def= − ∑

u∈U
Pr(X = u) · log(Pr(X = u))

H(X | Y) def= ∑
v∈V

H(X | Y = v) · Pr(Y = v)

where all logarithms are taken to the base of 2, by convention 0 · log 0 = 0 and for any event e of�,H(X | e) is the conditional
entropy of X given e, defined as

H(X | e) def= −
∑
u∈U

Pr(X = u | e) · log(Pr(X = u | e)) .

Example 2.1. Let X represent the randomchoice of a pin-code between 1 andN. Our a priori uncertainty about X ismeasured

by its entropy

H(X) = −
N∑
i=1

1

N
log

(
1

N

)
= logN .

Assume that, although ignoring the value of X , we get to know its parity, odd or even. Let Y be the r.v. that yields 1 if X is odd,

0 otherwise. Then, assuming N is even, our uncertainty about X after observing Y = 0 is measured by

H(X | Y = 0) = − ∑
i∈1..N

Pr(X = i | Y = 0) log
(
Pr(X = i|Y = 0)

)
= − ∑

i∈1..N, i odd

1
N/2

log

(
1

N/2

)
= log

(
N
2

)
= logN − 1

that is, observing Y = 0 reduces our uncertainty by 1 bit. Similarly, H(X | Y = 1) = logN − 1. Hence, the average uncertainty

after observing Y is

H(X | Y) = 1

2
H(X | Y = 0)+ 1

2
H(X | Y = 1) = logN − 1 .

702 M. Boreale / Information and Computation 207 (2009) 699–725

Note that two equivalent random variables exhibit the same entropy and conditional entropies. For a vector

(X1, ...,Xn) of random variables, we shall abbreviate H
(
(X1, ...,Xn)

)
as H(X1, ...,Xn). The following fundamental (in)equalities

hold:

0 ≤ H(X) ≤ log |X| (1)

H(X ,Y) = H(X|Y)+ H(Y) (chain rule) (2)

H(X1, ...,Xn) ≤ H(X1)+ · · · + H(Xn) (3)

where: in (1), equality on the left holds iff X is a constant, and equality on the right holds iff X is u.d. on {u ∈ U|Pr(X = u) > 0};
in (3), equality holds iff the Xi’s are pairwise independent. Note that by (2) and (3),H(X|Y) = H(X) iff X and Y are independent.

If Y = F(X) for some function F then H(Y |X) = 0. Information on X conveyed by Y (aka,mutual information between X and Y) is

I(X;Y) def= H(X)− H(X | Y) .

By the chain rule, I(X;Y) = I(Y;X), and I(X;Y) = 0 iff X and Y are independent. Mutual information can be generalized

by conditioning on another r.v. Z: I(X;Y | Z) def= H(X | Z)− H(X | Z ,Y). Conditioning on Z may in general either increase or

decrease mutual information between X and Y . Note that entropy of a r.v. only depends on the underlying probability

distribution; thus any probability vector p̃ = (p1, ..., pn) (pi ≥ 0,
∑

i pi = 1) determines a single entropy value denoted H(p̃).

We shall often abbreviate the binary entropy H(p, 1− p) as B(p).

3. A process calculus

3.1. Syntax

Weassume a countable set of variablesV = {x, y, ...}, a family of non-empty, finite value-setsU = {U,V , ...}, and a countable

set of names N = {a, b, ...}, partitioned into a family of sorts S, S′, We let u, v be generic elements of a finite value-set. We

assume a fixed function that maps each variable x to some T ∈ U ∪ {S, S′, ...}, written x : T , and say that x has type T; we

assume the inverse image of each T is infinite. These notations are extended to tuples as expected, e.g. for x̃ = (x1, ..., xn) and

T̃ = (T1, ..., Tn), x̃ : T̃ means x1 : T1, ..., xn : Tn. By slight abuse of notation, we sometimes denote by T̃ the cartesian product

T1 × · · · × Tn.

An evaluation σ is a partial map from V to
⋃

U∈U U ∪ N that respects typing, that is, for each x ∈ dom(σ), x : T implies

σ(x) ∈ T . We denote by [d̃/̃x] the evaluation mapping x̃ to d̃ component-wise. By tσ , where t is a term over an arbitrary

signature with free variables fv(t) ⊆ V, we denote the result of replacing each free variable x ∈ dom(σ) ∩ fv(t)with σ(x).

We assume a language of logical formulae φ,ψ , We leave the language unspecified, but assume it includes a first order

calculuswith variables V, that function symbols include all values inU and names as constants, and that the set of predicates

includes equality [x = y]. For φ and σ s.t. dom(σ) ⊇ fv(φ), we write σ |= φ if φσ is valid (i.e. a tautology). If σ |= φ for all

evaluations σ s.t. dom(σ) ⊇ fv(φ), then we write |= φ. As usual, φ ⇒ ψ means |= φ → ψ . We will often write φ(x̃) to indicate

that the free variables of φ are included in x̃, and, in that case, abbreviate φ[ũ/̃x] as φ(ũ).
The process language is a standard pi-calculus with variables and data values. We assume a countable set of identifiers

A,B, ... and use e, e′... to range over an unspecified set of expressions, that can be formed starting from variables, values and

names. The syntax of processes P,Q , ... is given by the constructors of inaction, silent prefix, input prefix, output prefix, boolean

guard, nondeterministic choice, restriction, parallel composition and process identifier, according to the grammar below.

m ::= x
∣∣∣ a

P,Q ::= 0
∣∣∣ τ.P ∣∣∣ m(x̃).P

∣∣∣ mẽ.P
∣∣∣ φP ∣∣∣ P + P

∣∣∣ (νb)P ∣∣∣ P|P
∣∣∣ A(ẽ) .

Each identifier A has an associated defining equation of the form A(x̃)
def= P. Input prefixm(x̃). and restriction (νb) are binders

for x̃ and b, respectively, thus, notions of free variables (fv) and free names (fn) arise as expected. We identify processes

up to alpha-equivalence. We assume a few constraints on the syntax above: x̃ is a tuple of distinct elements in input prefix

and in A(x̃)
def= P, and in the latter fv(P) ⊆ x̃; φ is quantifier-free. We assume a fixed sorting system à la Milner. In particular,

each sort S has an associated sort object ob(S) = (T1, ..., Tk) (k ≥ 0). Here, each Ti is either a sort S or a value-set U from the

universe U. Informally, a process obeys this sorting system if in every input and output prefix, a name/variable m of sort S

carries a tuple of objects of the sort specified by ob(S); we omit the details that are standard. We let Po the set of processes

(possibly containing free variables) obeying these conditions and Pc its subset of closed processes. Notationally, we shall

often omit trailing 0’s, writing e.g. a.b. instead of a.b.0, we shall write
∑n

i=1 Pi for nondeterministic choice P1 + · · · + Pn, and

let replication !P denote the process defined by the equation: !P def= P|!P.

M. Boreale / Information and Computation 207 (2009) 699–725 703

Table 1

Operational semantics of Pc.

(inp)
a : S d̃ : ob(S)

a(x̃).P
ad̃−−→ P[d̃/x̃]

(out)
ẽ ↓ d̃

aẽ.P
ad̃−−→ P

(tau)
−

τ.P
τ−→ P

(sum1)
P

μ−→ P′
P + Q

μ−→ P′ (par1)
P

μ−→ P′ bn(μ) ∩ fn(Q) = ∅
P|Q μ−→ P′ |Q

(com1)
P

(νc̃)ad̃−−−−→ P′ c̃ ∩ fn(Q) = ∅ Q
ad̃−−→ Q ′

P|Q τ−→ (νc̃)(P′ |Q ′)

(open)
P

(νc̃)ad̃−−−−→ P′ a /= b b ∈ d̃

(νb)P
(νc̃,b)ad̃−−−−−→ P′

(res)
P

μ−→ P′ b /∈ n(μ)

(νb)P
μ−→ (νb)P′

(phi)
φ ↓ true P

μ−→ P′

φP
μ−→ P′ (ide)

A(x̃)
def= P x̃ : T̃ d̃ : T̃ P[d̃/x̃] μ−→ P′

A(d̃)
μ−→ P′

3.2. Semantics

We assume over Pc the standard early operational semantics of pi-calculus. Transitions are the form P
μ−→ P′, where μ

is one of τ (invisible action), ad̃ (input action) or (νc̃)ad̃ with c̃ ⊆ d̃ \ {a} (output action) and d ::= a | u (name or value). We

let d̃ range over tuples of elements of names and/or values, let n(μ) denote the set of names occurring in μ and define the

set of bound names of μ as: bn(μ) = c̃ if μ = (νc̃)ad̃ and bn(μ) = ∅ otherwise. An evaluation function ↓ is presupposed that

maps closed expressions and formulae to values/names and to {true, false}, respectively, with the proviso that each name is

mapped to itself (a ↓ a). This is extended to tuples of expressions componentwise.

The operational semantics of Pc is given by the rules reported in Table 3.2. Symmetric versions of rules (sum1), (par1) and

(com1) are not shown for brevity.

A few standard notations will be made use of. In particular, for each visible (different from τ) action α, P
α�⇒ P′ means

P(
τ−→)*

α−→ (
τ−→)*P′. Thisnotation isextended toanysequenceofvisibleactions s = α1 · · ·αn (i.e. a trace),P s�⇒ P′, as expected.

Finally, P
s�⇒ means that there is P ′ s.t. P s�⇒ P′.

In the rest of the paper, we let � be a fixed equivalence relation over Pc and denote by [Q]� the �-equivalence class

of process Q . For the moment, we leave � unspecified, but assume it is included in trace equivalence [5], it includes strong

bisimulation [29], it preserves all operators of the calculus, except possibly input prefix, and it satisfies the monoid laws for

+ and |with 0 as unit. We will have more to say on the role played by specific behavioural equivalences later on (see Section

5.2).

Another conceptweshall relyupon is that of most general boolean, borrowed from[19,6], that is, themost general condition

under which two given open processes are equivalent.

Definition 3.1 (mgb). Let P(x̃) and Q (ỹ) be two open processes, with x̃ : Ũ and ỹ : Ṽ . We denote by mgb(P(x̃), Q (ỹ)) a chosen

formula φ(x̃, ỹ) s.t. for each ũ ∈ Ũ and ṽ ∈ Ṽ : P(ũ) � Q (ṽ) if and only if φ(ũ, ṽ) is true.

It is worthwhile to notice that, under certain assumptions, mgb’s for a pair of open pi-processes can be automatically
computed relying on a symbolic operational semantics [19,6]. Let us recall that a symbolic transition also carries a logical

formula: P
μ,φ−−−→ P′. Informally, φ represents the exact condition on the free variables of P under which the given transition

is enabled. For example, one has

([x = y]zv.P) | y(w).Q τ , [x=y]∧[y=z]−−−−−−−−−→ P|Q [v/w] .

In [19], an algorithm is described to compute mgb’s for a pair of processes both having finite symbolic transition systems, in

the case of strong bisimilarity.

4. Processes as random variables

This section is devoted to presenting a technical device that allowsus to transform (open) processes into randomvariables.

Let us define an open process as a pair (P, x̃), written P(x̃), such that x̃ is a tuple of distinct variables of some type Ũ ⊆ U and

P ∈ Po is such that fv(P) ⊆ x̃. When no confusion about x̃ arises, we shall abbreviate P[ũ/̃x] as P(ũ) and (P[ỹ/̃x])(ỹ) as P(ỹ) (ỹ a

tuple of distinct variables.)

704 M. Boreale / Information and Computation 207 (2009) 699–725

Definition 4.1 (Open processes as random variables). Let P(x̃) be an open process and X̃ be a vector of random variables, with

x̃ : Ũ and X̃ : Ũ, for one and the same Ũ. Let F : Ũ −→ Pc/ � be the function ũ �→ [P(ũ)]�. We denote by P(X̃) the random

variable F(X̃).

In essence, the above definition tells us how to "plug" a random variable X into an open process P(x) thus obtaining a new

random variable P(X). Note that this definition does not involve anything like textual replacement of x by X inside P(x). What

we do is simply taking the function F : U → Pc/ �, defined as F(u) = [P(u)]� for each u, and composing it with the random

variable X seen as a function. Doing so, we obtain a new random variable F ◦ X , written P(X), that has Pc/ � as a state space

– that is, the outcomes of P(X) are �-equivalence classes. The semantical aspects of the definition are subsumed by �. The

definition itself is parametric1 with the actual choice of �: different choices for � may correspond to different assumptions

on the observational power of the attacker. We shall elaborate on this point in Section 5.2.

The next example is very simple and only serves to convey some intuition about the above definition.

Example 4.1 (pin-checking). A pin-checking process can be defined as follows. Here, x, z : 1..k for some integer k and x

represents the secret code. The situation is modeled where an observer can freely interact with the checking process.

Check(x)
def= a(z).([z = x]ok.Check(x) + [z /= x]no.Check(x)) . (4)

In this case, the range of the function F : u �→ [Check(u)]� mentioned in Definition 4.1 has k distinct elements, as u /= u′
implies Check(u) �� Check(u′): for instance, Check(u) has the trace au · ok, which Check(u′) has not. As a consequence, for a r.v.
X : 1..k, the distribution of P(X)mirrors exactly that of X . E.g., if X is uniformly distributed on 1..k, then Z = P(X) is u.d. over

{[Check(1)]�, ..., [Check(k)]�}, i.e. the probability of each outcome of Z is 1/k.

