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a b s t r a c t

Searching a network for intruders is an interesting and often difficult problem. Sweeping
(or edge searching) is one such searchmodel, in which intrudersmay exist anywhere along
an edge. It was conjectured that graphs exist for which the connected sweep number is
strictly less than the monotonic connected sweep number. We prove that this is true, and
the difference can be arbitrarily large. We also show that the clique number is a lower
bound on the sweep number.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Sweeping (or edge searching) was originated by Parsons in [12], though the problemwas of interest to spelunkers earlier
than that, [5]. Parson’s original problem dealt with finding a lost spelunker in a system of caves, but the problem has much
wider application. We are interested in sweeping as a problem in network security, looking for methods to clean a network
of a computer virus, or methods to capture a mobile intruder using software agents. In the literature, sweeping has been
linked to pebbling (and hence to computer memory usage) [9], to assuring privacy when using bugged channels [8], and to
VLSI (very large-scale integrated) circuit design [6]. A brief survey of results is also available [1].
We will deal primarily with graphs in which no loops or multiple edges are allowed. The number of edges incident with

a vertex v of a graph G is the degree of v, denoted deg(v).
In this searchmodel, collision between a searcher and an intrudermay occur on an edge. This type of search is a sweep. The

specifics of sweeping a graph G are as follows. Initially, all edges of G are contaminated (or dirty). To sweep G it is necessary
to formulate and carry out a sweep strategy. A sweep strategy is a sequence of actions designed so that the final action leaves
all edges of G uncontaminated (or cleared). In such strategies, only the following three actions are allowed, though each may
occur many times.
• Place a searcher on a vertex.
• Move a single searcher along an edge uv starting at u and ending at v.
• Remove a searcher from a vertex.

A sweep strategy that restricts itself to the first two actions will be called an internal sweep strategy. That is, a strategy in
which once the searchers are placed, they can never be removed from a vertex, but can slide along edges to other vertices.
An edge uv in G can be cleared in one of two ways.
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• At least two searchers are placed on vertex u of edge uv, and one of them traverses the edge from u to v while the other
remains at u.
• A searcher is placed on vertex u, where all edges incident with u, other than uv, are already cleared. Then the searcher
moves from u to v.

A cleared edge becomes recontaminated if there is a path from an endpoint of the cleared edge to an endpoint of a
contaminated edge, and there is no searcher anywhere on this path.
Knowing that our goal is to end up with a graph where all the edges are cleared, a basic question is: what is the least

number of searchers for which a sweep strategy exists?We call this the sweep number, denoted s(G). We define the internal
sweep number similarly and denote it is(G). In fact, these two numbers are equal for connected graphs. If in a sweep strategy
a searcher is removed from a vertex u and placed on a vertex v, in a corresponding internal sweep the searcher may merely
follow a path from u to v. We will only deal with connected graphs in this paper.
Let E(t) be the set of cleared edges after the tth action in the sequence of actions that make up a sweep strategy

has occurred. (Certainly, this action is one of the three actions listed above.) A sweep strategy for a graph G for which
E(t) ⊆ E(t+1) for all t is said to bemonotonic. Wemay then define themonotonic sweep number and themonotonic internal
sweep number, denoted ms(G) and mis(G), respectively. Similarly, a sweep strategy such that E(t) induces a connected
subgraph for all t is said to be connected, and we may define the connected sweep number cs(G) and the connected internal
sweep number ics(G). Finally, a sweep strategy may be both connected and monotonic, giving us the monotonic connected
sweep number mcs(G) and themonotonic connected internal sweep number mics(G).
LaPaugh [10] and Bienstock and Seymour [4] proved that for any connected graph G, s(G) = ms(G). Barrière et al. [3]

extended this result, giving the following relations for these numbers.

Theorem 1.1. For any connected graph G,

is(G) = s(G) = ms(G) 5 mis(G) 5 cs(G) = ics(G) 5 mcs(G) = mics(G).

This chain of inequalities suggests several questions. For instance, can equality be achieved? Do graphs exist for which
the inequalities are strict?
An example in [3] shows that the first inequality may be strict. The graph below, which we call the ‘‘Y-square’’, is another

example. Moreover, this is an example with fewer vertices and edges than the example in [3]. For this example, the sweep
number is 3, while the monotonic internal sweep number is 4. We conjecture that this is the smallest graph that exhibits
the strict inequality between sweep number and monotonic internal sweep number.
The second inequality, mis(G) 5 cs(G), was also proved in [3]. Further, the authors gave an example showing that the

inequalitywas strict.With this result, they also observed that, generally, themonotonic internal sweep number or connected
sweep number of a graphGmay be smaller than themonotonic internal sweep number or connected sweep number of some
minors of G. We prove these results by using large cliques as our building blocks, thereby allowing us to calculate the sweep
numbers easily.
Whether the third inequality, cs(G) 5 mcs(G), can be strict was left as an open problem in [3]. We will show that there

