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We present a numerical discretisation of an embedded two-dimensional manifold using
high-order continuous Galerkin spectral/hp elements, which provide exponential conver-
gence of the solution with increasing polynomial order, while retaining geometric flexibility
in the representation of the domain. Our work is motivated by applications in cardiac
electrophysiology where sharp gradients in the solution benefit from the high-order
discretisation, while the computational cost of anatomically-realistic models can be
significantly reduced through the surface representation and use of high-order methods.
We describe and validate our discretisation and provide a demonstration of its application
to modelling electrochemical propagation across a human left atrium.

© 2013 The Authors. Published by Elsevier Inc.

1. Introduction

Partial Differential Equations (PDEs) describe many physical and mathematical processes and are quite often posed on
embedded surfaces. PDEs on arbitrary surfaces rarely have analytic solutions and so are solved numerically using, for exam-
ple, finite difference or finite element techniques. In the case of physical processes, a surface representation of the domain
is usually an approximation of the true system and is made for numerical efficiency reasons providing it does not overly de-
grade the underlying physics. There are many examples of applications where PDEs are solved on surfaces in the literature,
including fluid dynamics [1], biology and medicine [2], and computer graphics [3]. In this paper we describe a formulation
of high-order spectral/hp element methods on curvilinear codimension-one surfaces embedded in three-dimensional space,
applied to modelling electrical propagation in the heart.

The standard approach to solving a PDE on an embedded domain using finite element methods is to discretise the
surface using a triangulation [4–6], or to parametrise the surface [1]. The latter may be challenging for arbitrary surfaces
or require the use of multiple patches. Triangulation may lead to discretisation errors due to poor representation of the
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surface. It may also be computationally expensive in cases where the surface evolves in time. Finite volume methods have
also been considered (for example, [7]), but are not examined further here. Alternative approaches include the level-set [8]
or closest point method [9,10]. Level-set methods describe the surface as the zero level-set of a, possibly time-dependent,
function φ(x, t) and extend the PDE from this surface into a higher-dimensional ambient Euclidean space. The extended
PDE is solved using finite difference [11,12] or finite element [3,13] techniques. This removes much of the complexity of
constructing operators on the manifold, but at the expense of increasing the dimension of the problem and, therefore,
the computational cost. Care must also be taken to ensure the extended PDE remains true to the original surface PDE
and complications can arise due to the necessity to impose boundary conditions on either side of the surface which may
lead to an artificial jump in the solution, degeneracy of the implicit equation and difficulties in ensuring regularity of the
solutions [14], although some of these can be addressed [15]. However, these methods allow the surface to move in time,
in a relatively computationally efficient manner.

Mathematical formulations for solving PDEs on surfaces using linear finite element methods have been considered pre-
viously for a number of applications. One of the most prominent in the literature is the solution of the shallow water
equations on the Earth’s surface, for example [16], where the local coordinate systems on each element eliminate the singu-
larities inherent when solving in global spherical coordinates. Spectral elements have also been used for the shallow water
equations on a sphere by Giraldo [17] and Taylor et al. [18]. They find, for realistic atmospheric problems that these meth-
ods achieve comparable accuracy to existing methods, although they anticipate the methods can be more powerful when
using local refinement. Their study is also restricted to a parametrised sphere using quadrilaterals. Finally, PDEs on surfaces
are important in computer graphics [3] for rendering and texturing on surfaces and visualising flow data from simulations
[19]. Fluid flow simulations on surfaces of arbitrary topology have been discussed by Stam [1].

In this paper we are interested in defining spectral/hp element discretisations of surfaces of arbitrary and complex geom-
etry as are typically found in biomedical applications. Such surfaces are frequently extracted from medical imaging: a global
surface parametrisation is infeasible. Instead we tessellate the surface with geometrically high-order curvilinear elements,
each defined by a mapping from a planar reference region. The mapping is then incorporated into the differential operators
during their construction. The particular application we consider is the simulation of human left atrium electrophysiology.
We discard the mechanical aspects of the heart, so do not require the capabilities to model moving surfaces.

