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Abstract

This paper discusses the different electromagnetic boundary conditions on the crack-faces in magnetoelectroelastic
materials, which possess coupled piezoelectric, piezomagnetic and magnetoelectric effects. A notch of finite thickness in
these materials containing air (or vacuum) is also addressed. Four ideal crack-face electromagnetic boundary condition
assumptions, that is, (a) electrically and magnetically impermeable crack, (b) electrically impermeable and magnetically
permeable crack, (c) electrically permeable and magnetically impermeable crack and (d) electrically and magnetically per-
meable crack, are investigated separately. The influence of notch thickness on the field intensity factors at notch tips and
the electromagnetic field inside the notch are obtained in closed-form. The results are compared with the ideal crack solu-
tions. Applicability of crack-face electromagnetic boundary condition assumptions is discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Materials possessing electro-magneto-mechanical coupling effects have found increasing applications in
engineering structures, particularly in smart materials/intelligent structures. The effects of electro-magneto-
mechanical coupling have been observed in single-phase materials where simultaneous electric and magnetic
ordering co-exists, and in two-phase composites where the participating phases are piezo- electric and piezo-
magnetic (Alshits et al., 1992; Avellaneda and Harshe, 1994; Barnet and Lothe, 1975; Benveniste, 1995;
Harshe et al., 1993; Huang and Kuo, 1997; Kirchner and Alshits, 1996; Li and Dunn, 1998; Nan, 1994). In
recent years, an area of increasing interest is the fracture mechanics of magnetoelectroelastic materials, which
are combinations of the ferromagnetic and ferroelectric phases. One of the basic and important issues on the
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doi:10.1016/j.ijsolstr.2006.04.028

* Corresponding author.
E-mail addresses: baolin.wang@aeromech.usyd.edu.au, wangbl2001@hotmail.com (B.-L. Wang), mai@aeromech.usyd.edu.au (Y.-W.

Mai).

https://core.ac.uk/display/82710409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:baolin.wang@aeromech.usyd.edu.au
mailto:wangbl2001@hotmail.com
mailto:mai@aeromech.usyd.edu.au


388 B.-L. Wang, Y.-W. Mai / International Journal of Solids and Structures 44 (2007) 387–398
fracture mechanics of magnetoelectroelastic materials is the crack-face electromagnetic boundary condition.
For piezoelectric materials, there are two kinds of ideal electrical boundary condition assumptions for the
crack-faces, that is, electrically impermeable crack and permeable crack. Such assumptions will be applied
to the magnetoelectroelastic materials to include the magnetically impermeable crack and magnetically perme-
able crack. Unlike in piezoelectricity, very little work has been done on the fracture characteristics of ferro-
electromagnetic materials where the cracks were treated as either (a) electrically and magnetically
impermeable, or (b) electrically and magnetically permeable (Liu et al., 2001; Gao et al., 2003; Wang and
Mai, 2003; Wang and Mai, 2004; Tian and Gabbert, 2005; Hu and Li, 2005; Li, 2005; Gao and Noda,
2004). Recently, an elliptical cavity in a magnetoelectroelastic solid under an in-plane electro-magnetic and/
or anti-plane mechanical loading was investigated (Gao et al., 2004). By reducing the cavity to a crack, the
extreme cases for an impermeable crack and a permeable crack were obtained.

The main objective of this paper is to discuss the applicability of the crack-face electromagnetic boundary
condition assumptions. These assumptions are: (i) electrically impermeable and magnetically permeable, (ii)
electrically permeable and magnetically impermeable, (iii) fully impermeable, or (iv) fully permeable. To dis-
cuss the applicability of the crack-face electromagnetic boundary conditions, a notch of finite thickness is also
studied. Only in-plane electromagnetic and mechanical loading conditions are considered. Throughout this
paper, a notch is defined as a flaw in a solid with a finite gap thickness and a crack is defined as a notch with
negligible gap thickness.