exists a graph G such that cs(G) < mcs(G), and that, in fact, the difference between these two values can be arbitrarily large.
We will also show that is(Kn) = mics(Kn) = n = 4, where Kn is the complete graph on n vertices. This means that there

is exactly one sweep number for complete graphs.
In general, determining the sweep number of a graph G is NP-complete [11]. As any successful sweep strategy gives an

upper bound, our goal becomes first to find the ‘‘right’’ way to clear the graph, using as few searchers as possible. Once this
strategy is found, we must then prove that no fewer searchers will suffice. Here is where the true difficulty lies: most easily
attainable lower bounds are quite poor.Wewill prove several lower bound results using the clique number of a graph. Some
of this work has appeared in preliminary form in [14].

Definition 1.2. The clique number of the graph G, denotedω(G), is the largest number such that G contains a clique of order
ω(G).

2. Sweeping and cliques

The main result of this section is Theorem 2.4. We use it to prove several lower bounds for the sweep number.

Definition 2.1. A vertex in a graph G is said to be exposed if it has edges incident with it that are contaminated as well as
edges incident with it that are cleared. Following a sweep strategy S on G, we define exS(G, i) to be the number of exposed
vertices after the ith step.

Definition 2.2. A vertex v is said to be cleared if all the edges incident with it are currently uncontaminated.

The following obvious lemma is a generalization of a result from [11].
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Lemma 2.3. At the time the first vertex v becomes cleared in a graph G, there must be a searcher on each neighbour of v.

It is easy to see that s(K1) = 1, s(K2) = 1, and s(K3) = 2, and only slightly more difficult to see that s(K4) = 4.
The following result gives several useful corollaries. For a graph G, we will denote the minimum degree of G by δ(G).

Theorem 2.4. If G is connected and δ(G) = 3, then s(G) = δ(G)+ 1.

Proof. Consider a graph G with minimum degree δ(G), and a sweep strategy S that clears it. If the first vertex cleared by S
is not of minimum degree, then it must have at least δ(G) + 1 vertices adjacent to it. When it is cleared, each of the these
vertices must contain a searcher and s(G) = δ(G)+ 1.
We now consider the last time that the graph goes from having no cleared vertices to a single cleared vertex u. By the

preceding paragraph, we may assume that u is a vertex of minimum degree. We will assume that the strategy S employs at
most δ = δ(G) searchers, and arrive at a contradiction. Let the neighbours of u be denoted v1, v2, . . . , vδ . Assume, without
loss of generality, that uv1 is the final edge incident with u cleared, and that uv2 is the penultimate such edge.
Consider the placement of searchers the moment before uv1 is cleared. Since each of uvi, 2 5 i 5 δ, is cleared, there are

searchers on each end vertex of these edges and on u. But this uses all δ searchers. Thus the only way that uv1 can be cleared
is if the searcher at u traverses the edge uv1 from u to v1. Thus, all the other edges incident with v1 are contaminated. Since
δ = 3, the searcher on v1 cannot move.
Now consider the placement of searchers before the penultimate edge uv2 is cleared. Again, as each of the edges uvi,

3 5 i 5 δ, is cleared, there is a searcher on each end vertex of these edges and on u. This accounts for δ − 1 searchers.
Since the next move is to clear uv2, the single free searcher must be on either u or v2. Moving from v2 to u would instantly
recontaminate the edge uv2 which implies the edge must be cleared from u to v2. This leaves the searcher at v2, and all the
other edges incident with v2 must be contaminated. Since δ = 3, the searcher on v2 cannot move.
Consider a searcher on vi, 3 5 i 5 δ. If the vertex vi is adjacent to v1 and v2, then the edges v1vi and v2vi are contaminated,

and the searcher at vi cannot move.
If the vertex vi is adjacent to exactly one of v1 and v2, it must also be adjacent to some other vertex w not adjacent to u

(as the degree of vi is at least δ). As there is no searcher onw, the only way that viw can be cleared is ifw is a cleared vertex.
However, we know that u is the first cleared vertex, so thatw is not cleared. Thus, the searcher at vi cannot move.
Finally, if the vertex vi is adjacent to neither v1 nor v2, it must be adjacent to two verticesw1 andw2 neither of which is

adjacent to u. As before, these edges cannot be cleared, and thus the searcher at vi cannot move.
As there are still contaminated edges, and none of the δ searchers can move, we have obtained the required

contradiction. �

Corollary 2.5. For a connected graph G, let κ(G) be the vertex connectivity and κ ′(G) be the edge connectivity of G. If κ(G) = 3,
then s(G) = κ ′(G)+ 1 = κ(G)+ 1.

Corollary 2.6. For all positive integers n = 4, s(Kn) = mis(Kn) = cs(Kn) = mcs(Kn) = n.