1.1. Cardiac electrophysiology

Cardiac conduction occurs due to a complex sequence of ion transport mechanisms between cells. As ions flow from
adjacent excited cells and the potential difference across the cell membrane exceeds a threshold level, a complex sequence
of ionic currents begins to flow between the intracellular and extracellular spaces creating a prescribed variation of the
transmembrane potential known as the action potential. This process begins with a complete and rapid depolarisation of
the cell due to the inward sodium current. Other ionic currents gradually restore the polarised state to complete the cycle.
The depolarisation of the cell causes contraction and the cumulative effect results in coordinated contraction of the heart
muscle with each activation wave. In some cases, due to disease, infarction or age, inhomogeneities in the myocardium result
in abnormal activation patterns, known as cardiac arrhythmias, leading to irregular contraction of the heart and poor cardiac
throughput. If such dysfunction occurs in the ventricles it is rapidly fatal, causing cessation of effective blood circulation,
and is the most common cause of cardiac arrest. When occurring in the atria, it causes symptoms such as tiredness and
leaves the person prone to the formation of blood clots in the poorly contracting atrium and puts them at greater risk of
stroke.

Identifying those areas of myocardium responsible for the initiation or perpetuation of an arrhythmia is key to successful
clinical intervention and therefore accurate and rapid computer simulation of a patient’s atrial electrical activity is poten-
tially a highly valuable tool in planning treatment. Significantly improving the performance of cardiac electrophysiology
computer simulations is key for them to attain clinical utility. Spectral elements are capable of providing high-resolution
solutions, necessary to capture the sharp gradients at the leading edge of the depolarisation wave, with fewer degrees of
freedom than linear finite element methods [20]. In addition, these high-order methods can be extended to perform local
polynomial refinement where needed during the simulation, such as on those elements in close proximity to the wavefront,
without needing to resort to computationally expensive mesh refinement.

Simplifying the geometric model of the atrium is another approach to accelerating simulations. To date most computer
simulations of mammalian atria represent the chamber walls as fully three-dimensional substrate, typically from a volume
segmentation of magnetic resonance angiography (MRA) images. The wall of the human atrium is typically only 1–3 mm
thick, but with a surface area in excess of 50 cm2. Electrical propagation and arrhythmogenic features are therefore pre-
dominantly two-dimensional in nature and can be efficiently modelled as a two-dimensional surface. To illustrate this, we
quantify the effect of transmural variability in a 3D tissue slice, described in Fig. 1, when the epicardial and endocardial
surfaces have orthogonal fibre directions. Additionally, we compare this to the same geometry using isotropic conductivities,
computed as the transmural average of those in the anisotropic case. In each case, the tissue is stimulated from the centre
point of the tissue with a current of 50 μA, applied for 2 ms over a spherical region of radius 3 mm. Fig. 2 shows the
maximum difference in activation time between the epicardial and endocardial layers for the anisotropic case, as well as a
comparison between the endocardial layers of the isotropic and anisotropic cases. For a thickness of 2 mm – the average
thickness of the left atrial wall – the maximum difference in local activation time between corresponding points on the
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Fig. 1. Diagram of the 25 cm2 slice geometry of thickness h mm used to quantify three-dimensional effects which cannot be captured by a surface ap-
proximation. Conductivities for the anisotropic case reflect orthogonal fibre directions on the epicardial and endocardial surfaces with continuous gradation
inbetween. For the isotropic case, conductivities are thickness-averaged. Stimulus is initiated from the point (0,0,h/2), located at the centre of the slice.

Fig. 2. Maximum difference �T in local activation time between the epicardial and endocardial surfaces (anisotropic difference), and between the endocar-
dial surfaces of the anisotropic and isotropic cases (endocardium difference).

epicardial and endocardial surface is 3.41 ms. In comparing the endocardial surfaces of the anisotropic and isotropic cases,
which is most relevant for clinical applications where electrical recordings are taken endocardially, the maximum difference
is 1.63 ms. This variation is less than 0.33% of the human atrial action potential, which is in excess of 300 ms in healthy
myocardium. Representing the left atrial geometry as a two-dimensional manifold can therefore substantially reduce the
computational cost of simulations when compared to full three-dimensional tissue models, without a clinically significant
loss of precision.

The paper is structured as follows. In Section 2 we outline the mathematical construction of the manifold embedding
along with the high-order discretisation technique used. Section 3 describes a number of test problems with analytic solu-
tions used to verify the formulation and implementation. We conclude this section with an applied demonstration of the
technique using a model of cardiac electrophysiology in the human left atrium. We summarise and discuss implementational
details in Section 5.