In the sequel, the following two facts will turn out to be useful. First, from Definition 4.1, it is immediate to see that the

distribution of P(X̃) is given by the following, for each o = [Q]�:

Pr
(
P(X̃) = o

)
=

∑
ũ: P(ũ)�Q

Pr
(
X̃ = ũ

)
(5)

Second, note that, if P(ũ) � Q (ũ) for each ũ, then, for any X̃ , P(X̃) and Q (X̃) are the same random variable.

5. Absolute leakage

Throughout the section and unless otherwise stated, we let P(x̃, ỹ) be an arbitrary open process, with x̃ : Ũ and ỹ : Ṽ , while

X̃ : Ũ and Ỹ : Ṽ are two vectors of random variables, and Z = P(X̃ , Ỹ).

5.1. Definitions and basic properties

Definition 5.1 (Absolute leakage). Let P(x̃, ỹ) be an open process, X̃ and Ỹ be r.v. and let Z = P(X̃ , Ỹ). The (absolute) information

leakage from X̃ to P given Ỹ is defined as:

A(P; X̃ | Ỹ)
def= I(X̃; Z | Ỹ) = H(X̃|Ỹ)− H(X̃ | Ỹ , Z) .

When Ỹ is empty, we simply write absolute leakage as A(P; X̃). A first useful fact on the definition above is that leakage

is nothing but the uncertainty about P(X̃ , Ỹ) after observing Ỹ .

Lemma 5.1. Let P(x̃, ỹ) be an open process, X̃ and Ỹ be r.v. and let Z = P(X̃ , Ỹ). Then A(P; X̃ | Ỹ) = H(Z | Ỹ). In particular, if ỹ is

empty, A(P; X̃) = H(Z).

Proof. This is a simple application of the chain rule (2). By symmetry of mutual information I, we have A(P; X̃ | Ỹ)
= I(X̃; Z | Ỹ) = H(Z | Ỹ)− H(Z | X̃ , Ỹ). But Z = P(X̃ , Ỹ) is a function of X̃ and Ỹ , hence H(Z | X̃ , Ỹ) = 0. �

Example 5.1 (pin-checking). The process Check(x) defined in (4) leaks all information about x. For example, if X is u.d on 1..k

then Z = P(X) is u.d. over a set of k outcomes. Hence, using Lemma 5.1, A(Check;X) = H(Z) = log k = H(X).

Suppose now the adversary cannot interact freely with Check, rather he can observe the outcome of a user’s interacting

oncewithCheck. The adversaryknows the codey triedby theuser.We represent theuser simply asay, hence thenewsystem is

OneTry(x, y)
def= (νa)(Check(x)|ay) . (6)

1 Strictly speaking, we should make the dependency of P(X̃) from � explicit by writing e.g. P�(X̃), but we shall omit to do so unless strictly necessary.

M. Boreale / Information and Computation 207 (2009) 699–725 705

Clearly, for any r.v. X ,Y : 1..k, the random variable Z = OneTry(X ,Y) has only two possible outcomes, that is [τ.ok]� and
[τ.no]�. These outcomes have probabilities Pr(X = Y) and Pr(X /= Y), respectively. In the case where X and Y are uniformly
distributedand independent, theseprobabilities are1/k and1− 1/k, respectively.Weare interested inA(OneTry; X | Y). Easy
calculations show that Z and Y are independent: indeed, for o = [τ.ok]� and any i ∈ 1..k, Pr(Z = o | Y = i) = Pr(X = i) = 1

k
,

while Pr(Z = o) = Pr(X = Y) = 1
k
, and similarly for o = [τ.no]�, that is Pr(Z = o | Y = i) = Pr(Z = o). For the sake of

concreteness, let us assume k = 10. Using Lemma 5.1 we can compute absolute leakage as

A(OneTry;X | Y) = H(Z | Y) = H(Z) = B

(
1

10

)
≈ 0.469 .

In this case, knowledge of Y brings no advantage to the adversary.

Example 5.2 (A mobile object). Consider an object that can freely move within a grid of coordinates k × k, starting from a

secret location at coordinate (x1, x2) (x1 row, x2 column). For some reason, only the directions (w, e,n, s) of the object’s moves

are observable. Considering x1, x2 : 1, ..., k, we have (please note that "+" denotes nondeterministic choice below):

Mobile(x1, x2)
def= [x1 > 1]w.Mobile(x1 − 1, x2) + [x1 < k]e.Mobile(x1 + 1, x2)

+ [x2 < k]n.Mobile(x1, x2 + 1) + [x2 > 1]s.Mobile(x1, x2 − 1) .
(7)

The "game" here is the adversary’s guessing the secret location by only observing the sequence of movement directions.

Note that (u1,u2) /= (u′
1
,u′

2
) implies Mobile(u1,u2) �� Mobile(u′

1
,u′

2
). Hence, for any two random variables X1,X2 : 1..k, Z =

Mobile(X1,X2) is a random variable whose distribution mirrors that of (X1,X2). Hence in this case there is a total leakage of

information. E.g., if X1 and X2 are uniformly distributed and independent, then, by (3), A(Mobile ; X1,X2) = H(Z) = H(X ,Y) =
2 · log k. Suppose a "confounder" process C

def= w.C + e.C is inserted into the system, that is, consider the system Mobile|C
(note that no synchronization can take place between Mobile and C, their actions are merely interleaved). The presence

of confounder makes two objects lying in the same row indistinguishable: Mobile(u, v)|C � Mobile(u′, v′)|C iff u = u′. As a

consequence, the information conveyed by the new system is halved: A(Mobile|C ; X1,X2) = log k.

The next result asserts that absolute leakage is compositional, in the following sense: the amount of information leaked

by a global system cannot exceed the overall information leaked by individual sub-systems observed in isolation. There is

a technical condition on the the side information, as Ỹ must be decomposable into independent pieces, each of which is

related only to a single sub-system (at the moment, we do not know whether this condition can be relaxed). The proof of

the result is a consequence of inequality (3) and of (an instance of) the so called "data processing" inequality [13]. The latter

implies that for any r.v. W and function F of appropriate domain, H(F(W)) ≤ H(W).

Fix a sequence of distinct process variables (placeholders for processes) X1,X2, Recall that a (n-holes) context is a

process term containing at least one occurrence of process variable Xi, for each 1 ≤ i ≤ n (the Xi represents the "holes"). We

write C[·, ..., ·] for a generic context and C[P1, ..., Pn] for the process obtained by replacingX1,X2, ...with P1, P2, We say that

C[·, ..., ·] preserves � if whenever Pi � P′
i
for 1 ≤ i ≤ n then C[P1, ..., Pn] � C[P′

1
, ..., P′

n].

Proposition 5.1 (Compositionality). Let C[·, ..., ·] be a n-holes context that preserves �, and let Qi(x̃, ỹi) be open processes,

1 ≤ i ≤ n,where ỹ = (ỹ1, ..., ỹn). Let P(x̃, ỹ) = C[Q1(x̃, ỹ1), ...,Qn(x̃, ỹn)]. Let Ỹ = (Ỹ1, ..., Ỹn),with the Ỹi’s pairwise independent. Let

L = A(P; X̃ | Ỹ) and Li = A(Qi; X̃ | Ỹi) for 1 ≤ i ≤ n. Then

L ≤
n∑

i=1

Li . (8)

Proof. Let G : (Pc / �)n → Pc/ � be the function defined by ([P1]�, ..., [Pn]�) �→
[
C[P1, ..., Pn]

]
� (note that this is well-

defined since C[·] is �-preserving). For 1 ≤ i ≤ n, let Zi = Qi(X̃ , Ỹi). Then P(X̃ , Ỹ) = G(Z1, ..., Zn). Therefore A(P; X̃ | Ỹ)

can be written as H
(
G(Z1, ..., Zn), Ỹ

)
− H(Ỹ). By the data-processing inequality and independence of the Ỹi, the last

term is ≤ H(Z1, ..., Zn, Ỹ1, ..., Ỹn)−
∑

i=1,...,n H(Ỹi). By inequality (3), the last term is in turn ≤ ∑
i=1,...,n H(Zi, Ỹi)− H(Ỹi) =∑

i=1,...,n H(Zi | Ỹi) = ∑
i=1,...,n A(Qi; X̃ | Ỹi). �

In the caseof parallel composition, the inequality (8) specializes toA(P|Q ; X̃ | Ỹ) ≤A(P ; X̃ | Ỹ1)+ A(Q ; X̃ | Ỹ2).Moreover,

(8) implies that leakage is never increased by unary operators preserving �. In the case of replication ! this leads to the

somewhat unexpected conclusion, which holds provided � is preserved by !

706 M. Boreale / Information and Computation 207 (2009) 699–725

A(!P ; X̃ | Ỹ) ≤ A(P ; X̃ | Ỹ) .

The intuitionunderlying the above inequality canbe explainedunder the assumptions informally discussed the Introduction:

once the attacker is given P, he/she can produce as many copies of P as desired and possibly run them in parallel, thus

simulating !P if necessary, while the converse is not in general possible (i.e., given !P it is not possible in general to simulate P;

see also Example 5.3 below). In general, instances of inequality (8)may hold strict or not, as shown by the following example.

Example 5.3. Consider P(x) = ([x = 0]a)|a, where x : {0, 1}, andX is u.d. on the same set. Then1 = A(P;X) > A(!P;X) = 0. The

reason for the last equality is that for v ∈ {0, 1}, !P(v) �!a, that is, the behaviour of !P(x) does not depend on x, so H(P(X)) = 0.

On the other hand, consider P1(x) = [x = 2]a + [x = 4]a and P2(x) = [x = 1]b + [x = 2]b, where this time x : 1..4, and X

is u.d. on the same set. Then A(P1|P2 ; X) = A(P1 ; X)+ A(P2 ; X) = B(1
2
)+ B(1

2
) = 2.

Our next task is to investigate the situation of zero leakage. We start from Abadi and Gordon’ definition of Secrecy [1].

According to this definition, a process P(x̃) keeps x̃ secret if the observable behaviour of P(x̃) does not depend on the actual

values x̃ may take on. Partly motivated by the non-interference scenario [17,16,34], where variables are classified into "low"

and "high", we find it natural to generalize the definition of [1] to the case where the behaviour of P may also depend on

further parameters ỹ known to the adversary.

Definition 5.2 (Generalized secrecy).We say that P(x̃, ỹ) keeps x̃ secret given ỹ if, for each ṽ ∈ Ṽ , and for each ũ ∈ Ũ and ũ′ ∈ Ũ,

it holds that P(ũ, ṽ) � P(ũ′, ṽ).

The main result of the section states agreement of diverse notions of secrecy: functional (definition above), quantitative

(zero leakage) and logical (independence of mgb’s from x̃). The last definition appears to be more amenable to automatic

checking, because, as mentioned, a mgb can be effectively computed in many cases. We also offer an "optimized" version of

the quantitative notion, by which it is sufficient to check zero-leakage relatively to uniformly distributed and independent

X̃ and Ỹ .

Theorem 5.1 (Secrecy). Let P(x̃, ỹ) be an open process. The following assertions are equivalent:
1. P(x̃, ỹ) keeps x̃ secret given ỹ.

2. For some X̃* : Ũ and Ỹ* : Ṽ uniformly distributed and independent A(P ; X̃* | Ỹ*) = 0.

3. max
X̃:Ũ, Ỹ :Ṽ A(P ; X̃ | Ỹ) = 0.

4. φ ⇔ ∃x̃x̃′.φ, where φ = mgb
(
P(x̃, ỹ), P(x̃′, ỹ′)

)
, for x̃′ and ỹ′ tuples of distinct variables disjoint from x̃ and ỹ, but of the same

type.

Proof. We show that (4) ⇒ (3) ⇒ (2) ⇒ (1) ⇒ (4). In what follows, for ease of notation, we will denote by ũ, ũ′, ... generic
outcomes of X̃ , by ṽ, ṽ′, ... generic outcomes of Ỹ and byw,w′, ... generic outcomes of Z = P(X̃ , Ỹ). Moreover we shall use such

shorthands as p(ũ) for Pr(X̃ = ũ), p(w | ũ) for Pr(Z = w | X̃ = ũ), and so on.

• (4) ⇒ (3). By contradiction, assume for some X̃ and Ỹ it holds A(P; X̃ | Ỹ) = H(Z | Ỹ) > 0. By definition of H(Z | Ỹ), this
implies that there is some ṽ such thatH(Z | Ỹ = ṽ) > 0. The latter, by definition of conditional entropy, implies that there

are at least two distinct outcomes of Z corresponding to ṽ, say w1 = [P(ũ1, ṽ)]� and w2 = [P(ũ2, ṽ)]� (and it also implies

that 1 > p(wi | ṽ) > 0, for i = 1, 2). That is, P(ũ1, ṽ) �� P(ũ2, ṽ). Now, consider the substitution σ = [ũ1/̃x, ũ2/̃x′, ṽ/̃y, ṽ/̃y′]. By
definition of the mgb φ, we have that σ |= ∃x̃x̃′.φ (that is, φσ is a tautology), while σ �|= φ: this contradicts φ ⇔ ∃x̃x̃′.φ.