2. Foundation of two-dimensional magnetoelectroelasticity

In a fixed rectangular coordinate system, (x1,x2), the field equations for a linear magnetoelectroelastic med-
ium whose poling direction is along the positive x2-axis can be written in the following form (Huang and Kuo,
1997):
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Divergence and gradient equations:
eij ¼
1

2
ðui;j þ uj;iÞ; Ei ¼ �/;i; H i ¼ �u;i: ð2Þ
Equilibrium equations:
rij;i ¼ 0; Di;i ¼ 0; Bi;i ¼ 0: ð3Þ
In Eqs. (1)–(3), (i, j) = (1,2), and a comma denotes partial differentiation and repeated indices summation; ui is
component of elastic displacement vector u; / and u are electric and magnetic potentials, respectively; rij, eij,
Di, Ei, Bi and Hi are components of stress, strain, electrical displacement, electric field, magnetic induction and
magnetic field, respectively; cijkl, eiks, hiks and bis are elastic, piezoelectric, piezomagnetic and electromagnetic
constants; �ij and cij are dielectric permitivities and magnetic permeabilities.
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3. A crack in magnetoelectroelastic media

Fig. 1 shows a crack of length 2a lies along the x1-axis. The magnetoelectroelastic medium is loaded by a
remote uniform stress r22 = r0, a uniform electric displacement D2 = D0, and a uniform magnetic induction
B2 = B0. Since the medium inside the crack (usually air or vacuum) allows some penetration of the electromag-
netic field, the normal components of the electric displacement and the magnetic induction on the crack-faces
may not be zero and they are denoted as d0 and b0, respectively.

If we consider an asymptotic problem, then the equivalent crack-face magnetoelectroelastic loads are
�t0(x1) = �(r0,D0 � d0,B0 � b0)T. Thus, on the y = 0 plane, we have the mixed-mode boundary conditions:
r22ðx; 0Þ ¼ �r0; D2ðx; 0Þ ¼ �D0 þ d0; B2ðx; 0Þ ¼ �B0 þ b0; for jxj < a; ð4Þ
u2ðx; 0Þ ¼ 0; /ðx; 0Þ ¼ 0; uðx; 0Þ ¼ 0; for jxjP a; ð5Þ
r12ðx; 0Þ ¼ 0; for jxjP 0: ð6Þ
Using the following notation:
v ¼ ðu2;/;uÞT; ð7Þ

then the solution for the crack problem can be obtained as follows (Wang and Mai, 2003):

(a) The jumps of normal displacement, electric potential and magnetic potential across the crack-faces are
obtained from:
Dv ¼ ðDu2;D/;DuÞT ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

1

q
½K�t0; ð8Þ
where [K] is a 3 · 3 matrix.
(b) The field intensity factors are:
K ¼ fKI;KD;KBgT ¼ t0

ffiffiffiffiffiffi
pa
p

¼ ðr0;D0 � d0;B0 � b0ÞT
ffiffiffiffiffiffi
pa
p

; ð9Þ

where KI is traditional stress intensity factor, KD and KB are, respectively, electric displacement intensity
factor and magnetic induction intensity factor. The full field solution near the crack-tip has been given in
terms of the field intensity factors by Wang and Mai (2003).

(c) The energy release rate G at the crack-tip is obtained from the following integral:
G ¼ 1

2
lim
d!0
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r22ðr þ a; 0ÞDu2ðr þ a� dÞ þ D2ðr þ a; 0ÞD/ðr þ a� dÞ þ B2ðr þ a; 0ÞDuðr þ a� dÞð Þdr

ð10Þ

and the result becomes:
G ¼ ðKI;KD;KBÞ½K�ðKI;KD;KBÞT: ð11Þ

Since the load vector t0 contains unknown parameters d0 and b0, additional assumptions are needed to

obtain the solution to the problem (See Sections 4 and 5 for details). Eq. (9) clearly shows that the stress inten-
sity factor depends only on the applied mechanical loads. However, the electric displacement and magnetic
induction intensity factors are dependent on the material constants since the unknown crack-face electric dis-
placement and magnetic induction depend on the material properties. (Details are given in Sections 4 and 5).
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Fig. 1. A straight crack in magnetoelectroelastic media.
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4. Solutions based on ideal crack-face boundary conditions

For piezoelectric materials, there are two kinds of ideal electric boundary condition assumptions for the
crack-faces, that is, electrically impermeable crack and electrically permeable crack (Zhang et al., 2002,
2001). Such assumptions can be applied to magnetoelectroelastic media to include: (a) electrically imperme-
able crack so that the normal electric displacement on the crack-faces is zero; (b) electrically permeable crack,
that is, the electric potential jump across the crack is assumed zero; (c) magnetically impermeable crack such
that the normal magnetic induction on the crack-faces is zero; and (d) magnetically permeable crack so that
the magnetic potential jump across the crack is zero.