2. Formulation

A mathematical formulation of the surface embedding within R
3 along with the corresponding numerical construction

of the continuous Galerkin approximation on the surface and subsequent implementation now follows. In this section we
limit ourselves to an outline of the mathematical derivation of the Laplace–Beltrami operator on the manifold, and include
a more rigorous derivation in Appendix A.

In constructing operators on a curved surface one must take care to distinguish between vector quantities which are
geometrically fixed and independent of the coordinate system in which they are represented, and those which are inherently
coupled to the chosen coordinate system. The former is known as contravariance; a contravariant vector, such as velocity, is
one in which under a change of basis the components must change under the inverse map to retain geometric invariance.
In contrast, the latter is termed covariance and such vector quantities, for example the gradient of a scalar function, change
with the basis transformation. More details on these concepts and their relationship can be found in [21]. In Euclidean
space there is no distinction between these two concepts; however, this is not true in curvilinear embedded spaces. We
first define our manifold through a coordinate mapping and outline the geometrical properties of this mapping. This allows
generic representations of familiar differential operators on the manifold surface to be constructed.
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2.1. Notation

Our formulation of differential operators on the surface is derived in terms of first- and second-order tensors. Accordingly,
we take advantage of the notational conventions from [21]. In brief, a tensor is denoted in bold (e.g. a), while entries within
a tensor are denoted with indices as necessitated by the order of the tensor (e.g. aij for a second-order tensor). Furthermore,
lower indices refer to covariant quantities while upper indices denote contravariant quantities. Tensors may themselves be
indexed and this is denoted through the use of indices enclosed in parentheses (e.g. a(i)). Vector quantities are denoted in
bold, since they are tensors of one dimension. Unless specifically stated otherwise, all differential operators in this section
are restricted to the surface.

2.2. Metric tensors and differential operators

For a smooth codimension-1 manifold M ⊂ R
3 we express coordinate directions on the manifold using ξ i and in the

ambient space using xi . The surface is parametrised using the coordinate mapping x : M → R
3 for which the entries of the

second-order Jacobian tensor are given by

J j
i = ∂x j

∂ξ i
,

where J j
i can be viewed as a covariant surface vector (by fixing the upper index) or as a contravariant space vector (by

fixing the lower index). At each point p on the surface M , the tangent plane T p M is a real vector space spanned by the
vectors,

t(i) =
(

∂x1

∂ξ i
,
∂x2

∂ξ i
,
∂x3

∂ξ i

)
, i = 1,2. (1)

The surface metric tensor provides important information about how lengths and angles vary on the manifold surface. This
second-order tensor is constructed as the pairwise inner product of tangent vectors, gij = t(i) · t( j) , and has determinant
g = |g|. The tensor g can be compactly expressed in terms of the Jacobian tensor of x as g = J J � . Note that g is square
and the determinant is well-defined. The Jacobian tensor is not square and therefore the conventional Jacobian determinant,
frequently used in finite element codes, is undefined. The metric g is used when mapping contravariant quantities to
covariant quantities. To obtain contravariant vectors, which must remain fixed under a change of coordinate system, from
covariant vectors we will require the inverse of the metric tensor, g−1 for which we denote entries as gij , in order to
transform the components of these vectors accordingly.

In the curved space of the manifold the derivative of a scalar quantity, f , remains consistent with that of the conventional
Euclidean definition,

∇k f = ∂ f

∂xk
, (2)

since it is a covariant quantity and changes with the coordinate system. However when taking derivatives of vector quan-
tities, v, the curvature of the space must be taken into account when calculating the change in the vector components. It
can be appreciated that Euclidean derivatives of a covariant vector at a point p on a manifold M do not necessarily lie in
the tangent plane to the manifold, T p M . Therefore we must define the covariant derivative operator in such a way that the
result remains on the manifold and accounts for the curvature of the surface. The covariant derivative of a contravariant
vector v is therefore

∇k vi = ∂vi

∂xk
+

2∑
j=1

v jΓ i
jk,

where Γ i
jk are the Christoffel symbols [21]. These real-valued quantities capture the change in the tangent vectors t(i) as p

moves on the manifold. By expressing the Christoffel symbols in terms of the derivatives of the metric tensor entries gij
(see Appendix A), we can express the surface divergence operator as

∇ · v =
2∑

k=1

∇k vk

= 1√
g

2∑
k=1

∂(vk√g )

∂ξk
. (3)

Using ∇ i f = ∑2
j=1 gij∇ j f to transform the covariant scalar gradient vector to a corresponding contravariant vector and

combining this with the above expression for divergence, the Laplacian operator on the manifold can be expressed as
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�M f =
2∑

i=1

∇i∇ i f = 1√
g

2∑
i=1

∂(
√

g ∇ i f )

∂ξ i

= 1√
g

2∑
i=1

2∑
j=1

∂

∂ξ i

(√
g gij ∂ f

∂ξ j

)
. (4)

This can be extended to the anisotropic case, as derived in Appendix A.3.

