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ABSTRACT 

D. Van Dyck (2), R. De Ridder (2) and J. De Sitter (3) 

It is shown how the attainable minimum for the memory  requirements o f  Runge-Kutta methods  
can be realised for methods of  the third order. These economisable third order methods  belong 
to a one parameter sub-family from which two particular members with low error bound  are 
selected. 

1. INTRODUCTION 

The disposal of an economical computational tech- 
nique for the solution of systems of differential equa- 
tions is indispensable either when the systems are 
very large as in the case of discretised integro-differ- 
ential equations, semi-discretised partial differential 
equations and in some physical problems as the calcu- 
lation of structure images in electron microscopy [1], 
or when the computer storage capabilities are limited 
(e.g. desk or hand calculators). For this purpose, 
Runge-Kutta (RK) methods are preferred, which have 
the advantage of being self starting and less memory 
consuming at the expense of stability and calculation 
time. 
When in the course of a fourth order RK calculation, 
the intermediate computed vectors are linearly depend- 
ent, it can be shown that the memory requirements 
can be reduced to 3N + P, N being the number of 
equations and P the storage required by the program. 
Substitution of this condition into the 4th order RK 
equation generates a one parameter family [e.g. 2] of 
fourth order RK methods, from which the methods 
of Gill [3] and Blume [4] are special members. 
However, the memory requirements cannot be further 
reduced as long as the computation of the derivative 
Y" = f(x, Y) (with Y a column vector) requires two 
column vectors (2N) of storage registers. In this work 
it is suggested that if the elements Y'(i) of the vector 
Y" can be computed individually, the storage can be 

reduced to the minimum 2N + P for RK methods up 
to the third order. Extension to higher order methods 
however is proved to be impossible. 

2. GENERAL EXPRESSIONS 

The basis of all RK methods for the solution of a sys- 
tem of N differential equations in vector form : 

Y'= f(x, Y) (2.1) 

with given boundary condition : 

v ( 0 )  = v 0 

is to express the difference between values of the func- 
tion Y at x n +1 and x n as a linear combination of inter. 

mediate computed vectors K i [e.g. 2, 3]. 
m 

Yn+l -Yn = i~l ~ iKi  (2.2) 

with 
i-1 

Ki= hf(xn + =i h' Yn + j ~ l  ~ij Kj) (2.3) 

and where 

h = x n +  1 - x  n anda 1 = 0  

Y and K are column vectors of dimension N. 

A Runge-Kutta method of the kth order can be con- 
structed by identification of (2.2) and (2.3) with the 
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corresponding Taylor series, expanded to the same 
order, yielding a number of equations from which the 
coefficients a i, 3ij and coi can be determined. The 

minimal number of elements in (2.2) is given by m =k 
f o r k <  4 a n d m > k f o r k >  4. The (k + l)th order 
term can be used for a rough estimation of the trunca- 
tion error bound. In the explicit case of third order 
RK methods, the Runge-Kutta equations can be re- 
duced to a two parameter family of the form [3] : 

2 -3 (a  2+ a3) 3a 3 -  2 
c o l  = 1+ , c02 - 

6a2a 3 6a2(a 3 - a2) ' 

2 - 3a 2 

6°3 - 6a3(a3 - =2) ' 

321 = a 2, 331 = 

2 
3g2=3 (1-=2) - =3 

a2 (2-  3a 2 ) 

a3 (=3 - =2) (2.4) 
/332- a 2 ( 2 - 3 = 2 )  

with a 2 ~= g3; a2' a3 ~ 0; a 2 ~= 2/3. 

The truncation error [ 3,[h 3 can be bounded by using 

[ ~/[ < AML 3 

with 

1 1 3 a3co3)[+ 4 1 1 2 
A = {8 [-~- - ~ (a2co 2 + [-~ - -~ a2332co3[ 

1 
+ 4 [~ -a2a3332co31 + ~2  } (2.5) 

where M and L are defined by the assumptions : 

a i + J f  ] M j-lLi+j (2.6) If(x'y)l< M' ~ < 

I 
f o r i + j <  3. 