• (3) ⇒ (2). Obvious.

• (2)⇒ (1). By contradiction, assume P(x̃, ỹ) does not keep x̃ secret given ỹ. In other words, assume there are ṽ and distinct

ũ1, ũ2 such that P(ũ1, ṽ) �� P(ũ2, ṽ). Let wi = [P(ũi, ṽ)]�, for i = 1, 2. By independence and uniform distribution of X̃* and

Ỹ*, we have that, for both i = 1, 2:

p(wi | ṽ) =
∑
ũ:Ũ

p(wi | ũ, ṽ) · p(ũ) ≥ p(wi | ũi, ṽ) · p(ũi) = p(ũi) > 0

(in the rightmost equality abovewehave used the fact that p(wi | ũi, ṽ) = 1). This inequality also implies that p(wi | ṽ) < 1,

for i = 1, 2. Thus we have shown that 0 < p(wi | ṽ) < 1, for i = 1, 2. By definition of conditional entropy, this implies that

H(Z | Ỹ = ṽ) > 0, hence H(Z | Ỹ) > 0, as p(ṽ) > 0. This fact contradicts the assumption that A(P; X̃ | Ỹ) = 0.

• (1) ⇒ (4). By contradiction, assume (4) does not hold. Hence it must be ∃x̃x̃′.φ �⇒ φ, as the opposite logical implication

always holds. This means that there is a substitution σ with dom(σ) ⊇ fv(φ) s.t. σ |= ∃x̃x̃′.φ and σ �|= φ. Let ũ = σ(x̃) and

ũ′ = σ(x̃′), and ṽ = σ(ỹ). Then, by definition of mgb, P(ũ, ṽ) �� P(ũ′, ṽ), which contradicts the assumption. �

M. Boreale / Information and Computation 207 (2009) 699–725 707

Example 5.4. Consider the following process, where x, y : 1..4.

Q (x, y)
def= (νc)

(
c | [y = 1]c.a

)
+ [x = 2]τ.a .

It is immediate to see that Q does not keep x secret, given y. E.g., if the adversary gets to know that y /= 1 and observes the

behaviour [τ.a]� then he/she can infer that x = 2. In fact, the mgb given by the theorem above is in this case

φ =
(
[y = 1] ∨ [x = 2]

)
↔

(
[y′ = 1] ∨ [x′ = 2]

)
and clearly, φ �⇔ ∃xx′.φ. As an example, for X ,Y independent and u.d on 1..4, the leakage from X toQ given Y can be computed

as follows. Let Z = P(X ,Y).

• If Y = 1 then Z does not depend on X , as for all i and j: Q (i, 1) � Q (j, 1) � τ.a. Hence H(Z | Y = 1) = 0;

• If Y = i /= 1 then if X = 2 (which happens with probability 1
4
) then Z = [τ.a]�, otherwise Z = [0]�. Hence H(Z | Y = i) =

B(1
4
), for i /= 1.

As a consequence

H(Z | Y) =
4∑

i=1

H(Z | Y = i) · Pr(Y = i) = B

(
1

4

)
· 3
4

≈ 0.608.

The process Q ′(x, y) = Q (x, y)+ [y /= 1]τ.a keeps x secret given y.

The next example shows a simple form of timing-dependent leakage.

Example 5.5 (Modular exponentiation). The modular exponentiation algorithm, used in implementations of public-key

cryptographic schemes for computing powers ax mod n, can be described as follows. Let x̃ = (xk−1, ..., x0) be the binary

representation of a (secret) k-bit exponent x and A an integer variable initially storing 1. The final value of A is that returned
by the algorithm:

E(x̃)
def= for i = k − 1 downto 0 do {A=A2 mod n ; if xi =1 then A=a *A mod n } .

We consider two different abstract versions of E, where just the elapse of time can be observed. The basic operations of E

are squaring A=A2 mod n and multiplication A=a *A mod n. Assume that an attacker can observe the duration of individual

executions of such operations (admittedly, a strong assumption). Assume further that there is a discrete range of durations,

hence it is possible to represent each duration as a distinct visible action. In the first abstract version of E, we suppose that

the time taken by each operation is a constant t (below, for is just used as syntactic sugar):

E1(x̃)
def= for i = k − 1 downto 0 do (t.[xi = 1]t) .

In the second version, each squaring operation takes t1, and each multiplication t2:

E2(x̃)
def= for i = k − 1 downto 0 do (t1.[xi = 1]t2) .

It is easy to see that E1(ũ) � E1(ṽ) if and only if ũ and ṽ have the same number of 1 digits (the same Hamming weight), which

makes entropy easy to determine analytically if X̃ is u.d2. E.g. assuming k = 4, we get H(E1(X̃)) ≈ 2.03. Not surprisingly, E2
leaks all information about X̃ , as a t2 action at iteration number i is observed if and only if Xi = 1: hence H(E2(X̃)) = H(X̃).

Under the assumptions above (k = 4, X̃ u.d), this value is 4.

5.2. Behavioural equivalences and attacker’s observational power

To a large extent, our results on absolute leakage do not depend on the choice of the behavioural equivalence� – contrary

to the case of rate of leakage, which we study in Section 7, where we will have to commit to trace equivalence. Even the

numeric values in the examples we have considered so far do not depend on the choice of�, as trace equivalence and strong

bisimilarity, the two extremes in between which � is supposed to lie, coincide in those cases.

In general, however, choosing a specific equivalence amounts to assigning a specific observational power to the attacker:

the finer (more discriminating) the equivalence, the stronger the observational power of the attacker, that is, his/her ability

2 More precisely, E1(X̃) has k + 1 possible outcomes; the outcome corresponding to an exponent X with i "1" digits has probability pi = (ki)
2k

, for i ∈ 0..k.

708 M. Boreale / Information and Computation 207 (2009) 699–725

to tell apart different behaviours induced by different outcomes of X . This is the content of the next proposition. In what

follows, for notational simplicity, we consider individual r.v.’s X and Y rather than vectors of them. We shall indicate by A�i

the leakage function computed when � is set to the equivalence �i. Similarly, we indicate by P�i
(X;Y) the r.v. induced by P,

X and Y when setting � to �i.

Proposition 5.2. Let �1 and �2 be two behavioural equivalences over closed processes and suppose �1 ⊆�2 . Let P(x, y) be an

open process and X ,Y be r.v. Then A�1
(P ; X | Y) ≥ A�2

(P ; X | Y).

Proof. Let U be the set of outcomes of X . For generic total functions f and g defined over U, let us write

f ≤ g iff for each u and v, g(u) = g(v) implies f (u) = f (v).

Equivalently, f ≤ g iff for each u ∈ U there is a set V ⊆ U s.t. f−1(u) = ∪v∈V g−1(v). Note that if f ≤ g then g(u) determines

f (u): indeed, f maps any element of g−1(g(u)) to one and the same f (u). Now, for any two random variables R1 and R2, we

have the following equality, which is a consequence of the chain rule

H(R1) = H(R2)+ H(R1 | R2)− H(R2 | R1) .

Applying the above equality to R1 = g(X) and R2 = f (X), we get thatH(g(X)) = H(f (X))+ H(g(X) | f (X)), asH(f (X) | g(X)) = 0:

indeed, the value of g(X) determines that of f (X). Hence, we have obtained that

f ≤ g implies H(g(X)) ≥ H(f (X)) .

Now, fix any outcome v of Y and consider the functions g : u �→ [P(u, v)]�1
and f : u �→ [P(u, v)]�2

. Clearly f ≤ g. Applying the

inequality above, we get H(P�1
(X , v)) ≥ H(P�2

(X , v)). But H(P�i
(X , v)) = H(P�i

(X ,Y) | Y = v), for i = 1, 2, so we have actually

shown that

H(P�1
(X ,Y) | Y = v) ≥ H(P�2

(X ,Y) | Y = v) .

Averaging on all v’s, we get H(P�1
(X ,Y) | Y) ≥ H(P�2

(X ,Y) | Y), that is, by Lemma 5.1, A�1
(P ; X | Y) ≥ A�2

(P ; X | Y). �
We give below a simple example involving strong bisimulation ∼ and trace equivalence �.

Example 5.6. Recall that � takes into account only sequences of (weak) traces: indeed, P � Q holds true if and only if for

each trace s, P
s�⇒ iff Q

s�⇒. On the other hand, strong bisimilarity∼ takes into account the branching structure arising from

nondeterminism, and is more discriminating than trace equivalence. Specifically, ∼ is defined as the largest equivalence

relation over closed processes such that whenever P ∼ Q and P
μ−→ P′ then there is a transition Q

μ−→ Q ′ such that P′ ∼ Q ′.
(Another difference between these two semantics is that trace equivalence is τ-abstracting while strong bisimilarity is not,

but this fact is not going to play a role in the example below.) Consider now

P(x)
def= a.b + [x = 0]a

where x : 0..1. Take X u.d. on 0..1. Let us set � to testing equivalence �. What is A(P ; X)? Clearly, P(0) � P(1) � a.b, thus the

function i �→ [P(i)]�, for i = 0, 1, is a constant and A(P ; X) = H
(
P(X)

)
= 0. Let us now set � to ∼. It is immediate to check

that P(0) �∼ P(1): indeed, P(0)
a−→ 0, a move that P(1) cannot simulate. As a consequence, in this case P(X) takes two distinct

values, [P(0)]∼ and [P(1)]∼, each with probability 1
2
. Hence, A(P ; X) = H

(
P(X)

)
= 1.

6. Absolute leakage in relation to other security measures

The use of entropy as a measure of uncertainty in Cryptography dates back to Shannon [30]. The relationship of Shannon

entropy to "guessing difficulty" is also somehow folklore: the higher the entropy, themore difficult for an attacker to correctly

guess, say, a secret key (see [3]). Although the coincidence of entropy and guessing difficulty has been questioned (see e.g.

[27]), there is no doubt that these two notions are intimately connected, as witnessed by certain results in Information

Theory. Below, we review these results and use them to relate absolute leakage to certain security measures that account for

either the error probability or the guessing effort of an attacker that tries to infer sensitive information from P.

Before examining those results closely, though, it is important to stress one general reasonwhy Shannon’s entropymay be

(and in fact is) preferred to other, more direct metrics of guessing difficulty. This reason lies in the nice additivity properties

of entropy, as expressed by the chain rule. In this respect, an instance of the chain rule called grouping law is illuminating.

The grouping law states that given any partition U1, ...,Un of the state-space U of X , the uncertainty on X can be decomposed

M. Boreale / Information and Computation 207 (2009) 699–725 709

into the uncertainty as to what block of the partition X belongs to, plus the uncertainty on which element of that block X is.

Formally, once we define the r.v. Y = i iff X ∈ Ui, we have that3

H(X) = H(Y)+ H(X | Y) . (9)

In our model, laws of this kind make it possible to establish forms of compositional reasoning, as discussed in the preceding

section. As a direct example of application of (9) to our model, consider the following. It is easy to show that (for any

instantiation of x) P(x) can be re-written modulo � into a head-normal form
∑n

i=1 φiPi(x), with the property that the φi’s

form a partition of truth (that is, φi ∧ φj ⇒ false for i /= j, and
∨n

i=1 φ ⇔ true; see e.g. [6]). Assume that the partition over the

data determined by the function u �→ [P(u)]� is finer than the partition determined by the φi’s (that is, for each [P(u)]� there

is a φj s.t. ∀v, P(v) � P(u) implies φ(v)). Define the r.v. Y as Y = i iff φi(X) = true. This way, each outcome i of Y determines a

set of possible equivalence classes [P(u)]�. Then, by (9), we get (we let pi = Pr(Y = i))

H
(
P(X̃)

)
= H(Y)+ H

(
P(X) | Y

)
= H(p̃)+

n∑
i=1

piH
(
Pi(X | Y = i)

)

by which the problem of computing the entropy of P(X) is reduced to the problem of computing the probabilities pi’s (which

are easy to estimate accurately) and the conditional entropy of the subterms Pi(X | Y = i). It is worth to stress that similar

additivity properties are not found in connection to other, reasonable security measures, such as those considered below

(see [27] for a discussion).

In what follows, for notational simplicity, we shall consider a single r.v. X , rather than a vector, and assume that no

side-information Y is available.

6.1. Error probability

Generally speaking, given a r.v. X with outcomes inU and an r.v. Z with outcomes in V , one can define the error probability

of inferring X from Z under an optimal "guessing function" g, thus

εX ,Z
def= inf

g:V→U
Pr(g(Z) /= X) .

It can be shown that the above inf is in fact a minimum, attained when g fulfills theMaximum a Posteriori Probability (MAP)

rule. This rule dictates that, for each possible outcome v of Z , u = g(v) should maximize Pr(X = u | Z = v). Fano’s inequality

[13] sets a lower bound on εX ,Z in terms of the uncertainty on X after observing Z , that is H(X | Z):

εX ,Z ≥ H(X | Z)− 1

log |X| . (10)

As expected, the higher the uncertainty, the higher the error probability. It is then immediate to convert upper bounds

on absolute leakage into lower bounds on the attacker’s error probability of guessing X after observing Z . Let Z = P(X). By

definition of leakage as mutual information between X and Z , we have that H(X | Z) = H(X)− A(P ; X) = H(X)− H(Z). This

expression can be plugged into formula (10), which can then be used to lower-bound εX ,Z in terms of absolute leakage.