In most practical applications, however, the crack-face boundary conditions can be treated as: (i) electri-
cally impermeable and magnetically permeable, (ii) electrically permeable and magnetically impermeable,
(iii) fully impermeable, or (iv) fully permeable. In each of these cases (i)–(iv), we can obtain the full field solu-
tions of the problem. We discuss these separately below.

4.1. Electrically and magnetically impermeable crack

In this case, the normal electric displacement and magnetic induction on the crack-faces are zero. Thus,
d0 ¼ 0; b0 ¼ 0: ð12Þ
4.2. Electrically and magnetically permeable crack

Here, the electric and magnetic potential jumps across the crack-faces are zero:
D/ ¼ 0; Du ¼ 0: ð13Þ

So, from Eq. (8),
K21r0 þ K22ðD0 � d0Þ þ K23ðB0 � b0Þ ¼ 0; ð14aÞ
K31r0 þ K32ðD0 � d0Þ þ K33ðB0 � b0Þ ¼ 0: ð14bÞ
Eqs. (14) can be used to solve for d0 and b0. From Eqs. (9) and (11), it is apparent that the near tip solutions
depend on r0, D0 � d0 and B0 � b0. From Eqs. (14), we know that D0 � d0 and B0 � b0 are determined by the
applied stress r0. Therefore, solutions for the fully permeable crack are independent of applied electric dis-
placement and magnetic induction.

4.3. Electrically impermeable and magnetically permeable crack

In this case, the normal electric displacement on the crack-faces and the magnetic potential jump across the
crack are zero. Therefore, we have
d0 ¼ 0; K31r0 þ K32D0 þ K33ðB0 � b0Þ ¼ 0: ð15Þ

Eq. (15) can be used to solve for b0. It can be seen that B0 � b0 is determined by the applied stress r0 and elec-
tric displacement D0. Hence, the solutions for the electrically impermeable and magnetically permeable crack
are independent of applied magnetic induction.

4.4. Electrically permeable and magnetically impermeable crack

Now, the normal magnetic induction on the crack-faces and the electric potential jump across the crack –
faces are both zero such that:
K21r0 þ K22ðD0 � d0Þ þ K23B0 ¼ 0; b0 ¼ 0: ð16Þ

Eq. (16) can be used to solve for d0. Clearly, D0 � d0 is determined by applied stress r0 and magnetic induction
B0. Therefore, solutions for the electrically permeable and magnetically impermeable crack are independent of
the remote applied electric displacement.
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In each case of (i)–(iv), the normal components of electric displacement and magnetic induction on the
crack-faces can be solved. Once they are determined, the vector t0 is known and the field intensity factors
and the energy release rate can be obtained from Section 3. The near crack-tip expressions for the magneto-
electroelastic fields have already been provided by Wang and Mai (2003).

5. The accuracy of the ideal crack surface boundary conditions

In Section 4, we consider a flaw in the magnetoelectroelastic media as a cleavage crack of zero gap thick-
ness. Both impermeable and permeable crack-face electric and magnetic boundary conditions are studied. Of
these extreme cases, the permeable crack assumption simply treats the crack as electrically and magnetically
conductive, while the impermeable assumption considers the crack as electrically and magnetically insulated.
In engineering practices, however, flaws in a medium are not like cleavage cracks of zero gap width, but rather
like notches with a finite (but very small) width (see Fig. 2). Strictly, even if the electric and magnetic permit-
tivities of air or vacuum inside the crack are small, the fluxes of an electric and magnetic fields through the
crack should not be zero. Hence, it is more reasonable to consider the electric and magnetic fields inside
the notch and the electric and magnetic potential jumps across the notch simultaneously.