Proof. By Theorem 2.4, we know that s(Kn) = n. We present the following monotonic connected sweep strategy for Kn
using n searchers. First, clear a vertex v of Kn. This requires n − 1 searchers, leaving one free. This free searcher may then
clear all the edges of Kn that are not incident with v. By Theorem 1.1, we are done. �

Definition 2.7. Thewheel graphWn, n = 3, is the graph formed by connecting all the vertices of an n-cycle to another vertex
v not on the cycle.

Using Theorem 2.4, it is similarly easy to prove the following.

Corollary 2.8. For all n = 3, s(Wn) = mis(Wn) = cs(Wn) = mcs(Wn) = 4.

Theorem 2.9. If a graph H is a minor of a graph G, then s(H) 5 s(G).

Proof. LetΦ : V (G)→ V (H) denote the function that maps the vertices of G to the corresponding vertices of H that result
from vertex identifications that have taken place to form the minor H . Suppose that s(G) = k. Whenever a searcher in G
moves from a vertex u along an edge to a vertex v, the corresponding searcher does nothing in H when Φ(u) = Φ(v). If
Φ(u) 6= Φ(v), then the corresponding searcher does nothing when Φ(u) and Φ(v) are not adjacent in Y , but traverses the
edge fromΦ(u) toΦ(v)when they are adjacent in Y . It is easy to see that k searchers clear all of Y if they clear X . The result
follows. �

The following lemma is straightforward, and gives a trivial upper bound for the sweep number.

Lemma 2.10. If G is a connected graph, then s(G) 5 min(|V (G)|, |E(G)|).
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If we consider the graph K3, which has sweep number 2, then the graph obtained from K4 by removing a single edge has
sweep number 3, and is the unique supergraph of K3 with the least number of edges such that its sweep number is 3. (The
same cannot be said for K2, which is contained in the supergraphs K3 and the star K1,3, both of which have sweep number
2.) For larger n, we have the following theorem.

Theorem 2.11. For n = 4, Kn+1 is the unique connected supergraph of Kn with the least number of edges such that its sweep
number is n+ 1.

Proof. First, note that Kn+1 is a supergraph of Kn with sweep number n+ 1, and Kn+1 has n additional edges. We will show
that any other supergraph G containing clique of order n with at most n additional edges satisfies s(G) = n. Denote the
clique of order n in G by H .
If G has only k < n additional edges than those in H , consider the connected components of the graph induced by

E(G)−E(H). Place one searcher on each of the k edges of these components, and sweep these components as in Lemma 2.10,
ending on vertices ofH . Place a searcher on one of these vertices, and clear all the edges induced by them. Place the remaining
n− k− 1 searchers on an arbitrary one of these vertices, and use these searchers to clear it. This leaves a searcher on every
other vertex of H , and one free searcher. This searcher may clear all remaining edges. Thus, s(G) = n.
If G has n additional edges than those in H , and some vertex v ∈ H is not incident with any of these edges, then as before,

clear the additional edges as in Lemma 2.10, ending with searchers on k vertices of H . There are at most n− 1 such exposed
vertices (since v is adjacent to no additional edge) and so there is a free searcher to clear all edges between these vertices.
Then, place n− k− 1 searchers on an arbitrary one of the k vertices, and use these searchers to clear this vertex. This leaves
a searcher on the n− 1 other vertices of H , and the remaining searcher can clear the graph. Thus, s(G) = n.
Finally, we consider when G has n additional edges than those in H , and every vertex of H is incident with exactly one of

these edges. If G has more than one vertex not in V (H), let u be one such vertex. To sweep G, first clear u. Use a free searcher
to clear all the edges induced by the k neighbours of u, then place n− k− 1 searchers on an arbitrarily chosen one of these
k vertices. Clear that vertex. This leaves a searcher on every other vertex of H , and one free searcher. Use this searcher to
clear the edges of H . Then the neighbours of every vertex in V (G)− V (H) contain a searcher, and these searchers may clear
these vertices, clearing G. Thus, s(G) = n. �

Theorem 2.12. If n = 4, then the graph of order n with the greatest number of edges and sweep number n− 1 is the complete
graph Kn with one edge removed.

Proof. Let Kn−{uv} denote the complete graph of order nwith the edge uv deleted.We first use n−2 searchers to clear the
vertex v and station these searchers on the n−2 neighbours of v. Thenwe use one free searcher to clear all the contaminated
edges between the n − 2 neighbours of v. Finally, we use n − 1 searchers to clear all the remaining contaminated edges
incident on u. Thus, Kn − {uv} is (n− 1)-sweepable. On the other hand, from Theorem 2.4, we have s(Kn − {uv}) = n− 1.
Therefore, s(Kn − {uv}) = n− 1. �

Definition 2.13. The cartesian product of two graphs G and H , denoted G�H , is a graph with vertex set V (G) × V (H). Two
vertices (u1, v1) and (u2, v2) are adjacent in G�H if and only if u1 = u2 and v1v2 or u1u2 ∈ E(H) and v1 = v2.