For instance, in the case of the modular exponentiation algorithm with an exponent of k = 4 bits chosen at random

(Example 5.5), which exhibits an absolute leakage of 2.03 bits, one gets εX ,Z ≥ (4− 2.03− 1)/2 ≈ 0.485.

It is worth to notice that inequalities are also known that give tight upper bounds on error probability as a function of the

conditional entropy (see e.g. [9] for a survey and recent results on upper bounds).

6.2. Guesswork

Consider now a slightly different situation. The attacker is given an oracle that answers (multiple) queries of the form

"X = u?". In the absence of any extra information on X , the most effective strategy for the attacker is to submit to the oracle

guesses for X , from the most likely down to the least likely, stopping as soon as a "yes" answer is received (this is what is

called a dictionary attack in password security). Let p̃ = p1, ..., pn be the distribution of X , with the probabilities pi’s ordered

from the greatest to the smallest. The average number of queries before correctly guessing X , the guesswork of X , is defined

by

G(X)
def=

n∑
i=1

ipi

3 To see that this equation is a consequence of the chain rule, note that, by the chain rule, for any X and Y ,H(X) = H(Y)+ H(X|Y)− H(Y |X). If Y is a function

of X , like in the case considered here, H(Y |X) = 0.

710 M. Boreale / Information and Computation 207 (2009) 699–725

and can be taken as a security measure relative to X . When X is u.d., there is a clear relationship between Shannon and

guesswork, given by G(X) = n+1
2

= 2H(X)+1
2

. More generally, Massey [25] has proven that, if X has at least 2 bits of entropy:

G(X) ≥ 2H(X) + 1

e
. (11)

Consider now equipping the adversary of our model with the oracle described above. Assume in full generality that

Z = F(X) for some function F (in ourmodel, F : u �→ [P(u)]�). The attacker can take advantage of both the oracle and Z: rather

than querying the oracle blindly, he/she can restrict his/her search to those values of X that are consistent with the observed

value of Z . If Z = v, only those u ∈ F−1(v) are worth to be submitted to the oracle. Measuring the security of this system

calls then for a conditional definition of guesswork, G(X | Z). The guesswork of X given Z = v, written G(X | v), is just the

guesswork of the conditional distribution (using a concise notation) pX|Z (u1 | v), ..., pX|Z (um | v), while the guesswork of X

given Z can be defined as the average

G(X | Z) def=
∑
v

G(X | v)pZ (v)

which we can take as a security measure. We can express a lower bound on this quantity in terms of the absolute leakage

H(Z) = A(P ; X), as follows:

G(X | Z) = ∑
v G(X|v)pZ (v)

≥ ∑
v pZ (v)(2

H(X|v) + 1)/e by (11)

= (1+ ∑
v 2

H(X|v)pZ (v))/e

≥ (1+ 2
∑

v H(X|v)pZ (v))/e by Jensen’s inequality [13]

= (1+ 2H(X|Z))/e

= (1+ 2H(X)−H(Z))/e .

(when applying Jensen’s inequality above we have exploited the convexity of the function 2x). The above inequality can be

used to convert upper bounds on absolute leakage into lower bounds on conditional guesswork. For instance, in the case

of the modular exponentiation algorithm with an exponent X of k = 4 bits chosen at random (Example 5.5), which exhibits

an absolute leakage of 2.03, one gets G(X | Z) ≥ 24−2.03+1
e ≈ 1.81. This value should be compared with the value of a priori

guesswork for X , G(X) = 8.5.

7. Rate of leakage

In the scenario considered in the previous section, the attacker is granted unrestricted interaction capability to the

observed process P. The pin-checking example suggests a refinement of this situation, that we study in this section. We will

assume the attacker can only conduct upon P repeated experiments, each yielding a binary4 answer, say success or failure.

We are interested in the number of communicationswith the observed process that are necessary for the adversary to extract

one bit of information about X̃ in this way. In other words, we are interested in themaximal number of bits per visible action

conveyed by P: the rate at which P leaks information.

In the rest of the section, we fix� to be trace equivalence (akamay testing equivalence [14,5]), whose definition we recall

below for the reader’s convenience.

Definition 7.1 (Trace equivalence). P � Q iff for each trace s, P
s�⇒ iff Q

s�⇒.

For the sake of presentation, we shall only consider processes where channels transport tuples of values, i.e. we ban

name-passing in the rest of the section. The extension to the name-passing case is dealt with in Appendix 9. For simplicity,

we shall also assume that no side-information is available to the attacker, i.e. that ỹ is empty. Hence, throughout the section

andunless otherwise stated, P(x̃), where x̃ : Ũ, denotes an arbitrary open pi-process, X̃ an arbitrary vector of randomvariables

of type Ũ and Z the r.v. P(X̃). Recall that A(P ; X̃) = H(Z).

4 We expect no significant change in the theory if k-ary answers, with k > 2 fixed, were instead considered.

M. Boreale / Information and Computation 207 (2009) 699–725 711

7.1. Definitions and basic properties

Consistently with the testing equivalence framework [14,5], we view an experiment as a test process T that, when run in

parallel with P, may succeed or not. Input on a distinct name ω, carrying no objects, is used to signal success to the adversary.

It is convenient here to adjust the notion of (test-process) composition (‖) so as to ensure that, in case of success, exactly one

success action is reported to the adversary.

Definition 7.2 (Test processes and composition). A test T is a closed process formed without using process identifiers and

possibly using a distinct success action ω. For each test T and closed process Q , define

Q‖T def= (νc̃,ω′)(Q |T [ω′
/ω]|ω′.ω)

where c̃ = fn(Q , T) \ {ω} and ω′ /∈ fn(Q ,ω).

Note that, for each T and closed Q , it must be either Q‖T � 0 – meaning that T fails on Q – or Q‖T � ω.0 – meaning that

T succeeds on Q . Hence, each P(x̃) , T and X̃ determine a binary random variable

(P‖T)(X̃)

also written P(X̃)‖T , with possible outcomes F
def= [0]� and S

def= [ω.0]�, to be interpreted as failure and success. Information

on X̃ conveyed by P(X̃)||T is given by

I
(
X̃ ; P(X̃)‖T

)
= H

(
P(X̃)‖T

)
− H

(
P(X̃)‖T | X̃

)
= H

(
P(X̃)‖T

)
and is, of course, at most one bit. The notion of rate we are after should involve a ratio between this quantity of information

and the cost of performing the test T . The following example provides some indications as to what it should be intended by

cost, and shows the role played by non-determinism in extracting information out of P.

Example 7.1. Consider again Check(X), where this time X is u.d. over 1..k, for some fixed even integer k ≥ 2. A test T that

extracts one bit out of Check(X) is

T
def=

k/2∑
d=1

ad.ok.ω .

An attacker can only observe the outcome of the interaction between Check and T , i.e. an outcome of the r.v. Check(X)‖T . If
action ω is observed, then it must be X ≤ k/2; if action ω is not observed, then it must be X > k/2. The information provided

by T is I(X ; P(X)||T) = H(P(X)||T) = B(1
2
) = 1.

The above example suggests that the test’s traces that may lead to success, that is traces ending with a ω, should be

counted as the different "trials" attempted by the attacker. The success or failure of each trial gives the attacker some amount

of information. The cost of each trial can be assumed to be proportional to its length as a trace. These considerationsmotivate

the following definition.

Definition 7.3 (Cost of T). Let T be a test. We say that a nonempty trace of visible actions s = α1 · · ·αn (αi /= ω)may lead T to

success if T
s·ω�⇒ . Denote by |s| the length of a trace s. The cost of T is

|T | def=
∑

s : s may lead T to success

|s| .

According to the definition above, all traces that have a chance of leading T to success, when T is run with some P, must

be counted – only "dummy" traces, never leading to ω, are discarded. Consider e.g. T = a.b.ω + c.d + e.ω: we have |T | = 3,

as the dummy trace c · d is discarded, while e and a.b are counted. When composing T with P(x) = [x = 0]a.b, e cannot be

used to lead P‖T to success, while a · b leads to success only in case x = 0. In other words, while excluding dummy traces,

our definition of cost does include traces corresponding to failed attempts, as they give some information to the attacker.

We arrive now at the definition of leakage rate.

Definition 7.4 (Rate of leakage). Let P(x̃) be an open process and X̃ be a tuple of r.v. The leakage rate of P relative to X̃ is

R(P ; X̃) def= sup
|T |>0

H
(
P(X̃)‖T

)
|T | . (12)

712 M. Boreale / Information and Computation 207 (2009) 699–725

Our first result is a test-independent characterization of rate. In accordance with the may-testing approach, this charac-

terization is obtained in terms of observations of individual traces of processes. The practical significance of this result is

that, when computing rate of P, we are relieved from checking P against every T , and just have to look at P’s traces (which

are finitely many, if P is finite). In what follows, given a trace of visible actions s, we consider the r.v. P(X̃)
s�⇒, with possible

outcomes true or false. As an example, if P(x) = a.[x = 0]a.0 and X is u.d. on {0, 1}, then Pr
(
P(X)

aa�⇒ = true
)
= Pr(X = 0) = 1

2
.

We shall make extensive use of the fact that both | and ‖ distribute over nondeterministic choice, that is, for any closed Q , R1
and R2 we have

Q | (R1 + R2) � (Q |R1) + (Q |R2)
and similarly for ‖. This property does not hold, in general, for behavioural equivalences different from � (e.g., it does not

hold for bisimulation).

Proposition 7.1. Let P(x̃) be an open process and X̃ be a tuple of r.v. It holds that

R(P ; X̃) = sup
|s|>0

H
(
P(X̃)

s�⇒
)

|s| . (13)

Proof. For any trace s, let ŝ be a test of cost |s| such that for each closed Q , Q‖ŝ ω�⇒ iff Q
s�⇒ (see Appendix 9, where ŝ is

defined in the case of the pi-calculus). Hence, P(X̃)
s�⇒ is equivalent to P(X̃)‖ŝ as a r.v. This fact implies that the rhs of (13)

is not greater than the lhs. For the opposite inequality, fix any T with |T | > 0 and let S be the set of traces that may lead T

to success. For any s, denote by s the complementary trace obtained by inverting input and output (e.g., if s = ad · bd′ then
s = ad · bd′). By simple �-preserving transformations (see also Appendix 9), we can show that, for any closed Q :

Q‖T � Q‖
∑
s∈S

ŝ �
∑
s∈S
(Q‖ŝ) .

Hence P(X̃)‖T is equivalent to
∑

s∈S(P(X̃)‖ŝ) as a r.v. Using this fact and the inequality of Proposition 5.1 with C[·] = ∑
s∈S([·]),

we have that

H
(
P(X̃)||T

)
|T | =

H
(∑

s∈S P(X̃)‖ŝ
)

|T | ≤
∑

s∈S H(P(X̃)‖ŝ)
|T | .

In the last term, we can replace P(X̃)‖ŝ by P(X̃)
s�⇒, hence H(P(X̃)‖ŝ) by H(P(X̃)

s�⇒). Moreover, by definition of cost, we can
replace |T | by ∑

s∈S |s| =
∑

s∈S |s|. The thesis then follows by the inequality below (which holds for genericMi > 0, Ni ≥ 0, for
i = 1, ..., k):

N1 + · · · + Nk

M1 + · · · +Mk
≤ max

i=1,...,k

Ni

Mi
. � (14)

Example 7.2. Consider the process CheckOnce(x)
def= a(z).([z = x]ok + [z /= x]no), where x, z : 1..10, and X u.d. on the same

interval. It is immediate to check that the ratio in (13) is maximized by any of s = ad · ok or s = ad · no, for d ∈ 1..10. This

yields R(CheckOnce ; X) = B(1
10
)/2 ≈ 0.234.

Remark 7.1. The proposition above allows one, at least in principle, to compute the rate of any process having a finite

symbolic transition system. This can be seen as follows.

Let P(x̃) be one such process. Relying on P’s symbolic transition system, it is possible to compute, for any given trace s,

a logical formula φs(x̃) expressing the exact condition on x̃ under which P(x̃) can perform s (we will not discuss the details

here – see [19,6]).

By considering all possible traces in this way, one gets a finite set of formulae {φ1(x̃), ...,φk(x̃)}. The reason why this set

is finite is that any φs can be written as a disjunctive normal form using as atoms the formulae appearing in the symbolic

transition system of P(x̃), which is finite.

For each i = 1, ..., k, let si be the shortest trace associated with φi, and assume empty traces and tautologies are discarded

away. Note that for each trace si, the probability that P(X̃)
si�⇒ holds true is simply Pr(φi(X̃) = true). Thus, R(P ; X̃) is the

greatest among the ratios H(φ1(X̃))|s1| ,...,
H(φk(X̃))|sk | . By statistical methods it is feasible to estimate the probabilities Pr(φi(X̃) = true),

even when it is difficult to obtain explicit expressions for them (e.g., by estimating the fraction of true values obtained when

repeatedly evaluating φ(x̃) for values of x̃ drawn according to X̃).