Suppose the notch profile d(x) is sufficiently small, except near the notch tips, the gradient of notch opening
along the notch is small. Along the x2-axis the normal components of the electric field E0 and the electric dis-
placement d0 inside the notch can be written in terms of the electric and magnetic potential jumps D/ as
(McMeeking, 1999):
E0ðxÞ ¼ �
D/ðxÞ
2dðxÞ ; d0ðxÞ ¼ ��0

D/ðxÞ
2dðxÞ : ð17Þ
Analogously, the normal components of the magnetic field H0 and the magnetic induction b0 inside the notch
are:
H 0ðxÞ ¼ �
DuðxÞ
2dðxÞ ; b0ðxÞ ¼ �c0

DuðxÞ
2dðxÞ : ð18Þ
In Eqs. (17) and (18), �0 and c0 are dielectric constant and magnetic permeability of the medium inside the
notch, which is usually air or vacuum.

In the following, we consider an elliptic profile of the notch, that is,
dðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

1

q d0

a

� �
; ð19Þ
where d0 is notch half-thickness at x1 = 0 (see Fig. 2). Since the notch profile d(x) is sufficiently small, the crack
solution in Section 3 can still be approximately applied to the notch problem. Therefore, Eq. (8) can be substi-
tuted into Eqs. (17) and (18) through Eq. (19). This leads to:
d0 ¼ �2
a
d0

�0½K21r0 þ K22ðD0 � d0Þ þ K23ðB0 � b0Þ�; ð20aÞ

b0 ¼ �2
a
d0

c0½K31r0 þ K32ðD0 � d0Þ þ K33ðB0 � b0Þ�: ð20bÞ
x2, y

2δ0 
-a a 

x1, x 

Fig. 2. A notch of finite thickness.
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Due to the existence of the coupling coefficients K23 and K32 (K23 = K32) between the electric and magnetic
fields, the analytical and closed-form expressions for the electric displacement d0 and magnetic induction b0

inside the notch are not available. However, d0 and b0 can be easily solved from the linear algebraic Eqs.
(20). Once d0 and b0 are known, the near-tip field intensity factors and the energy release rate can be obtained
from the solution given in Section 3. It can be seen from Eqs. (20), if both �0 and c0 are zero (or the notch gap
d0 is infinite), the fully impermeable crack solutions are recovered. Conversely, if �0 and c0 are infinite (or the
notch gap d0 is zero), the results are reduced to the fully permeable crack solution.

6. Applications

Numerical results are given in this Section for a crack and a notch in a BaTiO3–CoFe2O4 composite, which
is a magnetoelectroelastic material, subjected independently to a uniform tension, a uniform electric displace-
ment, and a uniform magnetic induction, remote from the crack/notch. Since the system is linear, the solutions
for any combination of electro-magneto-mechanical loads can be determined directly from these independent
solutions.

6.1. Material properties

The non-zero material constants for BaTiO3 and CoFe2O4 are given in Table 1 (Huang, 1998). The medium
inside the notch is air (or vacuum) whose electric permeability and magnetic permeability are, respectively,
�0 = 0.0885 · 10�10 N/V2 and c0 = 4p · 10�7 N/A2.

It should be noted that the value of c11 for CoFe2O4 used in a number of papers is negative (e.g., Huang and
Kuo, 1997; Hu and Li, 2005; Aboudi, 2001; Lage et al., 2004; Chen et al., 2002). Sih et al. also used a negative
value of c11(= �59 · 10�5 Ns2/C2) for CoFe2O4. (See Sih and Song (2003), Spyropoulos et al. (2003) and ref-
erences cited therein). However, they reversed the sign of c11 for CoFe2O4 to positive when they determined
the overall properties of the BaTiO3–CoFe2O4 composites using the rule of mixtures.