The sweep number of the cartesian product of graphs has also been considered in [13], where the following result is
proved.

Theorem 2.14. For two connected graphs G and H,

s(G�H) 5 min(|V (G)| · s(H), |V (H)| · s(G))+ 1.

Corollary 2.15. If G is a connected graph and n = 4, then

s(Kn�G) 5 n · s(G)+ 1.

In fact, it is easy to see that we can do better than this when G is also a complete graph.

Corollary 2.16. For n = 1 and m = 2,mcs(Kn�Km) 5 n(m− 1)+ 1.
Proof. Let u1, u2, . . . , un be the vertices of Kn, and v1, v2, . . . , vm be the vertices of Km. Place one searcher on each of the
(ui, v1), and the remaining searchers anywhere on any of these same vertices. Use a free searcher to clear all the edges in the
clique induced by {(ui, v1)}. There is a perfect matching between the clique induced by {(ui, v1)} and the clique induced by
{(ui, v2)}. Move n searchers to clear the perfect matching bymoving one searcher along each of the edges ((ui, v1), (ui, v2)).
Similarly, searchers can traverse perfect matchings from the clique induced by {(ui, v1)} to the clique induced by {(ui, vj)},
3 5 j 5 m. This leaves n(m − 1) searchers stationed on {(ui, vj)}, 2 5 j 5 m, and the remaining free searcher can clear all
the edges between these vertices. �

In the special case that exactly one of the complete graphs is K2, we can say something even more precise.

Corollary 2.17. If n = 3, then s(Kn�K2) = n+ 1.
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3. Differences between sweep numbers

From Corollary 2.6 and Theorem 2.9, we obtain the following result.

Theorem 3.1. For any graph G, if ω(G) = 4, then ω(G) 5 s(G).

Since trees have clique number 2 and there exist trees with arbitrarily large sweep numbers [2], it might appear that
the bound presented in Theorem 3.1 is not particularly useful. This is not the case, as Theorem 3.1 provides a basis for
constructing graphs with easily calculated sweep numbers.
We will prove that the difference between the connected sweep number and the monotonic connected sweep number

of a graph may be arbitrarily large. To this end, we first construct a graphW which will demonstrate that these two sweep
numbersmay be different, andwe then useW to construct an infinite family of graphs inwhich the difference between these
two sweep numbers becomes arbitrarily large. Similarly, using the Y -square and constructed graphs X and Y , we construct
infinite families of graphs in which the connected sweep number is arbitrarily larger than the monotonic internal sweep
number, and the monotonic internal sweep number is arbitrarily larger than the sweep number.
We construct the graphW as shown in Fig. 2. In this figure, a circle represents a complete graph on the indicated number

of vertices, and double lines between two cliques A and B indicate a perfect matching either between A and B (if |A| = |B|)
or between A and a subgraph of B (if |A| < |B|). The latter is called a saturated matching.
If there is a saturated matching from a graph A to a subgraph of B, we use B[A] to denote the graph induced by those

vertices of B adjacent to vertices of A. So B[A] is also a clique.
We constructW such that A9[C19], A9[D19], A9[E300] and A9[F300] may be chosen to be vertex-disjoint, and similarly for

A′9. Also, V (A2[C1]) ∩ V (A2[B1]) = ∅ and V (A4[D1]) ∩ V (A4[B300]) = ∅, and similarly for A
′

2 and A
′

4. Finally, there are 300
cliques between A1 and A′1, each of which contains 280 vertices.

Theorem 3.2. For the graph W, cs(W ) = 281.

Proof. It follows from Corollary 2.6 that cs(A9) = cs(A′9) = 281 and from Theorem 3.1 that we need at least 281 searchers
to clearW . To prove that this number is sufficient, we sketch a sweep strategy using the same number of searchers.
We begin by clearing a vertex in A′9. First, place all 281 searchers on a single vertex v of A

′

9 \(A
′

9[C
′

19]∪A
′

9[D
′

19]∪A
′

9[E
′

300]∪

A′9[F
′

300]). Move 280 of them to the 280 neighbours of v. This clears v, and the single searcher remaining on v then clears all
remaining edges in A′9.
Then clear the cliques of C ′, D′, E ′, and F ′, ending with searchers stationed on appropriate vertices of A′2, A

′

4, A
′

5, and A
′

6.
Using the free searchers, clear A′8, and then A

′

6. Stationing searchers on all the vertices of A
′

6 to prevent recontamination, we
use the remaining searchers to clear A′7 and then A