M. Boreale / Information and Computation 207 (2009) 699–725 713

The next result explains the relationship between the notion of rate and absolute leakage. In particular, (a) establishes

that A is the maximal amount of information that can be extracted by repeated binary tests; and (b) provides a lower bound

on the cost necessary to extract this information, in terms of R – thus providing a justification for the name "rate". Given a

finite sequence of tests T̃ = T (1), T (2), ..., T (n), we write |T̃ | for its cost |T (1)| + · · · + |T (n)|, and P(X̃)‖T̃ for the sequence of r.v.

P(X̃)‖T (1), ..., P(X̃)‖T (n).

Proposition 7.2. Let P(x̃) be an open process and X̃ be a tuple of r.v. It holds that

(a) A(P ; X̃) = max
T̃
I(X̃ ; P(X̃)‖T̃)

(b) for each T̃ , I(X̃ ; P(X̃)‖T̃) ≤ |T̃ | · R(P; X̃).

Proof.

(a) Let T̃ = T (1), ..., T (n) be a generic sequence of tests, and let P(X̃)||T̃ = P(X̃)||T (1), ..., P(X̃)||T (n) be the corresponding se-

quence of r.v. Let Z = P(X̃), hence A(P; X̃) = H(Z). By symmetry of I: I
(
X̃; P(X̃)||T̃

)
= H

(
P(X̃)||T̃

)
≤ H(Z), where the last

inequality stems from the data-processing inequality applied to the function G : [Q]� �→ ([Q ||T (1)]�, ..., [Q ||T (n)]�).
We show that themax can be attained for a suitable choice of T̃ . By definition of�, an outcome [Q]� of Z can be identified

with the set of traces L = {s |Q s�⇒}, that is, the language generated by Q . For any two distinct outcomes of Z , say L and

L′, choose a trace s ∈ (L \ L′) ∪ (L′ \ L), and let D be the set of all such traces. Clearly, for any two outcomes of Z , say L

and L′, it holds that L = L′ if and only if D ∩ L = D ∩ L′. In other words Z and Z ∩ D are equivalent as r.v. We will define a

sequence of tests T̃ s.t. P(X̃)||T̃ is equivalent to Z ∩ D, which will prove the thesis, as H(P(X̃)||T̃) = H(Z) = A(P; X̃).
Let us arbitrarily order the elements of D as: s1, ..., sn. A vector in {0, 1}n can be identified with a subset of D in the

obvious way. For each si ∈ D, consider the test T (i)
def= ŝi s.t. for any Q , Q‖ŝi ω�⇒ iff Q

si�⇒. By identifying 0 with F = [0]�
and 1 with S = [ω.0]�, we see that the r.v. P(X̃)||T̃ = P(X̃)||ŝ1, ..., P(X̃)||ŝn yields outcomes in {0, 1}n , i.e. on subsets of D.

Moreover, by definition of P(X̃)||T̃ , the event (P(X̃)||T̃ = L) is the same as the event (Z ∩ D = L). In other words, P(X̃)||T̃
and Z ∩ D are equivalent as r.v.

(b) Fix any T̃ , and assume without loss of generality that |T (i)| > 0 for each i. Then we have:

I(X̃; P(X̃)||T̃) = H(P(X̃)||T̃)
≤

n∑
i=1

H(P(X̃)||T (i)) (by (3))

= |T̃ | ·
∑n

i=1 H(P(X̃)||T (i))
|T̃ |

≤ |T̃ | ·maxi=1,...,n

H

(
P(X̃)||T (i)

)
|T (i)| (by (14))

≤ |T̃ | · R(P; X̃) .

�

Note that the cost of extracting all available information, A(P ; X̃) = H(Z), cannot be less than H(Z)

R(P;X̃) , for Z = P(X̃). It is

important to remark that two processeswith equal absolute leakagemaywell exhibit different rates. Here is a small example

to illustrate this point.

Example 7.3. Let P(x) and Q (x), where x : 0..3, be defined as follows:

P(x) = [x = 0](a+ b) + [x = 1](b+ c) + [x = 2](c + d) + [x = 3](d+ a)

Q (x) = [x = 0]a + [x = 1]b + [x = 2]c + [x = 3]d .

Assume X is u.d. over 0..3. Both P(X) and Q (X) are u.d. on a domain of four elements: the four distinct equivalence classes

[P(i)]�, resp. [Q (i)]�, for i ∈ 0..3. Hence their absolute leakage is H(P(X)) = H(Q (X)) = H(X) = 2 bits. On the other hand, each

nonempty trace of P occurs with probability 1/2 (i.e., Pr(P(X)
s�⇒) = 1/2 for s ∈ {a, b, c, d}), while each nonempty trace of

Q occurs with probability 1/4 (i.e., Pr(Q (X)
s�⇒) = 1/4 for s ∈ {a, b, c, d}). Thus, by Proposition 7.1, R(P;X) = B(1

2
) = 1 and

R(Q ;X) = B(1
4
) ≈ 0.811. Proposition 7.2(b) then implies that gaining all information about X costs an attacker at least 2

1
= 2

synchronizations in the case of P, and at least � 2
0.811

 = 3 synchronizations in the case of Q . Indeed, the sequence of tests

a.ω, b.ω is sufficient in the case of P for determining X . The sequence of tests a.ω, b.ω, c.ω is sufficient in the case of Q .

714 M. Boreale / Information and Computation 207 (2009) 699–725

7.2. Compositionality

The results below are about composing rates of processes. The first proposition gives upper bounds for the rate of a global

system in terms of the individual sub-systems. These inequalities can be used for compositional reasoning on rates, although

the bounds they provide are sometimes rather loose, especially in the case of restriction (νc). The proof of the proposition

is based on simple use of the data-processing inequality plus inequality (14). The subsequent Theorem 7.1 establishes that,

under certain conditions, iteration * preserves rate, thus providing another justification for the definition of rate. We regard

this as the main result of the section.

Proposition 7.3. Let P(x̃) and Q (x̃) be open processes and X̃ be a vector of random variables of the same type as x̃. Let ẽ(x̃) be a

tuple of expressions and let ṽ be the tuple of values that maximizes Pr(ẽ(X̃) = ṽ). Let φ(x̃) be a logical formula. Then the following
inequalities hold:

(i) R(a(z̃).P; X̃) ≤ maxũ R(P[ũ/̃z]; X̃)
(ii) R(aẽ.P; X̃) ≤ max {H([ẽ(X̃) = ṽ]), R(P; X̃)}
(iii) R(φ P; X̃) ≤ H(φ(X̃))+ R(P; X̃)
(iv) R((νa)P; X̃) ≤ R(P; X̃)
(v) R(P + Q ; X̃) ≤ R(P; X̃)+ R(Q ; X̃) .

Proof.Weonly cover in detail the case (ii), as the other cases are routine applications of the data processing inequality and/or

of inequalities (1–3).

We rely on the trace-based characterization of R provided by Proposition 7.1. Let s be a generic nonempty trace and

ps = Pr
(
(aẽ.P)(X̃)

s�⇒
)
.Will show thatB(ps)/|s| ≤ max {H([ẽ(X̃) = ṽ])), R(P; X̃)}. This is obvious if s is not of the form aw̃ · s′,

as in this case ps = 0 = B(ps). Thus, assume s = aw̃ · s′, for some w̃ and s′. First, note that, by symmetry of the binary entropy

function B(p) around the point p = 1/2 (see Fig. 1), the value ṽ that maximizes the probability Pr(ẽ(X̃) = ṽ) is also the value

that maximizes the entropy B(ẽ(X̃) = ṽ). Second, note that the r.v. (aẽ.P)(X̃)
s�⇒ is the same as (ẽ(X̃) = w̃) ∧ P(X̃)

s′�⇒. From

these two facts, applying the data processing inequality and (3), we have:

B(ps) = H
(
(aẽ.P)(X̃)

s�⇒
)
≤ H

(
ẽ(X̃) = w̃ , P(X̃)

s′�⇒
)

≤ H
(
[ẽ(X̃) = ṽ]

)
+ H

(
P(X̃)

s′�⇒
)
.

If s′ = ε then H
(
P(X̃)

s′�⇒
)
= 0 (as P(X̃)

ε�⇒ holds with probability 1), and the thesis follows. Assume s′ /= ε. Dividing by

|s| = 1+ |s′| the inequality obtained above and then applying inequality (14), we have

B(ps)

|s| ≤ H([ẽ(X̃) = ṽ])+ H(P(X̃)
s′�⇒)

1+ |s′| ≤ max
{
H([ẽ(X̃) = ṽ]), H(P(X̃)

s′�⇒)

|s′|
}

but H(P(X̃)
s′�⇒)

|s′ | ≤ R(P; X̃) by definition of rate. �
A notable omission from the previous proposition is the case of parallel composition P|Q . Interaction between P and Q

may give rise to short traces conveying much information on X . Indeed, synchronization may turn visible actions of P and Q

into invisible τ ’s. This might lead P|Q to exhibit a higher rate than the sum of P’s and Q ’s alone, as illustrated below.

Example 7.4. Consider P(x) = c.[x = 0]a, Q (x) = c with x : 0..1. Take X u.d. on 0..1. Clearly, P(X) has a rate of B(1
2
)/2 = 1

2
,

while the rate of Q (X) is 0, as Q does not actually depend on x. When composing, however, we get for P|Q a rate of 1: indeed,

there is an interaction on c that makes trace a available if and only if x = 0. Hence Pr((P|Q)(X) a�⇒) = 1
2
, which implies the

rate is 1.

In order to define iteration on processes, we have to first define sequential composition. Output on a distinct name

stop, not carrying objects, is used to signal termination of a thread. We define sequential composition as P;Q def=
(ν stop′)(P[stop′

/stop] | stop′.Q) (with stop′ fresh). This means that the first thread of P that terminates will trigger execution

of Q . This is slightly different from sequential composition in the usual sense, that would require termination of all threads

before activating Q . However, the two notions are equivalent in the context we are going to consider (see definition of

determinate process below). For any closed process P, let iteration * P be the process recursively defined by * P
def= P; * P.

We show that, under a suitable condition, described below, the rate of * P is the same as P’s. The condition requires essen-

tially that termination of a single thread in a process is equivalent to termination of the whole process. Its role is that of

forbidding "hidden" interactions between threads belonging to different iterations of P in *P. We discuss its necessity below

(Remark 7.2).

M. Boreale / Information and Computation 207 (2009) 699–725 715

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
p

Fig. 1. Binary entropy function B(p) in [0, 1].

Definition 7.5 (Determinate processes). Let Q be a closed process. We say that a trace s is terminating for Q if Q
s·stop�⇒ . We

say that Q is determinate if for every terminating trace s, whenever Q
s�⇒ Q ′ then Q ′ � stop. Finally, an open process P(x̃) is

determinate if
∑

ũ∈Ũ P(ũ) is determinate.

We need another technical condition: let us say that Q is stable if whenever Q
ε�⇒ Q ′ (ε = empty trace) then Q ′ � Q .

Theorem 7.1 (Iteration rate). Suppose that P(x̃) is determinate, and that for each ũ, P(ũ) is stable. Then R(*P ; X̃) = R(P ; X̃).

Proof.We show that for each nonempty s there exists a nonempty s′ s.t. H(* P(X̃) s�⇒)/|s| ≤ H(P(X̃)
s′�⇒)/|s′|, that proves, by

Proposition 7.1, that R(*P ; X̃) ≤ R(P ; X̃). The proof of the opposite inequality is easier and omitted.

We proceed by induction on s. Suppose |s| > 0 and let T denote the set of terminating traces of S
def= ∑

ũ∈Ũ P(ũ). There are

two cases for s.

(1) No trace in T is a prefix of s. In this case, it is easy to see that by definition of determinate process, for each ũ, * P(ũ)
s�⇒

iff P(ũ)
s�⇒, hence P(X̃)

s�⇒ is equivalent to *P(X̃)
s�⇒, and we can take s′ = s.

(2) There is s1 ∈ T that is a prefix of s, say s = s1 · s2 for some s2. We can assume that s1 is not empty (otherwise, S � stop,

and the thesis would follow trivially.) Note that, for each ũ, whenever * P(ũ)
s1�⇒ P′ then necessarily P′ � * P(ũ) (a

consequence of determinacy and stability of P(ũ)). Using this fact, one can prove that for each ũ,

* P(ũ)
s�⇒ if and only if P(ũ)

s1�⇒ and * P(ũ)
s2�⇒ .

In other words, the r.v. * P(X̃)
s�⇒ is the same as (P(X̃)

s1�⇒ ∧ *P(X̃)
s2�⇒). By virtue of the data-processing inequality and

by (3), we obtain

H
(

* P(X̃)
s�⇒

)
≤ H

(
P(X̃)

s1�⇒
)

+ H
(

* P(X̃)
s2�⇒

)
.

Now, if s2 is empty, that is s=s1, the second termof the summationabove is0, hencedividingby |s|wehaveH(* P(X̃)
s�⇒)/

|s| ≤ H(P(X̃)
s�⇒)/|s|, and the thesis follows. Assume now that s2 is not empty. Dividing the above inequality again by

|s| = |s1| + |s2| and using (14), we get

H

(
* P(X̃)

s�⇒
)

|s| ≤ max

⎧⎨
⎩

H

(
P(X̃)

s1�⇒
)

|s1| ,
H

(
* P(X̃)

s2�⇒
)

|s2|

⎫⎬
⎭.