For stable materials, the magnetic permeabilities cij, like elastic constants and dielectric permeabilities,
should be positive definite, that is, cijHiHj > 0 for any non-zero real vector H. This means that the material
constants c11, c22 and c33 should be greater than zero and negative material constants are not physically
Table 1
Non-zero properties for BaTiO3 and CoFe2O4 single-phase materials and BaTiO3–CoFe2O4 composite

BaTiO3 CoFe2O4 BaTiO3–CoFe2O4 composite (b)

c11 (1010N/m2) 16.6 28.6 22.6
c13 (1010N/m2) 7.8 17.05 12.4
c33 (1010N/m2) 16.2 26.95 21.6
c44 (1010N/m2) 4.3 4.53 4.4
c12 (1010N/m2) 7.7 17.3 12.5
e31 (C/m2) �4.4 �2.2
e33 (C/m2) 18.6 9.3
e15 (C/m2) 11.6 5.8
�11 [10�10 C2/(Nm2)] 112 0.8 56.4
�33 [10�10 C2/(Nm2)] 126 0.93 63.5
c11 (10�10 Ns2/C2) 50,000 (a) 810,000
c33(10�10 Ns2/C2) 100,000 1,570,000 835,000
h31 [N/(Am)] 580.3 290.2
h33 [N/(Am)] 699.7 350
h15 [N/(Am)] 550 275

Material properties for BaTiO3 and CoFe2O4 are taken from Huang (1998).
a Since a negative value of c11 is not admissible (see comments in Section 6.1) and a reasonable positive value of c11 for CoFe2O4 is

unavailable in the literature, in this work, the value c11 = c33 = 125c0 for CoFe2O4 is assumed.
b The properties of BaTiO3–CoFe2O4 composite are obtained by averaging the properties of single-phase BaTiO3 and CoFe2O4

materials. (This implies that the BaTiO3 to CoFe2O4 ratio in the composite is roughly 50:50).
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admissible. To our understanding, if c11 is negative, the system becomes mathematically ill-posed. Only Gao
et al. (2004) uses a positive value for c11 which is 59 · 10�5 Ns2/C2.

In Sections 6.2–6.4, we assume the poling direction of the magnetoelectroelastic composite to coincide with
the positive y-axis and the applied far-field in-plane magnetoelectromechanical loads are: ryy = r0, Dy = D0

and By = B0. Using the properties of BaTiO3–CoFe2O4 composite in the last column of Table 1, the material
property matrix [K] is obtained as:
½K� ¼
6:363� 10�12 0:005536 1:428� 10�5

0:005536 �7:417� 107 2:087� 104

1:428� 10�5 2:087� 104 �6:011� 103

2
64

3
75: ð21Þ
6.2. Solutions for ideal crack-face with different electromagnetic boundary condition assumptions

As discussed above, the stress intensity factor KI relies only on the applied mechanical load. The notch
thickness and the crack-face electromagnetic boundary condition assumption have no effect on KI. For the
material property matrix [K] given in Eq. (21), the electric displacement and magnetic induction intensity fac-
tors for ideal crack-face boundary conditions are obtained below:

(i) Fully impermeable crack assumption:
d0 ¼ 0; b0 ¼ 0; ð22aÞ
KD ¼ D0

ffiffiffiffiffiffi
pa
p

; KB ¼ B0

ffiffiffiffiffiffi
pa
p

: ð22bÞ
(ii) Fully permeable crack assumption: Using Eqs. (14) and the material property matrix Eq. (21), the elec-
tromagnetic field and the field intensity factors become:
d0 ¼ D0 � 0:7538� 10�10r0; b0 ¼ B0 � 26:38� 10�10r0; ð23aÞ
KD ¼ 0:7538� 10�10r0

ffiffiffiffiffiffi
pa
p

; KB ¼ 26:38� 10�10r0

ffiffiffiffiffiffi
pa
p

: ð23bÞ
(iii) Electrically impermeable and magnetically permeable crack assumption:
d0 ¼ 0; b0 ¼ B0 � 23:76� 10�10r0 � 3:472D0; ð24aÞ
KD ¼ D0

ffiffiffiffiffiffi
pa
p

; KB ¼ ð23:76� 10�10r0 þ 3:472D0Þ
ffiffiffiffiffiffi
pa
p

: ð24bÞ
(iv) Electrically permeable and magnetically impermeable crack assumption:
d0 ¼ D0 � 0:7464� 10�10r0 � 2:813� 10�4B0; b0 ¼ 0; ð25aÞ
KD ¼ ð0:7464� 10�10r0 þ 2:813� 10�4B0Þ