′

5, stationing searchers on A
′

5 to prevent recontamination. This leaves a
sufficient number of searchers to clean the T ′i .
With the free searchers remaining and those stationed on A′6, clear the L

′

i , then A
′

2, stationing searchers there after wards.
This leaves sufficient searchers to clear the R′i , then A

′

4, stationing searchers at A
′

4. This leaves sufficient searchers to clear the
B′i , which, once cleared, allow for enough free searchers to clear A

′

3.
We now use 281 searchers to clear, one by one, the 300 cliques between A′1 and A1, followed by A1 itself. Then we move

the searchers from A1[A2] to A2, and use a free searcher to clear all edges in A2. We now have 80 searchers stationed in A2,
leaving 201 free searchers.
Pick a vertex in C1 and move a searcher to this vertex from A2[C1]. Then move another searcher along this edge, and to

the corresponding vertex in C2. Then another to the corresponding vertex in C3, and so on, until finally we have placed a
searcher on the corresponding vertex in A9[C19]. Thenmove a searcher to a vertex in A9[D19], followed bymoving a searcher
to a corresponding vertex in D19, then another to a corresponding vertex in D18, and so on, until reaching the corresponding
vertex in D1. Finally, move one searcher to the corresponding vertex in A4[D1]. We now have 80 searchers stationed in A2,
and in total, 41 searchers along a path through the Ci, through A9, and finally through the Di into A4. This leaves 160 free
searchers.
Move these free searchers along this path, to the single vertex in A3 adjacent to the path. Clear this vertex, and then use

the single free searcher to clear A3. Then the searchers on A3[A4] move to A4, and a free searcher can clear A4. With 110
searchers stationed on A4, 80 searchers stationed on A2, and 40 searchers strung in that path from A1 to A4 through A9, there
are 51 free searchers. These searchers can clear the Bi.
We now collapse the path from A2 to A4 through A9, in the following manner. First, we remove the searcher in C1; then

remove the searcher in C2, and so on, until finally we remove the searcher in D1. These searchers may then be placed on any
vertex in A4.
Using the searchers not stationed at A2 and A4, clear the Di, stationing searchers at A9[D19]. Use the remaining free

searchers to clear the Ri, ending at A5. Leaving searchers stationed at A5, we clear the Ci, ending at A9[C19], and then clear
the Li, eventually ending with searchers stationed at A6. This leaves enough free searchers to clear the Ti, then the Fi, which
in turn leaves enough free searchers to clear A7. These free searchers can be used to clear the Ei, then A8, and finally A9. �

It is important to note that the strategy demonstrated in Theorem 3.2 is not monotonic, as edges in the path from A2
through A9 to A4 were allowed to be recontaminated.
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Theorem 3.3. For the graph W,mcs(W ) = 290.

Proof. It is straightforward to show that 290 searchers are sufficient to clear W in a monotonic connected fashion;
essentially, the same sweep strategy as Theorem 3.2 may be used, with a single change. Instead of clearing a path from
A2 through A9 to A4 to clear A3 and A4, now there are sufficient searchers to clear the Bi instead. After A3 and A4 are cleared,
the original strategy suffices.
To prove the equality, we will show that mcs(W ) > 289. First, assume that W is 289-monotonically connected

sweepable. Let S be a monotonic connected sweep strategy using 289 searchers. Because of the involution automorphism
interchanging the right side and left side, we may assume the first cleared edge lies to the left of the 280-clique G150 or has
one end vertex in G150.
We will make heavy use of vertex-disjoint paths determined by perfect matchings between successive cliques. The most

important family of such paths is P1, P2, . . . , P80 consisting of the 80 vertex-disjoint paths having one end vertex in A2 and
the other end vertex in G150 along the chain of connecting 280-cliques.
We call a clique pseudo-cleared if it contains exactly one cleared vertex. We are interested in which of A3, A8 or A9 is the

first to be pseudo-cleared. Suppose A9 is the first of the three to be pseudo-cleared. At the moment the first vertex of A9
is cleared, there must be 280 exposed vertices in A9. Since this sweep is connected, there must be a path Q from G150 to
A9 in the subgraph of cleared edges. The path Q must pass through at least nineteen 20-cliques. Since there are at most 9
additional exposed vertices, at least one of the 20-cliques, call it K , through which Q passes is cleared. From K , there are 20
vertex-disjoint paths back to A2 not passing through A9. Without loss of generality, assume these 20 vertex-disjoint paths
terminate at the end vertices of P1, P2, . . . , P20. Call the extensions of P1, P2, . . . , P20 to K by Q1,Q2, . . . ,Q20.
For each Qi, 1 5 i 5 20, we examine what happens as we start working back from K along the path Qi. Since the clique K

is cleared, the last vertex of Qi (the one in K ) is cleared. That is, the last edge of Qi is cleared. Move to the preceding vertex.
If it is not cleared, then we have encountered an exposed vertex on Qi. If it is cleared, then we move to the preceding vertex
on Qi.
If Qi passes through either A6 or A4, either we encounter an exposed vertex or the vertex ui of Qi in A6 or A4 is cleared.