If the max is the first of the two terms, we set s′ = s1 and stop; otherwise, we invoke induction hypothesis on s2. �

Example 7.5. It is easy tocheck thatCheckOnceStop(x)
def= a(z).([z = x]ok.stop+ [z /= x]no.stop) isdeterminate (x : 1..10). Since

Check(d) � *CheckOnceStop(d), for every d, by Theorem 7.1 and Example 7.2 we have: R(Check ; X) = R(CheckOnceStop ; X)
= B(1

10
)/2 ≈ 0.234.

716 M. Boreale / Information and Computation 207 (2009) 699–725

Remark 7.2 (On the necessity of the determinacy condition). In the absence of determinacy, neither (a)R(P ; X̃) ≤ R(*P ; X̃)nor
(b)R(*P ; X̃) ≤ R(P ; X̃) hold in general. As a counter-example to inequality (a), consider P(x) = [x = 0]a.stop+ [x = 1]a.a.stop
with x : {0, 1}, which is not determinate. For X u.d. on {0, 1}, the ratio B(ps)/|s| is maximized by the trace s = a · a, for which

ps = 1/2 (it occurs iff X = 0), hence R(P ; X̃) = B(1/2)
2

= 1/2 (note that the trace s = a yields no information on x, as it can be

performed regardless of the value of x). On the other hand, all traces of *P are of the form a · · · a and occur with probability 1:

that is ps = 1 for any trace s of that form, and ps = 0 for traces of a different form. Hence H(ps) = 0 for all s, and R(P ; X̃) = 0.

As a counter-example to inequality (b), consider P′(x) = [x = 0]a.b+ stop.a+ [x = 1]a, with x : {0, 1}, which, again, is not

determinate. For X u.d. on {0, 1}, the ratio B(ps)/|s| is maximized by the trace s = a · b, for which ps = 1/2 (it occurs iff X = 0),

hence R(P′ ; X̃) = B(1/2)
2

= 1/2. On the other hand, *P′ has a shorter trace s = b, which arises from interaction between a in

P′ and [x = 0]a.b in *P′ (recall that *P′ def= P′; *P′) and occurs with probability 1/2 (i.e. iff X = 0). Hence R(*P′ ; X̃) = 1.

7.3. Rate of leakage and other security measures

It is easy to relate rate of leakage to error probability and guesswork, along the lines of Section 6. We show the details

of the error probability case, and just state the result for the case of guesswork, as the details can be easily filled in by the

reader.

We consider the attacker’s error probability of guessing X after an effort of N ≥ 0 synchronizations with P. Assuming X

has outcomes in U, this probability can be defined as

εX ,P,N
def= inf

g,T̃ :|T̃ |≤N
Pr

(
g(P(X)||T̃) /= X

)

where g ranges over all functions of type {S, F}* → U. That is, g takes a sequence of test outcomes – success or failure – and

yields a guess for the value of X .

Like in the case of absolute leakage, we rely on Fano’s Inequality (10). For arbitrary but fixed g and T̃ s.t. |T̃ | ≤ N, from (10)
we get that:

Pr
(
g(P(X)||T̃) /= X

)
≥ ε

X ,P(X)||T̃ ≥ H(X | P(X)||T̃)− 1

log |X| = H(X)− I(X ; P(X)||T̃)− 1

log |X| .

But, by Proposition 7.2(b), I(X ; P̃(X)||T̃) ≤ NR(P;X), hence we get

Pr
(
g(P(X)||T̃) /= X

)
≥ H(X)− NR(P;X)− 1

log |X| .

Since T̃ and g are arbitrary, we get

εX ,P,N ≥ H(X)− NR(P;X)− 1

log |X| .

In complete analogy, we can define guesswork for X after N synchronizations with P as GP,N(X)
def= inf |T̃ |≤N

G(X | P(X)||T̃)
and prove the following lower bound:

GP,N(X) ≥ 2H(X)−NR(P;X) + 1

e
.

8. An extended example

We analyze absolute leakage and rate of leakage of a non-trivial system inspired by – butmuch simpler than – anonymity

protocols in the style of Crowds [28]. A typical goal of these protocols is allowing a group of users to exchangemessages over

a public network, while hiding the identities of the senders of individual messages from an external (passive) eavesdropper.

An essential ingredient to achieve this goal is a routing policy of messages that aims at confounding the eavesdropper as

to who is sending to whom at any given moment. Here we consider one such policy for a simple ring-shaped network and

quantify the average information leaked to the eavesdropper about the sender, the receiver and the message in a run of the

protocol. The average is taken with respect to the random choice of the sender, of the receiver and of the message. In the

three subsections below, we give a description of the system and then discuss its absolute leakage and rate of leakage. In that

discussion, for the sake of readability we have preferred not to dwell on technical details, which can be found in Appendix 9.

M. Boreale / Information and Computation 207 (2009) 699–725 717

A1 A2

A3A4

Fig. 2. A ring-shaped network with N = 4 nodes.

8.1. Description of the system

Aset ofN ≥ 2nodesA1, ...,AN are connected throughN public, unidirectional channels so as to forma ring-shapednetwork.

This is shown in Fig. 2 for N = 4. The purpose of a run of the protocol is to let a sender node As transmit a one-bit message

m ∈ {0, 1} to a receiver node Ar . The pieces of information represented by r,m and s should be concealed. Since As and Ar may

possibly be not directly connected, the messagemmay have to be routed through intermediate nodes. The protocol consists

of N stages. To confound the eavesdropper, at each stage, every node Aj sends a message to the next node in the ring, Aj+1

(all indices here are intended modN). More precisely, the node that currently holds the "genuine" messagem – initially As –

sendsm, while any other node sends an arbitrarily chosen bitm′. Each Aj must receive amessage from Aj−1 before proceeding

to the next stage. Note that after (r − s)mod N stages, messagem has actually reached the receiver Ar: the remaining stages

are executed for the sole purpose of hiding the relation between s and r.

We make a few assumptions to make our analysis feasible. We analyze leakage due to a single node of the network, say

Aj with j ∈ 1..N. In other words, we consider a situation where a local attacker eavesdrops on a single node Aj . The attacker

can observe incoming and outgoing messages, but cannot tamper with them. He can, however, force the re-execution of the

whole protocol with the same parameters (e.g., by fooling participants into believing that some messages sent to Aj have

been lost). We furthermore assume that the secrets r, m and s, as well as any routing information needed by them, have

somehow been distributed securely to the participants prior to the protocol’s execution – that is, we do notmodel the secure

distribution of the secret parameters.

The behaviour of the jth node of the network from the point of view of the attacker is modeled by the process Aj defined

below. There, s, r, i are variables of type 1..N and m is a variable of type 0..1. We use input actions in0 and in1 (resp. output

actions out0 and out1) to denote the reception (resp. sending) of bits 0 and 1 from the node Aj−1 (resp. to the node Aj+1).

We make use of the following notational shorthand. " if φ then P else Q" stands for φP + ¬φQ ; moreover, "inx.Q", where

x is a variable of type 0..1, stands for [x = 0]in0.Q [0/x] + [x = 1]in1.Q [1/x]; similarly for outx.Q . We denote by path(s, j, r) the

predicate that is true if and only if node j is in the path from s to r (e.g., path(3, 4, 1) holds true for a configuration of N = 4

nodes; note that we set path(s, j, s) to true only if j = s). Finally, we consider the predicate holds(s, j, r, i)which tells if node j

will hold the genuine message at the beginning of ith stage, counting stages from 0 to N − 1; formally

holds(s, j, r, i) iff path(s, j, r) and i = j − s mod N .

E.g. holds(3, 4, 1, 1) holds true in the configuration with 4 nodes.

Bj(s, r,m, i) represents Aj ’s behaviour from the ith stage onward, counting stages from 0 through N − 1.

Aj(s, r,m)
def= Bj(s, r,m, 0)

Bj(s, r,m, i)
def= (i < N)

(
if holds(s, j, r, i) then outm

else out0 + out1

| if holds(s, j − 1, r, i) then inm.Bj(s, r,m, i+ 1)

else in0.Bj(s, r,m, i+ 1)+ in1.Bj(s, r,m, i+ 1)
)
.

The two threads that compose Bj correspond to the following behaviour:

• at each stage, Aj must send a bit to its successor in the ring: if Aj currently holds the genuine messagem, then it is thism

that will be sent (this is the first then branch), otherwise 0 or 1 will be nondeterministically chosen and sent (this is the

first else branch);

• at each stage, Aj must receive a bit from its predecessor in the ring: if Aj−1 currently holds the genuine message m, then

it is thism that will be received (this is the second then branch), otherwise otherwise 0 or 1 will be nondeterministically

chosen and received (this is the second else branch).

To exemplify the functioning of the node, let us instantiate the above specification of Bj to the case s = 1, j = 3 and r = 4,

for the 4-nodes network in Fig. 8.1. We get the following relations which explain the behaviour of the system (recall that ∼

718 M. Boreale / Information and Computation 207 (2009) 699–725

denotes strong bisimilarity):

B3(1, 4,m, 0) ∼ out0 + out1 | in0.B3(1, 4,m, 1)+ in1.B3(1, 4,m, 1)

B3(1, 4,m, 1) ∼ out0 + out1 | inm.B3(1, 4,m, 2)

B3(1, 4,m, 2) ∼ outm | in0.B3(1, 4,m, 3)+ in1.B3(1, 4,m, 3)

B3(1, 4,m, 3) ∼ out0 + out1 | in0 + in1 .

(15)

Note that this is a description of Aj ’s behaviour from the point of view of the attacker. This description says little about the

"physical" implementation of the node. Indeed, routing information would normally be found in message headers and not

"hardwired" into the processes (see also Remark 8.1 below).

In the analysis below,we assume the receiver r, the sender s and themessagem are chosen according to three independent

random variables S, R andM, respectively, with S and R uniformly distributed. We let h = H(M) (this is 1 bit ifM is chosen at

random). We want to analyze absolute leakage and rate of leakage relative to the random variable

Z
def= Aj(S,R,M) .

8.2. Absolute leakage

We first assume the attacker already knows a piece of information Y telling him whether j is in the path from S to R

(Y = true) or not (Y = false). We discuss the two cases separately.

In the case Y = false, at each stage both else branches are taken, as neither of the two instances of holds(·) ever evaluates
to true. As easily seen, the resulting behaviour of Bj , hence of Aj , does not depend on S, R or M. Therefore, in this case the

absolute leakage due to Aj is 0, that is, the attacker does not learn anything, apart from the very fact that j is not in the path:

H(Z | Y = false) = 0 .

In the second case, the attacker, by observing Aj , can tell at which stage i the genuine messagem is sent to the successor.

Intuitively, in all (re-)executions of the protocol there is a unique stage at which it is always fired the same output (outm),

rather than one of two possible (out0 + out1); see e.g. the equations (15) above, where the stage in question is i = 2. This way,

the attacker can tell the distance between S and j, hence the identity of the sender S, since j is known. As a consequence, he

can also tell the value ofm, which is directly observed at stage i. He cannot tell the identity of the receiver, though. Therefore,

in this case the absolute leakage due to Aj is

H(Z | Y = true) = H(S)+ H(M) = logN + h .

Now, j is found in the path from the sender to the receiver approximately in half of the cases, that is the probability that

Y = true is about 1
2
(for large values of N; the exact value is given in the appendix). Hence H(Y) ≈ 1. The overall leakage can

hence be computed as

A(Aj; S,R,M) = H(Z)

= H(Z ,Y)

= H(Y)+ H(Z | Y)
≈ 1+ 1

2
H(Z | Y = true) = 1+ 1

2
(logN + h) .

where in the second equality we have used the fact that H(Z) = H(Z ,Y), that is, if observing Z , observing also Y does not

provide additional information. The above formula can be interpreted as follows: when the number of nodes is large, Aj leaks

on the average approximately half of the message content and half of the bits of the sender’s identity, plus one bit saying

whether Aj is in the path from the sender to the receiver. Intuitively, this is the case because in half of the cases, i.e. when j

is not in the sender-receiver path, the attacker cannot say anything about M, S and R – apart from the very fact that j is not

in the path – while in the other half of the cases, when j is in the path, the attacker can tell precisely S andM.

8.3. Rate of leakage

For any trace t, let pt be Pr(Aj(S,R,M)
t�⇒). The rate we have to estimate is the supremum of

B(pt)

|t|
taken over all nonempty traces t. For reasons explained in the appendix, without loss of generality we can confine ourselves

to examining traces where output actions are fired eagerly, that is traces of the form

t = outm0
· inm′

1
· outm1

· · · inm′
k
· outmk

M. Boreale / Information and Computation 207 (2009) 699–725 719

with 0 ≤ k ≤ N − 1 and mi,m
′
i
∈ 0..1. Let us now estimate the probability pt .

In the first place, it holds that pt ≥ 1
2
, as shown below. Now, the binary entropy function B(p) attains its maximum in

the point p = 1/2 (see Fig. 1); hence, in order to maximize B(p)/|t|, while keeping |t| fixed, it is convenient to choose t that

minimizes pt , i.e. makes pt as close as possible to 1
2
.

As explained below, this is achieved if t is chosen such that, for all 1 ≤ i ≤ k,m′
i
/= mi. By inspection of the code of Aj , such

a trace can be performed if and only if the following predicate depending on S, R andM is true (here and in the following we

abbreviate holds(S, j,R, i) as holds(i)):

condt(S,R,M) = (¬holds(0) ∨M = m0) ∧
k∧

i=1

¬holds(i) .