ffiffiffiffiffiffi
pa
p

; KB ¼ B0

ffiffiffiffiffiffi
pa
p

: ð25bÞ
6.3. Notch solution

Now consider the problem in which the notch has a finite thickness rather than a slit crack. The electric and
magnetic fields inside the notch are calculated from Eqs. (20) for specific values of the notch length to width
ratio a/d0. The expressions can be written in closed-form, but unlike Eqs. (22)–(25) they are functions of the
notch thickness to length ratio. Hence, the results are presented only in graphical forms and reported indepen-
dently below for the application of an applied stress, an electric displacement and a magnetic induction.

6.3.1. Applied stress r0

The dependence of the electric displacement and the magnetic induction inside the notch, together with the
electric displacement intensity factor and the magnetic induction intensity factor at the notch tip, on the notch
thickness to length ratio is plotted in Fig. 3, for an applied stress r0. The gap thickness is shown to have a
major influence on the electromagnetic fields inside the notch and the electromagnetic field intensities at the
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are, respectively, electric displacement intensity factor and magnetic induction intensity factor for the full
permeable crack assumption (Eq. (23b). The negative values of d0 and b0 imply that a tensile stress will produce a negative electric
displacement and a negative magnetic induction inside the notch.
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notch tip. The results decrease from the originally permeable crack solutions with d0/a to the impermeable
crack solutions. The idealization of the fully permeable assumption is only reasonable for very small notch
aspect ratios. If d0/a is zero such that the upper and lower surfaces of the notch are in contact, the results
reduce to the fully permeable crack solutions. The electric displacement inside the notch for fully impermeable
assumption is retained (with relative error less than 2.5%) for a notch aspect ratio of 0.05 or greater. It seems
that the notch can be treated as an electrically impermeable crack. However, the magnetic induction inside the
notch for the fully impermeable assumption is still not retained for a notch aspect ratio of 0.1 or greater (with
relative error greater than 10%). Neither the impermeable crack assumption nor the permeable crack assump-
tion can give a reasonable solution for the magnetic induction inside the notch b0. Therefore, knowledge of
notch width to length ratio is essential for obtaining the correct b0 and KB.

6.3.2. Applied electric displacement D0

Fig. 4 shows the normal components of the electric displacement and magnetic induction vectors inside the
notch, and the electric displacement intensity factor and the magnetic induction intensity factor at the notch
tip for an electric displacement D0. It can be seen that the normal electric displacement inside the notch d0

decreases monotonously from the permeable crack solution with d0/a to the impermeable crack solution. Var-
iation of b0 and KB with d0/a are more complicated than those of d0 and KD with d0/a. It can be seen from
Fig. 4 that, as d0/a increases, b0 increases from the originally fully permeable crack solution, to a peak value,
and then decreases to the fully impermeable crack solution. From Eqs. (22a) and (23a) we know that the mag-
netic induction b0 inside the notch is zero either for the fully impermeable crack assumption or for the fully
permeable crack assumption. (Note that the only applied load is D0, and B0 and r0 are zero). Hence, neither
the fully electrically impermeable assumption nor the fully permeable crack assumption can give a reasonable
prediction for the magnetic induction inside the notch.