But if the latter is the case, then the edge from ui to A8 or A3 is cleared. Since neither A8 nor A3 have any cleared vertices, we
have found an exposed vertex corresponding to the path Qi.
IfQi does not pass through A4 or A6, then either we encounter an exposed vertex or we reach the vertex ui ofQi in A2, with

ui cleared. But now we extend a path from ui through the Lj-cliques to A8 and we must eventually encounter an exposed
vertex.
Therefore, each path Qi yields a distinct exposed vertex giving us at least 300 exposed vertices. We now see that A9

cannot be the first pseudo-cleared clique amongst A3, A8, and A9. Similar arguments concerning the number of vertex-
disjoint paths between cleared cliques and contaminated cliques show that neither of A3 or A8 can be cleared first, thus
reaching a contradiction. �

Theorems 3.2 and 3.3 give the following result.

Corollary 3.4. There exists a graph G such that cs(G) < mcs(G).

We have shown that the difference between cs(W ) and mcs(W ) was 9, though in fact, the difference can be smaller.
For instance, we could reduce the size of cliques and length of ‘‘paths’’ by an approximate factor of 5 and then prove that
cs(W 1

5
) = 57 and mcs(W 1

5
) = 58 (This corresponds to letting k = 1

5 in the following construction.) However, Corollary 3.4,
while valid, is more easily demonstrated by using larger cliques and longer paths to make the difference more believable.
From the graphW , we may define a familyWk of graphs constructed as follows for k = 1. InWk, the 300 cliques of the Ri

(and R′i) are replaced by 300k cliques of order 180k. Similarly, the Ti (and T
′

i ) are replaced by 300k cliques of order 80k, the
Bi (and B′i) are replaced by 300k cliques of order 50k, the Li (and L

′

i) are replaced by 300k cliques of order 160k, the Ei (and E
′

i )
are replaced by 300k cliques of order 20k, the Fi (and F ′i ) are replaced by 300k cliques of order 20k, and the Gi are replaced
by 300k cliques of order 280k. The cliques A2, A5, A6, A′2, A

′

5, and A
′

6 are replaced by cliques of order 80k. The cliques A4 and A
′

4
are replaced by cliques of order 110k. The cliques A3 and A′3 are replaced by cliques of order 160k. The cliques A1 and A

′

1 are
replaced by cliques of order 280k. The 19 cliques that make up the Ci are replaced by 20k− 1 cliques of order 20k. Similarly
for the C ′i , Di, and D

′

i . The cliques A8 and A
′

8 are replaced by cliques of order 200k+ 1, the cliques A7 and A
′

7 are replaced by
cliques of order 140k+ 1, and the cliques A9 and A′9 are replaced by cliques of order 280k+ 1.
The resulting graphsWk are ‘‘scaled up’’ version ofW , with appropriately changed sweep numbers. Using an argument

similar to those in the proofs of Theorems 3.2 and 3.3, we can prove the following theorem.

Theorem 3.5. For k = 1, cs(Wk) = 280k+ 1, andmcs(Wk) = 290k.

We have exhibited the utility of cliques in constructing the graphW . We will now extend this technique to other graphs
so that we may study other properties of sweeping.
Referring to Fig. 3, let X ′ = K10�P60. In the graph X , by construction, V (X21[A20]) ∩ V (X21[B20]) = ∅ = V (X40[C41]) ∩

V (X40[D41]). It is easy to see that X is a subgraph of X ′.



5776 B. Yang et al. / Discrete Mathematics 309 (2009) 5770–5780

Theorem 3.6. For X as pictured in Fig. 3,

s(X) < mis(X) < cs(X).

Proof. Recall from Corollary 2.17 that s(K10�K2) = 11. Since X contains K10�K2 as a minor, by Theorem 2.9 we know that
s(X) = 11. In fact, we can use 11 searchers to clear X , by first placing 5 searchers on A1 and 5 searchers on B1. Then a single
free searcher can be used to clear all the edges in A1. Then 5 searchers move along the perfect matching to A2, and a single
free searcher clears all the edges in A2, and so on, finally reaching X21[A20]. The single free searcher moves to B1, and the
process is repeated, clearing the Bi and moving to X21[B20]. With 10 searchers on X21, a single free searcher may then clear
all the edges of X21. These 11 searchers may then clear the Xi clique by clique, finally reaching X40. Stationing 5 searchers on
X40[D41], the remaining 6 searchers may clear the Ci. Then the Di may be cleared. Thus, s(X) = 11.
The graph X can be cleared by 16 searchers in a connected sweep. Placing all 16 searchers on A1, we may use one free