2.3. Spectral/hp element discretisation

A spatial discretisation of the manifold surface is given using the spectral/hp element method. A more detailed descrip-
tion of the basis construction, given in the context of fluid dynamics, can be found in [22]. The computational domain
Ω = M is a non-overlapping tessellation of elemental regions Ωe such that Ω = ⋃

e Ωe and the intersection of any two
elements is either a point, an edge or the empty set. Standard elemental regions Ωst(ξ1, ξ2) are defined for the triangular
and quadrilateral regions, defined respectively as,

Q2(ξ) = {
(ξ1, ξ2) ∈ [−1,1]2},

T 2(ξ) = {
(ξ1, ξ2): −1 � ξi, i = 1,2; ξ1 + ξ2 � 0

}
,

and these are mapped to each Ωe through smooth mappings xe(ξ
1, ξ2) = (x1

e (ξ
1, ξ2), x2

e (ξ
1, ξ2), x3

e (ξ
1, ξ2)). In the case of

the triangular region, we employ a coordinate transform [23,24] which allows it to be represented using the same fixed
coordinate limits as used in the quadrilateral region,

T 2(η) = {
(η1, η2) ∈ [−1,1]2}.

On these reference regions Ωst we represent a smooth function u(ξ1, ξ2) in terms of a set of N basis functions,
{φn(ξ1, ξ2)}. The φn : [−1,1]2 → R are constructed through a tensor product of two sets of P1 + 1 and P2 + 1 one-
dimensional basis functions {ψp(ξ)}, with ψp : [−1,1] → R, where we denote by Pi the largest order of polynomial in
the i-th basis, and N = (P1 + 1)(P2 + 1). Typically, P1 = P2 in most applications, but the sizes of the bases could be chosen
differently. Typically, one chooses a subset of the family of Jacobi polynomials Pa,b

p for basis functions, due to their inherent
orthogonality properties and the resulting amenable mass matrix structure. The modal nature of these polynomials is more
computationally amenable to p-refinement than the original nodal spectral element method since the stiffness matrices do
not need to be entirely rebuilt, although we do not consider p-adaptivity here. In this paper, we specifically choose the
Jacobi polynomials, P1,1

p , but modify them with linear functions as,

ψp(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1−ξ
2 if p = 0,

1−ξ
2

1+ξ
2 P1,1

p−1(ξ) if 0 < p < P ,

1+ξ
2 if p = P

which naturally partitions the modes into element-interior modes and element-boundary modes, the latter of which has
support which includes one or more edges of the element. An infinite-dimensional function u can therefore be projected
into the polynomial space spanned by φn to give a discrete approximation uδ on the element as

uδ(ξ1, ξ2) =
N−1∑
n=0

φn(ξ1, ξ2)ûn

=
P1∑

p=0

P2∑
q=0

ψp(ξ1)ψq(ξ2)ûpq,

where the ûn denote the degree of freedom quantifying the contribution of the basis function φn .
In constructing a continuous Galerkin formulation, C0-continuity is enforced across elemental boundaries. Corresponding

boundary modes from adjacent elements form a single global mode in a domain-wide expansion. Since the support of the
element-interior basis functions does not extend to, or beyond, the boundary of the element, they are by definition global
modes in themselves. Mathematically, this assembly of element modes is expressed through an assembly matrix A.