This means: if the node holds the genuine message at stage 0, then the output m0 observed at stage 0 must be the genuine

message; moreover, at none of the k subsequent stages may the node hold the genuine message, as the output at stage i,mi,

can be different from the input at the preceding stage, m′
i
, if and only if the node does not hold the message at stage i. Thus,

pt is the probability of condt(R, S,M) to hold true. Note that considering a trace with m′
i
= mi for some i ≥ 1 would lead to

replacing some "¬holds(i)" conjuncts in the above condition with the weaker "¬holds(i) ∨M = mi", which would make for

a higher probability.

By simple logical manipulation, the condition condt(S,R,M) is seen to be equivalent to the following:

(holds(0) ∧M = m0) ∨
k∧

i=0

¬holds(i) (16)

It is easy to evaluate separately the probability of the two disjuncts in the condition. Indeed, holds(0) is equivalent to S = j

(the sendermust coincidewith the node for the node to hold themessage at stage 0). For simplicity, assume Pr(M = m0) = 1
2

(this does not really affect the result of the analysis). By independence of S andM we have

Pr(holds(0) ∧M = m0) = 1

2N
.

The second disjunct in (16) has the following probability (the computation is detailed in the appendix):

Pr

⎛
⎝ k∧

i=0

¬holds(i)
⎞
⎠ = 1− k + 1

N

(
1− k

2N

)
.

Since the two disjuncts in (16) do not intersect (as holds(0) and ¬holds(0) cannot be true at the same time), we can sum up

their probabilities and get

pt = 1

2N
+ 1− k + 1

N

(
1− k

2N

)
.

As k goes from0 toN − 1, pt decreases from1− 1
2N

to itsminimal value 1
2
. This shows that pt ≥ 1

2
. The ratio B(pt)

|t| as a function

of k is plotted in Fig. 3 in the case of N = 100 nodes. As seen, the maximum is obtained for k = 0, yielding a rate of

R(Aj ; S,R,M) = B

(
1

2N

)
. (17)

(we have used the fact that B(1− p) = B(p)). Hence the traces that maximize the ratio are t = outm0
withm0 ∈ 0..1. Each of

these two traces conveys very little information to the attacker, just telling him that it if S = j thenM = m0. As an example, in

the case of N = 100 nodes, B(pt) ≈ 0.045 bits. As k increases, the conveyed information B(pt) grows, but much slower than

the length of the trace |t|, so that the ratio goes down.

Remark 8.1 In a more realistic scenario, the routing information would be found in message headers rather than being

hardwired in the nodes. Since routing information cannot be sent in the clear, some encryption mechanism would be also

called for. Conceivably, the resulting system would be more secure than the one discussed above. In particular, the attacker

would not be able to tell the stage at which the genuine message is sent (provided randomized encryption were adopted);

hence also the identity of the sender and of themessagewould be fully protected.We cannot directly deal with cryptography

and describe such a system in the present framework.

720 M. Boreale / Information and Computation 207 (2009) 699–725

0.01

0.02

0.03

0.04

0 20 40 60 80
k

Fig. 3. Plot of B(pt)/|t| as a function of k (N = 100).

9. Conclusion and related work

We have presented two quantitative models of information leakage for processes. Relationships existing among these

two models and a functional notion of secrecy have been studied. The compositionality properties of the models have also

been investigated.

The idealized, "all powerful" adversary encompassed by our models may turn out to be too strong for many practical

purposes. There is much work to be done in order to go from the present theoretical treatment to a more practical one. In

particular, the ability to show an absence of leakage at the language level does not imply that there will be no leakage at the

implementation level, although it helps to constrain the types of attacks that can be used effectively, by forcing an attacker to

require some additional knowledge relating to, e.g., timing. In a probabilistic settingwhere each process induces a probability

distribution over the set of traces, it may be sensible to stipulate that low-probability traces are more difficult, or costly, to

detect for the adversary than high-probability traces. This is impossible to describe in the present model, basically because,

no matter how improbable a specific trace is, the attacker can detect that trace with a null effort. In the future, we plan to

examine enhancements of the model involving probabilistic and possibly cryptographic features.

Use of conditional mutual information as a measure of leakage in computing systems can be traced back to Millen [26]

and to Gray [18]. In the context of sequential, imperative programs, the significance of this measure with respect to different

metrics of security has been further clarified by Clark, Hunt andMalacaria in [10,12,11]. In particular, our Theorem5.1, stating

equivalence of zero leakage and secrecy, is clearly related to Millen’s result [26] that null conditional mutual information is

equivalent to non-interference in the case of computing automata. In a language-based setting, essentially the same result

has been proved by Clark et al. (Proposition 4.2 of [10]). Malacaria’s recent work on the security of looping constructs [24]

extends [10] by introducing a notion of rate for loops in imperative programs. We also mention Volpano and Smith’s [34],

where a quantified theory of non-interference for imperative programs is developed, including a notion of rate of leakage,

albeit not based on Information Theory. Di Pierro et al. [15] propose a notion of indistinguishability for probabilistic constraint

programs and study its relationship with certain security measures, such as the average number of runs necessary for an

attacker to tell two systems apart.

It is worth to notice that the abovementionedworks presuppose terminating computations that produce a set of "results"

with a probability distribution. As such they are not appropriate to a process algebraic setting, where one just cares about

the interactive behaviours of systems (and computations may be non-terminating).

Mutual information is also at the heart of the notion of channel capacity, which is defined as the maximum mutual

information between the source and the output of a (noisy) channel. Indeed, it is perfectly sensible to view a computing

system (programor process) as a channel, where the source is represented by the sensitive information onewishes to conceal

and the output is whatever "observable" is appropriate for the system under consideration (state variables or behaviours).

This analogy is pursued in recent works on anonymity protocols by Chatzikokolakis, Palamidessi and collaborators [8,7].

As expected, a basic result in this setting is that perfect anonymity corresponds to zero capacity. There is, however, an

important difference between their anonymity-based approach and those based on secrecy/non-interference (including

ours). In essence, the protocol models of [8,7] rely on noise to conceal sensitive information in the system, e.g. sender’s

identity: the noisier the channel, the lesser the capacity, themore secure is deemed the system. Noise generation is modeled

by resorting to probabilistic choice. On the other hand, languages considered in secrecy/non-interference frameworks do

not necessarily feature probabilistic operators (ours does not, neither do the languages of e.g. [10,24]). Indeed, in these

languages, it is intended that programmers conceal a sensitive piece of information X essentially via distortion. In coding

theory, distortion is the loss of information that occurs when a source X is coded unfaithfully, i.e. using a number of bits

M. Boreale / Information and Computation 207 (2009) 699–725 721

smaller than required. In ourmodel of absolute leakage, X is "coded up" andmade available to the attacker as the r.v. Z = P(X)

and proper distortion happens ifH(Z) < H(X). For uniformly distributed X , distortion is realized if the function u �→ [P(u)]� is

non-injective,with the ideal case being that this function is a constant. Itwould be interesting to combine the two approaches

(noise-based and distortion-based) into a single framework.

In the realm of process algebras, a paper by Lowe [23] has introduced a notion of quantitative non-interference for timed

csp, defined as the number of different observable "low" behaviours that a "high" user can induce on the process. This

definition is shown to be in agreement with a functional notion of lack of information flow due to Focardi and Gorrieri

[16], which can be regarded as a process-algebraic version of functional non-interference (a probabilistic extension of this

equivalence is in Aldini et al.’s [2]). This result is somehow related to Wittbold’s [35], where various notions of lack of

information flow for nondeterministic systems, like non-deducibility and forward correctability, are assessed on the basis

of information-theoretic arguments. In [23], a notion of rate is also introduced that corresponds to the ratio of leaked

information/elapsed time. Lowe’s model is not easily comparable to ours, due to the different goals and settings (secrecy

vs. process-algebraic non-interference, untimed vs. timed). For example, as noted by Lowe, a notion of rate directly based

on elapsed time is to some extent unsatisfactory: a process that leaks one Gigabyte during the first second of its execution

and then remains silent forever has a leakage rate of 0, and as such should be deemed as secure. A similar drawback, in a

sequential/imperative setting, arises in the mentioned [24], where the leakage rate of a looping construct is obtained as the

ratio of absolute leakage and number of iterations of the loop.

Finally, it is worth to mention some recent work in Information Security that addresses the issue of side-channels attacks

against cryptographic hardware from an information-theoretic perspective very similar in spirit to that presented here: see

e.g. [22,31,32]. As an example, the analysis of the modular exponentiation algorithm found in [22] bears some similarities to

our absolute leakage model (Example 5.5). We leave for future work the task of establishing a precise connection between

our models and these approaches.

Acknowledgments

Comments provided by the icalp 2006 and I&C reviewers have been very helpful to improve on the presentation of the

work.

Appendix A. Summary of notation

Information theory

Pr(A) probability Pr(A | B) conditional probability

X random variable X̃ vector of random variables
H(X) entropy H(X | Y) conditional entropy
I(X;Y) mutual information I(X;Y | Z) conditional mutual information
p̃ probability distribution H(p̃) entropy of distribution
B(p) binary entropy function

Process theory

a, b channel names x, y variables
u, v values σ substitution
φ formula σ |= φ satisfaction
P process P(x̃) open process

s trace P
s�⇒ process performs trace

� behavioural equivalence [P]� behavioural equivalence class

� trace equivalence ∼ strong bisimilarity
C[·] context C[P] process replaces hole
T test |T | cost of test

Information leakage in processes

P(X̃) open process as random variable

P(X̃)||T test on process as random variable

P(X̃)
s�⇒ process trace as random variable

A
(
P ; X̃ | Ỹ

)
absolute leakage from X̃ to P given Ỹ

R
(
P ; X̃

)
leakage rate of P relative to X̃

722 M. Boreale / Information and Computation 207 (2009) 699–725

Appendix B. Definition of leakage rate for name-passing processes

We give a definition of rate in the pi-calculus and then show that it enjoys a trace-based characterization analogous to

that provided by Proposition 7.1 in the case without name-passing. Reformulating and extending the rest of the results of

Section 7 to the pi-calculus is then amatter of routine, and is left to the interested reader. Note that the definition of rate seen

in Section 7.4 does not apply "as is" to the pi-calculus, as each input prefix a(x).P with x : S gives rise to infinitelymany traces,

corresponding to the infinitely many instantiations of the input parameter xwith names in the sort S. However, once a test T

and a process P have been fixed, the "relevant" traces of T are only those that have a chance of giving rise to a synchronization

with P. In particular, the set of possible instantiations of x can be restricted to a (super)set of the free names of P, say N. This

is the intuition behind the notion of N-trace given below.

For ease of presentation, in our treatment below we stick to a monadic pi-calculus, that is, we consider only processes

with action prefixes carrying one object, that take the form a(x).P or ae.P. We shall abbreviate (νb)ab.P as a(b).P when a /= b.

For the sake of symmetry, we shall also admit input prefixes of the form a(b).P, where the formal parameter is a name b : S

for some S.

In what follows, we let s, s′ range over traces of the form μ1 · · ·μn with n ≥ 0 and μi ::= ad
∣∣∣ a(b)

∣∣∣ ad
∣∣∣ a(b)

∣∣∣ ω and

d ::= a|v. These traces are taken up to alpha-equivalence, once a(b) and a(b) are considered as binders for name b. Moreover,

it is assumed that actions in traces respect the given sorting system. The set of names occurring free in input subject position

in s will be denoted by ifn(s). Finally, we write A
a(b)−−−→ A′ if A ab−−→ A′ and b /∈ fn(A): thus A

s�⇒ is well-defined for any trace s

in the syntax described above.

Definition B.1 (N-Traces). Let N be a finite set of names and A be a process or a test. We say s is a N-trace of A if A
s�⇒ and

ifn(s) ⊆ N. We say (N, s)may lead A to success if s is nonempty, ω does not occur in s and s · ω is a N-trace of A.

In what follows, P(x̃) is an open process and X̃ a r.v. A test T is a finite process possibly using the distinct action ω. Clearly,

a test has only a finite number of N-traces.

Definition B.2 (Rate of leakage). For each test T and finite set of names N, the N-cost of T is

|T |N def=
∑

s: (N, s)may lead T to success

|s| .

The leakage rate of P relative to X̃ is

R(P ; X̃) def= sup
N, T : fn(P)⊆N, |T |N>0

H
(
P(X̃)‖T

)
|T |N .

To prove the analog of Proposition 7.1 we need some additional definitions and terminology. Given a trace s not containing

ω, the test ŝN that checks for the presence of a N-trace s in a process with free names ⊆ N is defined by induction on s as

follows:

• ε̂N = ω

• ̂ad · s′N = ad.ŝ′N
• ̂a(b) · s′N = a(b).ŝ′N∪{b}
• ̂ad · s′N = a(x).[x = d]ŝ′N
• ̂a(b) · s′N = a(b).[b /∈ N]ŝ′N∪{b}.

For instance, if s = a(b) · c(d) · db and N = {a, c} then ŝN = a(b).c(d).[d /∈ {a, c, b}].d(y).[y = b]ω. For a trace s, its complement s

is defined by inverting polarities of its actions (i.e. by turning inputs into outputs, and vice-versa, and leaving the object part

unchanged). E.g., for s as defined above we have s = a(b) · c(d) · db. Clearly s = s.