searcher to clear the edges of A1. Then 5 searchers may move to A2, and a free searcher may clear the edges of A2, and
so on, until finally X21[A20] is cleared. Then we may place 5 more searchers on the remaining vertices of X21, and use a
free searcher to clear the remaining edges in X21. Leaving a searcher on each vertex of X21, there are 6 free searchers.
These searchers may clear the Bi clique by clique. Then the 10 searchers on X21 plus another free searcher may clear the
Xi through X40. Finally station 10 searchers on X40. This leaves 6 free searchers, who can be used to clear the Ci and the Di.
Thus, cs(X) 5 16. Considering vertex-disjoint paths as in Theorem 3.3, it can be shown that 15 searchers are insufficient to
clear X in a connected sweep.
To obtain amonotonic internal sweep, first place 6 searchers on A1, and 6 searchers on B1. The 6 searchers on A1 can clear

the Ai, eventually stationing 5 searchers on X21[A20]. The 6 searchers on B1 can clear the Bi, eventually stationing 5 searchers
on X21[B20]. Then we may follow the same strategy as the sweep above. Thus mis(X) 5 12. The proof that 12 searchers are
necessary follows in a similar fashion. �

We now consider the graph X ′.

Lemma 3.7. For the graphs X and X ′, cs(X) > cs(X ′).

Proof. Since X ′ contains K10�K2 as a minor, we know by Theorem 2.9 and Corollary 2.17 that cs(X ′) = 11. In fact, we can
use 11 searchers in a connected sweep to clear X ′, by placing 10 searchers on X1, and then using a single free searcher to
clear all the edges in X1. Then 10 searchers move along the perfect matching to X2, and a single free searcher clears all the
edges in X2, and so on, finally reaching X60. Thus, cs(X ′) = 11.
From the proof of Theorem 3.6, we know that cs(X) = 16, and the result follows. �

Since X is a subgraph of X ′, this lemma has an immediate consequence, as observed in [3]. If H is a minor of a graph G,
then in contrast to Theorem 2.9, it does not follow that cs(H) 5 cs(G).
Continuing in the same vein, let Y ′ = K10�P120, and Y be as pictured in Fig. 4, where circles and double lines are defined

as above. It is easy to see that Y is a subgraph of Y ′.

Theorem 3.8. For graphs Y and Y ′ as given,mis(Y ) > mis(Y ′).

Proof. We first note that K10�K2 is a subgraph of Y ′, and thus 11 5 mis(Y ′). Also, Y ′ can be cleared using the same strategy
as used for X ′ in Lemma 3.7. Thus, mis(Y ′) = 11.
The graph Y can be cleared by 16 searchers in a monotonic internal fashion. Place 16 searchers on A1. Use 6 searchers

to clear the Ai, stationing 10 searchers on Y21. Use the six remaining searchers to clear the Bi. Clear to Y40, stationing 10
searchers on Y40. This leaves 6 free searchers that can be used to clear the Ei. Then the searchers may clear to Y80, stationing
10 searchers there. The remaining 6 free searchers may clear the Fi. Then all the searchers may clear to Y100, stationing 10
searchers there. The 6 remaining searchers may clear the Ci and then the Di. Thus, mis(Y ) 5 16. Using vertex-disjoint paths
as in Theorem 3.3, it can be shown that 15 searchers are insufficient to clear X . �

As before, since Y is a subgraph of Y ′, there is an immediate corollary, as observed in [3]. In contrast to Theorem 2.9, if H
is a minor of G, then it does not follow that mis(H) 5 mis(G).
As withW , we may create families of graphs Xk (and X ′k) and Yk (and Y

′

k) based on X (and X
′) and Y (and Y ′). This is done

by replacing cliques of order 5 with cliques of order 5k and cliques of order 10 with cliques of order 10k, and lengthening
‘‘paths’’ of cliques of the same order by a factor of k. (For instance, in X , rather than having 20 cliques of order 10 make up
the Xi, they would be replaced by 20k cliques of order 10k.) The results for these families are summarized below.

Theorem 3.9. For k = 1, cs(Xk) = 15k+1;mis(Xk) = 10k+2; cs(X ′k) = 10k+1;mis(Y ) = 15k+1; andmis(Y
′) = 10k+1.

This result tells us that the difference between themonotonic internal sweep number of a graph and the connected sweep
number can be large. As well, the results tell us that in the case of monotonic internal and connected sweeps, a subgraph
may need arbitrarily more searchers than the supergraph.
The graph in Fig. 5 is a similarly ‘‘scaled up’’ version of the Y-square (pictured in Fig. 1). Here, edges are replaced by ‘‘paths’’

of cliques, with each path containing k2 cliques of size k. This increases the sweep number to 3k + 1, and the monotonic
internal sweep number to 4k, again showing that the difference in these values can be quite large.
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Fig. 1. The Y-square.