3. REDUCTION OF THE STORAGE REQUIRE- 
MENTS 

In a general third order RK method, the column 
vectors to be computed and stored successively are : 

A : Y  n 

B : Yn + 321K1 

C : Yn + 331KI + 332K2 (3.1) 

D : Yn + COlK1 + CO2K2 + c°3K3 

where A is needed for the computation of K 1, B for 

K 2 and C for K 3 using (2.3). When a derivative K 

vector is computed in its entirety, it cannot be stored 
without destroying the content of the storage vector. 
Obviously, this content cannot be used to carry inter- 
mediate results, making it impossible to reduce the 
storage to 2N + P. 

This reduction can be achieved when the elements of 
a derivative vector are computed individually and 
combined properly with the content of the storage 
vector, provided that the vectors : Yn + 321 KI'  

Yn + 331K1 + 332K2 ' Yn + c°IK1 + 6°2K2 
are linearly dependent irrespective of the values of 
Yn' K1 and K 2. 

A necessary and sufficient condition is that : 

1 321 0 

1 331 332 = 0 (3.2) 

1 co I 6°2 

Substitution of (2.4) into (3.2) yields : 

. 2 2 
oa2a  3 - 6 a 2 a  3 +  3a2a 3 - 3 a  2+  6a 2 - 6 g  3+  2 = 0  

(3.3) 
which restricts the number of economisable RK 
methods to a one-parameter family. This extra par- 
ameter can then be used for the minimization of the 
error-bound coefficient (2.5). Extension of this tech- 
nique to fourth order RK methods leads to three equa- 
tions of the type (3.2). Unfortunately, substitution of 
these equations into the two parameter family of all 
possible 4th order RK methods leads to inconsistenties. 

4. CONSTRUCTION OF TWO PARTICULAR ECO- 
NOMICAL RUNGE-KUTrA METHODS WITH 
MINIMAL ERROR BOUND 

In figure 1 the contours of the error bound coefficients 
A of all the 3th order RK methods are plotted in the 
(a2o,3) plane. It can be seen that the method with 

minimal A value corresponds to a 2 = 1/2, a 3 = 3/4. 

The one-parameter family of memory-economical 3th 
order methods corresponding to equation (33) is also 
indicated as a dashed curve. It is clear that among these, 
the methods with a minimal A value are situated some- 
where around a 2 = 1/2. 
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In figure 2 the error bound coefficient A of the one 
parameter family of economical 3th order RK meth- 
ods is plotted in more detail as a function of the in- 
dependent parameter a 2. As expected from figure 1 
the error bound is minimal in the neighbourhood of 

a2=_ ~1 with two pronounced minima at a 2 - 21 

and a 2 = 7___ respectively corresponding to 
12 

1 1 2 1 
24 2 a2 ~332¢°3 = 0 and - -  - a2a3~32co 3 = 0 8 
in expression (2.5). 

The RK coefficients can be calculated by substitution 
o f a  2 = 1/2 resp. 7/12 into (3.3) and (2.4). 

1 takes the ex- Hence the first RK method (ct 2 = -2-) 
plicit form 

K1 = hf (xn '  Yn) 

K2 = hf(xn + 1--h2 ' Yn + _~_K1)1 (4.1) 

K3 = hf(x  n 3 +'V/3h, (16V~ +~/3+ 1 + 6 Yn + K1 3 K2) 

Yn+l=Yn + ( 3 ~ ) K 1 +  (33~/---~3)K 2 + ( ~ - - ~ ) K  3 

(4.1) 

- 3 ]  0 1326 with the error bound from (2.5) A -- 1-~ -J = " 

(4.2) 

For the second RK method (a 2 = 7/12) we obtain : 

K1 = hf(xn'  Yn) 

K2= hf(x n + -i~2 h, Yn + ~ K1) 

K3 = hf(x n + 43__h, y n _ ~ _ 8 K l +  6 7 -  K2) 

5 K1 + 3 K2 + 1 K3 Yn+l = Yn + 21 -7- 3 -  (4.3) 

with an error coefficient A -  31 - 0.1435. (4.4) 
216 

The A values of both economised methods are not 
much larger than the theoretical minimum A = 0.111 

corresponding with the well known a 2 = _!_1 a 3 - 3 
2 '  4 

RK method, which however cannot be economised. 
Also when applied to concrete problems, the same 
degree of accuracy was obtained. An extra computa- 
tional advantage arises from the fact that the coeffi- 
cients are non-transcendental real numbers. 
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