The following lemma summarizes what we need to know about ŝN . The proof is routine and omitted.

Lemma B.1. Let N be a finite set of names.

(a) Let Q be a closed process and s a trace with ifn(s) ∪ fn(Q) ⊆ N. Then s is a N-trace of Q if and only if Q‖ŝN ω�⇒ .

(b) Let T be a test and let S be the set of traces s that s.t. (N, s)may lead T to success. Then

T �
∑
s∈S

ŝN + F

for some F that has no trace s s.t. (N, s)may lead F to success.

M. Boreale / Information and Computation 207 (2009) 699–725 723

(c) For each trace s, we have |ŝN |N = |s| = |s|.

Proposition B.1. It holds that

R(P ; X̃) = sup
|s|>0

H
(
P(X̃)

s�⇒
)

|s| (18)

Proof. By the previous lemma, part (a), for any trace s, P(X̃)
s�⇒ is equivalent to P(X̃)‖ŝN , for some N ⊇ fn(P, s). By this fact

and by the previous lemma part (c) the rhs of (18) is not greater than the lhs. For the opposite inequality, fix any finite N

with N ⊇ fn(P), fix any T with |T |N > 0 and let S be the set traces s s.t. (N, s)may lead T to success. By the previous lemma,

part (b), and by simple �-preserving transformations, we can show that, for any Q with fn(Q) ⊆ N:

Q‖T � Q‖
⎛
⎝∑

s∈S
ŝN + F

⎞
⎠ �

∑
s∈S
(Q‖ŝN)

(note in particular that Q‖F � 0, as no (N, s) may lead F to success). Hence T
P,X̃

= P(X̃)‖T is equivalent to
∑

s∈S(P(X̃)‖ŝN) as
a r.v. Using this fact and the inequality provided by Proposition 5.1 with C[·] = ∑

s∈S([·]) (or relying on the data processing

inequality), we have that

H(T
P,X̃
)/|T |N = H

⎛
⎝ ∑

s∈S
P(X̃)‖ŝN

⎞
⎠ /|T |N ≤

⎛
⎝∑

s∈S
H(P(X̃)‖ŝN)

⎞
⎠ /|T |N .

In the last term, we can replace P(X̃)‖ŝN by P(X̃)
s�⇒ (by the previous lemma, part (a)), hence H(P(X̃)‖ŝN) by B(ps). Moreover,

by the previous lemma, parts (b) and (c), we can replace |T |N by
∑

s∈S |s| =
∑

s∈S |s|. The thesis then follows by applying

inequality (14). �

Appendix C. Details of the example in Section 8

C.1. Analysis of absolute leakage

It is handier to first analyze a case where the attacker knows whether the node j is or is not in the path from the sender

to the receiver. That is, we consider the side-information given by the random variable

Y
def= path(S, j,R)

and we want to first compute

A(Aj ; S,R,M | Y) = H(Z | Y) .

The random variable D
def= (j − S)mod N measures the distance between the sender S and j. If j is in the path from S to R

(Y = true), then the behaviour of Aj is such that at the Dth stage of the protocol, Aj can only fire a unique output outm with

m = M, while at any other stage it can nondeterministically choose to between out0 and out1 (intuitively, the attacker can

tell these two situations apart by repeatedly executing Aj and recording at which stage it always observes the same output).

In other words, Aj ’s behaviour in this case depends solely on D and onM, in the sense that different values for the pair (D,M)

correspond to different behaviours of Aj . Noting that D can take on the values 0, 1, ...,N − 1 with uniform probability, these

considerations yield

H(Z | Y = true) = H(D,M) = H(D)+ H(M) = logN + h.

On the other hand, if j is not in the path from S to R (Y = false), the then branches are never taken and the behaviour of Aj is

independent from S,R andM. Hence

H(Z | Y = false) = 0.

Now, an easy counting argument shows that the probability of Y = true is ≈ 1
2
, more precisely Pr(Y = true) = 1

2
(1+ 1

N), so

that

H(Z | Y) = Pr(Y = true)H(Z | Y = true) = 1

2

(
1+ 1

N

) (
logN + h

)
.

724 M. Boreale / Information and Computation 207 (2009) 699–725

Finally, we can compute the absolute leakage H(Z) using first the chain rule to derive the formula

H(Z) = H(Y)+ H(Z | Y)− H(Y | Z)

and then noting that H(Y | Z) = 0: indeed, Y is determined by Z , as j is in the path from S to R if and only if at some stage of

Z a unique output, rather than two possible, can be observed. To sum up

A(Aj ; S,R,M) = B

(
1

2

(
1+ 1

N

))
+ 1

2

(
1+ 1

N

)
(logN + h) ≈ 1+ 1

2
(logN + h) .

C.2. Analysis of rate of leakage

Let t be any trace with non-zero probability of Z = Aj(S,R,M), that is, assume pt
def= Pr(Z

t�⇒) > 0.

Firing output actions eagerly maximizes entropy The following considerations can be justified by inspection of Aj ’s code. Let

O be the number of output actions in t, then: (a) t must contain at least O− 1 input actions; (b) if t contains more than O

input actions, then there is a shorter trace t′ obtained by erasing some input action such that Z
t�⇒ if and only if Z

t′�⇒; (c) if t

contains either O or O− 1 input and O output actions, there is a permutation t′ of t where input and output actions alternate

with one another such that Z
t�⇒ if and only if Z

t′�⇒. Using repeatedly (a,b,c) above, it follows that, when looking for a trace

t maximizing the ratio B(pt)/|t|, we can restrict ourselves to traces of one of two forms

(1) t = outm0
·inm′

1
· outm1

· · · inm′
k
· outmk

(2) t = inm′
1
· outm1

· · · inm′
k
· outmk

with 0 ≤ k ≤ N − 1 andmi,m
′
i
∈ 0..1. The analysis of traces of the form (2) is similar to the one for traces of the form (1), seen

in Section 8. In particular, the maximum ratio B(pt)/|t| can be computed similarly and is lower than that achievable using

traces of the form (1). The details are left to the interested reader.

Evaluating the probability of
∧k

i=0 ¬holds(i). Using De Morgan’s law, the condition
∧k

i=0 ¬holds(i) can be written as

¬(∨k
i=0 holds(i)). Since the holds(i)’s do not intersect with each other (holds(i) ∧ holds(i′) is false for i /= i′), the probability

of this event can be written as

1−
k∑

i=0

Pr(holds(i)) .

A simple counting arguments shows that Pr(holds(i)) = 1
N (1− i

N) (indeed, the value of S is fixed and there are N − i possible

values for R, out of N2 possible values for the pair (S,R)). Using the formula for the sum of the integers from 1 to k yields

k∑
i=0

Pr(holds(i)) = k + 1

N

(
1− k

2N

)

hence the result.

References

[1] M. Abadi, A. Gordon, A calculus for cryptographic protocols: the Spi-calculus, Information and Computation, 148 (1) (1999) 1–70.
[2] A. Aldini, M. Bravetti, R. Gorrieri, A process-algebraic approach for the analysis of probabilistic non-interference, Journal of Computer Security 12 (2)

(2004) 191–245., IOS Press, March.
[3] E. Bach, et al., What’s a key-guessing attack? What’s entropy? in: Cryptography Frequently Asked Questions, Section 4.9. Avaliable from:

<http://www.faqs.org/faqs/cryptography-faq/part04/>.
[4] M. Boreale, Quantifying information leakage in process calculi, in: ICALP 2006, LNCS, vol. 4052, Springer, 2006.
[5] M. Boreale, R. De Nicola, Testing equivalence for mobile processes, Information and Computation 120 (2) (1995) 279–303.
[6] M. Boreale, R. De Nicola, A symbolic semantics for the pi-calculus, Information and Computation 126 (1) (1996) 34–52.
[7] C. Braun, K. Chatzikokolakis, C. Palamidessi, Compositional methods for information-hiding, in: Proceedings of FOSSACS’08, LNCS, vol. 4962, Springer,

2008.
[8] K. Chatzikokolakis, C. Palamidessi, P. Panangaden, Anonymity protocols as noisy channels, in: Proceedings of the 2nd Symposium on Trustworthy

Global Computing (TGC 06), Springer, LNCS, 2006, Full version in Information and Computation, 206 (2008), 378–401.
[9] K. Chatzikokolakis, C. Palamidessi, P. Panangaden, Probability of error in information-hiding protocols, in: Proceedings of the 20th IEEE CSF, IEEE

Computer Society, 2007.
[10] D. Clark, S. Hunt, P. Malacaria, Quantitative analysis of the leakage of confidential data, Electronic Notes in Theoretical Computer Science 59 (3) (2001).
[11] D. Clark, S. Hunt, P.Malacaria, Quantitative informationflow, relations andpolymorphic types, Journal of Logic andComputation 15 (2) (2005) 181–199.

http://www.faqs.org/faqs/cryptography-faq/part04/

M. Boreale / Information and Computation 207 (2009) 699–725 725

[12] D. Clark, S. Hunt, P. Malacaria, A static analysis for quantifying information flow in a simple imperative language, Journal of Computer Security 15 (3)
(2007) 321–371.

[13] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley, New York, 1991.
[14] R. De Nicola, M.C.B. Hennessy, Testing equivalences for processes, Theoretical Computer Science 34 (1984) 83–133.
[15] A. Di Pierro, C. Hankin, H. Wiklicky, Approximate non-interference, in: Computer Security Foundations Workshop, 2002, Full version in Journal of

Computer Security 12 (1) (2004) 37–82.
[16] R. Focardi, R. Gorrieri, A classification of security properties, Journal of Computer Security 3 (1) (1995) 5–34.
[17] J.A. Goguen, J. Meseguer, Security policies and security models, IEEE Symposium on Security and Privacy (1982).
[18] J.W. Gray III, Towards a mathematical foundation for information flow security, in: Proceedings of 1991 IEEE Symposium on Research in Computer

Security and Privacy, 1991.
[19] M.C.B. Hennessy, H. Lin, Symbolic bisimulations, Theoretical Computer Science 138 (2) (1995) 353–389.
[20] P. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems, in: CRYPTO 1996, 1996, pp. 104–113.
[21] P. Kocher, J. Jaffe, B. Jun, Differential power analysis, in: CRYPTO 1999, 1999, pp. 388–397.
[22] B. Köpf, D.A. Basin, An information-theoretic model for adaptive side-channel attacks, ACM Conference on Computer and Communications Security

(2007) 286–296.
[23] G. Lowe, Defining information flow quantity, Journal of Computer Security 12 (3–4) (2004) 619–653.
[24] P. Malacaria, Assessing security threats of looping constructs, in: POPL 2007.
[25] J.L. Massey. Guessing and entropy, in: Proceedings of IEEE International Symposium on Information Theory, 1994, p. 204.
[26] J. Millen, Covert channel capacity, in: Proceedings of 1987 IEEE Symposium on Research in Computer Security and Privacy, 1987.
[27] J.O. Pliam, On the incomparability of entropy and marginal guesswork in Brute-force attacks, in: Proceedings of Progress in Cryptology – INDOCRYPT

2000, First International Conference in Cryptology in India, Calcutta, India, December 2000, LNCS, vol. 1977, Springer-Verlag.
[28] M. Reiter, A. Rubin, Crowds: anonymity for web transactions, ACM Transactions on Information and System Security 1 (1) (1998).
[29] D. Sangiorgi, D. Walker, The Pi-Calculus: A Theory of Mobile Processes, Cambridge University Press, 2001.
[30] C.E. Shannon, Communication theory of secrecy systems, Bell System Technical Journal 27 (1948) 379–423., 623–656.
[31] F.-X. Standaert, E. Peeters, C. Archambeau, J.-J. Quisquater, Towards security limits in side-channel attacks, in: Proceedings of CHES 2006, Lecture Notes

in Computer Science, vol. 4249, Yokohama, Japan, October 2006, Springer-Verlag, pp. 30–45.
[32] F.-X. Standaert, T.G. Malkin, M. Yung, A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks, Cryptology ePrint Archive, Report

2006/139, February 2008.
[33] F. Topsøe, Basic concepts, identities and inequalities – the Toolkit of information theory, Entropy 3 (2001) 162–190. Available from:

<http://www.math.ku.dk/∼topsoe/toolkitfinal.pdf/>.
[34] D. Volpano, G. Smith, Verifying secrets and relative secrecy, in: POPL 2000, 2000, pp. 268–276.
[35] J.T. Wittbold, D. Johnson, Information flow in nondeterministic systems, in: Proceedings of 1990 IEEE Symposium on Research in Computer Security

and Privacy, 1990.

http://www.math.ku.dk/{sim }topsoe/toolkitfinal.pdf

	Introduction
	Preliminary notions
	A process calculus
	Syntax
	Semantics

	Processes as random variables
	Absolute leakage
	Definitions and basic properties
	Behavioural equivalences and attacker's observational power

	Absolute leakage in relation to other security measures
	Error probability
	Guesswork

	Rate of leakage
	Definitions and basic properties
	Compositionality
	Rate of leakage and other security measures

	An extended example
	Description of the system
	Absolute leakage
	Rate of leakage

	Conclusion and related work
	References