Fig. 2. The graphW .

Fig. 3. The graph X ′ and its subgraph X .

Recall that there are three inequalities in Theorem 1.1. Corollary 3.4 shows that the final inequality can be strict, and
Theorem 3.6 shows that the first pair may also be strict. This leads us to construct a single graph H for which the three
inequalities strictly hold (see Fig. 6).

Theorem 3.10. For the graph H as given, s(H) < mis(H) < cs(H) < mcs(H).

This graph H has s(H) = 561, mis(H) = 570, cs(H) = 841, and mcs(H) = 850. The proofs of these claims follow in the
same manner as the proofs of Theorems 3.2, 3.3 and 3.6.
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Fig. 4. The graph Y ′ and its subgraph Y .

Fig. 5. The kY-square.

4. Variation on the required number of searchers

We know the maximum number of exposed vertices in a connected graph is at most the sweep number of the graph.
Of course, most of the time, the number of exposed vertices is much less than this maximum. In a real world situation,
most searchers not on exposed vertices could ‘‘go away’’, and would only return when needed. So we would be interested
in sweep strategies that minimizes the number of exposed vertices at each step. For a graph G, the sequence of exS(G, i) for
any S could vary greatly. The following theorem illustrates just how great this variance can be.
We first construct a graph Z as pictured in Fig. 7, where the ai are positive integers, andM = max15i5n ai + 5. (The value

5 is added for safety.)

Theorem 4.1. Given a finite sequence of positive integers, a1, a2, . . . , an, then with Z as given, every monotonic connected sweep
strategy S of Z that usesmcs(Z) searchers and minimizes the number of exposed vertices at each step has the property that there
exists k1 < k2 < · · · < kn such that exS(Z, ki) = ai.

Proof. Since Z contains anM-clique, we know that s(Z) = M . Further, there is a monotonic connected sweep strategy using
M searchers. First, clearM , then the first a1+1 clique, then the next, and so on, moving from left to right. Thus, mcs(Z) = M .
Let v be the first vertex cleared in a monotonic connected sweep strategy S on Z using M searchers. If v is not in one

of the M-cliques, then there is a cleared edge e in some other clique. There are at least two vertex-disjoint paths that pass
through the vertices of e to eitherM . The first time that a vertex is cleared in eitherM-clique, there areM − 1 searchers on
that clique. But at the same time, there are two vertex-disjoint paths from the vertices of e to the otherM-clique. These two
paths must contain at least one exposed vertex, and hence one searcher. But this sweep then usesM + 1 searchers. Thus, v
must be in one of theM-cliques.
Let i < j. Consider ai and aj. Assume that no ai + 1 clique obtains a cleared vertex before all the aj + 1 cliques. Let w be

a cleared vertex in one of the aj + 1 cliques. Since S is a connected sweep strategy there is a cleared path between v andw.
But this pass must pass through the ai+ 1 cliques, of which there areM + 1. Since these cliques contain no cleared vertices,
there must be at least one exposed vertex in each of the ai + 1 cliques, and hence at least M + 1 searchers in the ai + 1
cliques. Since this uses too many searchers, some ai+ 1 clique must contain a cleared vertex before all the aj+ 1 cliques do.
When the ai + 1 clique first contains a cleared vertex, there are at least ai exposed vertices. �
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Fig. 6. The graph H.

Fig. 7. The graph Z .



5780 B. Yang et al. / Discrete Mathematics 309 (2009) 5770–5780

5. Conclusions

Constructing graphs with large cliques is useful, as these cliques imply lower bounds on the sweep number, they also
allow us to restrict how a graph is cleared by setting up situations where ‘‘paths’’ of cliques must be cleared clique by clique
rather than ‘‘sneaking’’ through them.
Having solved one of the open problems in [3], we are compelled to mention the other: find an upper bound for the ratio

mcs(G)/s(G). For the special case of trees, the bound of 2 was shown in [3], and the authors believe that it is true for all
connected graphs. It has also been shown in [7] that cs(G)/s(G) 5 log n+ 1 for any n-vertex G.
As mentioned in the introduction, the Y-square is the smallest known graph with sweep number strictly less than

monotonic internal sweep number. For the other inequalities, we have given large examples of graphs which show that
the inequalities can be strict. Smallest graphs with these properties would be interesting to find.
While constructing theW and demonstrating that cs(W ) < mcs(W ), many additions had to be made toW to simplify

the proof. Essentially, theseweremade so that any sweep strategywould go from the clique A′9 to the clique A9, or vice versa.
We pose the following problem relating to sweep structure: is there a graph G such that every monotonic connected sweep
of G using mcs(G) searchers must first clear an edge in the graph induced by vertex set U and last clear an edge in the graph
induced by vertex set V , with U ∩ V = ∅?
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