6.3.3. Applied magnetic induction B0

Fig. 5 shows the variation of the electric displacement and the magnetic induction inside the notch, and the
electric displacement intensity factor and the magnetic induction intensity factor at the notch tip, with different
notch thickness to length ratios for an applied magnetic induction B0. Here, the normal magnetic induction
inside the notch b0 decreases monotonously from the originally permeable crack solution with d0/a to the
impermeable crack solution. Unless the crack is extremely flat (that is, for d0/a smaller than 0.005), the ide-
alization of a magnetically permeable assumption is not reasonable. In contrast, the magnetically impermeable
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factors at the notch tips for an applied magnetic induction B0 (d0 ¼ �2:813� 10�4B0) is electric displacement inside the notch for the
electrically permeable and magnetically impermeable crack assumption (Eq. (25a); b0 ¼ B0 is magnetic induction inside the notch for the
magnetically permeable crack assumption; KD0 ¼ 2:813� 10�4B0
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are, respectively, electric displacement intensity
factor and magnetic induction intensity factor for the electrically permeable and magnetically impermeable crack assumption (Eq. (25b).
The negative value of d0 implies that a positive magnetic induction will produce a negative electric displacement inside the notch.
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Fig. 4. Electric displacement and magnetic induction on the notch surfaces, and electric displacement and magnetic induction intensity
factors at the notch tips for an applied electric displacement D0 ðd0 ¼ D0Þ is electric displacement inside the notch for the electrically
permeable crack assumption; b0 ¼ �3:472D0 is magnetic induction inside the notch for the electrically impermeable and magnetically
permeable crack assumption (Eq. (24a); KD0 ¼ D0
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is electric displacement intensity factor and KB0 ¼ 3:472D0
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is magnetic
induction intensity factor for the electrically impermeable and magnetically permeable crack assumption (Eq. (24b). The negative value of
b0 implies that a positive electric displacement will produce a negative magnetic induction inside the notch.
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assumption is still not retained for a notch aspect ratio of 0.1 or greater (with relative error greater than 10%).
These results again confirm that neither magnetically impermeable crack assumption nor magnetically perme-
able crack assumption can provide a correct prediction for the magnetic field inside the crack.

Variation of d0 and KD with d0/a are more complicated than those of b0 and KB with d0/a. From Eqs. (22a)
and (23a), we know that the electric displacement d0 inside the notch is zero either for the fully impermeable
crack or the fully permeable crack. (Here, the only applied load is B0, both D0 and r0 are zero). For finite vales
of d0/a, because of the magnetoelectric coupling, the electric displacement inside the notch does not vanish. It
can be shown from Fig. 5 that as d0/a increases, d0 increases from the originally fully permeable crack solution,
to a peak value, and then decreases to the fully impermeable crack solution. It seems that the electric displace-
ment inside the notch is not significant for an applied magnetic induction.
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6.4. Energy release rate

Energy release rate G is an important fracture mechanics parameter. Here, we show the variation of G with
notch thickness to length ratio d0/a. Once again, the applied electro-magneto-mechanical loads (r0,D0,B0) are
considered independently. First, G is obtained in closed-form for the fully impermeable crack assumption and
the fully permeable crack assumption from Eqs. (11), (22b) and (23b), with the material property matrix [K] in
Eq. (21):

(i) Fully impermeable crack assumption:
Fig. 6
(Gr0 ¼
displac
that a
G ¼ pað6:363� 10�12r2
0 � 7:417� 107D2

0 � 6:011� 103B2
0 þ 0:01107r0D0 þ 2:856� 10�5r0B0

þ 4:173� 104D0B0Þ: ð26aÞ
(ii) Fully permeable crack assumption:
G ¼ pað6:820� 10�12r2
0Þ: ð26bÞ
Three observations can be made from Eqs. (26). The first is that for the fully impermeable crack the energy
release rate G is always negative for a pure applied electric displacement or magnetic induction. The second is
that, for the fully permeable crack, G is always positive, which does not depend on the electric load D0 and the
magnetic load B0. The third is that, even in the case of pure mechanical load, the energy release rates for the
fully impermeable crack and the fully permeable crack are different. (G for the fully permeable crack is about
7% higher than that for the impermeable crack).

Similar to the field intensity factors, the energy release rate for the notch is a function of the notch thickness
to length ratio. Again, the results have to be presented in graphical forms. In Fig. 6, the values of the energy
release rate G for independent stress, electric displacement and magnetic induction applied on the medium are
plotted as functions of notch thickness to length ratio d0/a. Results are normalized by the fully impermeable
crack solutions. G is always negative for pure applied electric displacement or pure magnetic induction. The
effect of d0/a, for the pure applied stress case, is less important than for those cases for pure applied electric
displacement and magnetic induction. For the electromagnetic loads, the effect of d0/a, for applied magnetic
induction, is much more pronounced than for applied electric displacement. It is interesting to note that for a
notch thickness to length ratio d0/a=0.05, the energy release rate for a pure electric displacement load (D0) is
G ¼ �7:040� 107paD2

0, which is almost 95% of the impermeable crack solution (which is GD0 ¼ �7:417�
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. Energy release rate for independent stress, electric displacement and magnetic induction applied on the medium
6:363� 10�12par2

0, GD0 ¼ �7:417� 107paD2
0, and GB0 ¼ �6:011� 103paB2

0) are the values of G for pure stress r0, pure electric
ement D0, and pure magnetic induction B0, for the fully impermeable crack (Eq. (26a). The negative values of GD0 and GB0 imply
positive value electric displacement or magnetic induction will produce a negative energy release rate.
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107paD2
0Þ. However, for the same notch thickness to length ratio (d0/a=0.05), G for a pure magnetic induction

load (B0) is: G ¼ �3:545� 103paB2
0, a value just 59% of the impermeable crack solution (i.e. solution for

d0/a =1), which is: GB0 ¼ �6:011� 103paB2
0. Even for a larger notch thickness to length ratio, say d0/

a=0.1, G for a pure electric displacement load (D0) is only 3% less than the impermeable crack solution,
but G for a pure magnetic induction load (B0) is still 25% less than the impermeable crack solution. These
results indicate that, if there is an applied magnetic induction on the medium, the solution based on the imper-
meable crack assumption is inaccurate; and that when there is an applied electric displacement, the imperme-
able crack solution is quite reliable. It follows that the effect of magnetic permeability of air (or vacuum) inside
the notch is more significant than the electric permeability. An explanation can be found from the material
data in Table 1, which shows that the electric permeability of the magnetoelectroelastic composite medium
is almost three orders larger than the electric permeability of air (vacuum). In contrast, the composite medium
magnetic permeability is only two orders the magnetic permeability of air (or vacuum). Therefore, neglecting
the magnetic permeability of the medium inside the notch will have more significant consequence on G than
neglecting the electric permeability.

7. Concluding remarks

The following conclusions can be made based on the results obtained in the previous sections:

(a) The stress intensity factor does not depend on the crack-face electric and magnetic boundary condition
assumptions.

(b) The electric and magnetic permeabilities of air or vacuum inside the crack cannot be ignored. The effect
of finite thickness of a notch or width of a crack in a realistic structure must be assessed. That is, knowl-
edge of the notch thickness to length ratio is essential to obtaining the correct magnetic induction inside
the notch b0 and magnetic induction intensity factor at the notch tip KB. Neither the magnetically imper-
meable crack assumption nor magnetically permeable crack assumption can give reasonable predictions
for b0 and KB.

(c) Notch/crack tip energy release rate G is dependent on the electromagnetic boundary conditions on the
notch/crack-faces. The notch thickness to length ratio has a strong influence on G. The ideal crack elec-
tromagnetic boundary conditions cannot give reasonable solutions for real notches in real electro-mag-
netic materials, unless the notch thickness to length ratio is considered.

In closing, it must be emphasized that basic discrepancy exists in the field singularity for a crack and a
notch. For an elliptic hole, unlike a crack, the field has no singularity. Therefore, it should be noted that:

(1) the field intensity factors presented in Section 5 are only valid for very flat notches (that is, the notch
thickness to length ratio d/a is very small), and

(2) the electromagnetomechanical fields obtained from Section 5 are valid at positions not very near the
notch-tip.

Further, there is a substantial experimental and theoretical literature for piezoelectric materials about the
applicability of permeable or impermeable boundary conditions. Also, experimental results are available
about the permittivity inside a crack of a piezoelectric material. However, we cannot find any such data in
the open literature for magnetoelctromechanical fracture. But comparisons with experimental results are crit-
ical to assess the most appropriate boundary conditions. Work is underway in our laboratory and test results
will be published in future.

The final point that needs to be addressed is that, in this paper, the values of a magnetoelectroelastic
composite material are taken as if it would be a perfect continuum. Typically, this material has grain sizes
of more than 1 lm which must be compared with the crack opening displacements (COD). At the crack tip
COD’s are typically below 100 nm and the material is locally inhomogeneous. This means that only far behind
the crack-tip might it be treated as a continuum. Near the crack-tip the material property values are best
approximates.
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