We build on this formulation by casting the Helmholtz equation into the weak Galerkin approximation on the mani-
fold M ,

H(u) = ∇ · σ̃∇u − λu = f , λ > 0, (5)
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where σ̃ is a surface diffusion tensor (see Appendix A.3) and f is a prescribed forcing function. Given the discrete approxi-
mation space

U = {
u ∈ (

L2(Ω)
)2

: u|Ωe ∈ (
P p(Ωe)

)2
, ∀Ωe ∈ Ω

}
and denoting element and boundary integration by

(u, v) =
∫
Ω

uv dΩ and 〈u, v〉 =
∫

∂Ω

uv ds

respectively, we choose the test space V = U and seek solutions u ∈ U such that (v,H(u)) = (v, f ), ∀v ∈ V . After integration
by parts this gives the anisotropic variational form of Eq. (5) as

−
∑

k

(∑
i, j

σ̃ k
j gi j ∂u

∂ξ i
,

∂v

∂ξk

)
− λ(v, u) +

∑
k

〈∑
i, j

σ̃ k
j gi j ∂u

∂ξ i
,nk v

〉
= (v, f ). (6)

2.4. Implementation

The spectral/hp element method outlined in the previous section is implemented in the Nektar++ spectral/hp element
framework [25]. In the weak form from Eq. (6) the function u is expanded in terms of the elemental basis functions φn , to
form an elementally discrete system which, in matrix form, can be expressed as

Leûe + λMeûe − beûe = −f̂e

where

Le[m][n] =
∑

k

∫
Ωe

∑
i, j

σ̃ k
j gi j ∂φm

∂ξ i

∂φn

∂ξk
dΩe,

Me[m][n] =
∫
Ωe

φmφn dΩe,

be[m][n] =
∑

k

∫
∂Ωe

∑
i, j

σ̃ k
j gi j ∂φm

∂ξ i
(nk · φn)ds,

f̂e[m] =
∫
Ωe

φm f dΩe.

Elemental block matrices and concatenated vectors of element coefficients are assembled using a highly sparse global
assembly matrix A, which practically is implemented as an injective map for memory efficiency reasons, to create an
expansion in terms of the global modes Φn . The resulting global system of linear equations,

(L + λM − b)û = −f̂,

is solved for the coefficients û using a preconditioned conjugate gradient method. For high-order discretisations, the global
matrix is statically condensed and first solved for the wireframe mesh (vertex and edge degrees of freedom). The perfor-
mance of this step is predominantly dictated by the cost of the matrix–vector multiplication operation. At higher polynomial
orders it is more efficient to perform the matrix–vector operation locally on boundary modes of each element and assemble
the global result, rather than performing a sparse matrix–vector multiplication with the assembled matrix [26]. The interior
matrix block of the statically condensed system, corresponding to the element-interior modes, is block diagonal and so can
be trivially inverted to complete the solve.

In parallel, the mesh is partitioned across the available processes and those global degrees of freedom which lie on
the partition boundaries are duplicated on the neighbouring processes. The assembly process then requires the exchange of
elemental contributions using the Message Passing Interface (MPI) between each of the processes sharing partition-boundary
modes. Practically, we use the gather–scatter algorithm from Nek5000 which has been shown to scale well up to many
thousands of processors [27].

For unsteady problems the equations can be time-marched using one of a number of implicit or implicit–explicit (IMEX)
time integration schemes [28], implemented using general linear methods [29]. In summary, the PDE is arranged in the
form

∂u = f (u) + g(u),

∂t
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where f (u) is typically nonlinear and therefore should be evaluated explicitly, and g(u) is stiff and therefore best evaluated
implicitly so as to avoid excessively small time-steps. The first-order forward-/backward-Euler IMEX scheme given by

un+1 − un

�t
= g

(
un) + f

(
un+1)

is used for the electrophysiology results in this paper.

2.5. Comparison with traditional finite element formulations

In the formulation of finite element methods in two-dimensional Euclidean space one requires a set of geometric terms
in order to apply differential operators constructed on the standard reference region to the physical space element. These
terms correspond directly to the inverse of the Jacobian of the mapping,

(
J−1)i

j = ∂ξ i

∂x j
.

In Euclidean spaces, the Jacobian is square and the inverse is well-defined. However, in the case of a higher-dimensional
embedding, the Jacobian is rectangular and the inverse is not well-defined. Therefore, one approach to support existing finite
element codes on a manifold is to extend the two-dimensional surface mapping to a full three-dimensional representation
by artificially adding a third coordinate direction corresponding to the surface normal. This can be found through the cross
product of the tangent vectors,

h =
⎡
⎣

h1

h2

h3

⎤
⎦ = ∂x

∂ξ1
× ∂x

∂ξ2
=

⎡
⎢⎢⎣

∂x2
∂ξ1

∂x3
∂ξ2

− ∂x3
∂ξ1

∂x2
∂ξ2

∂x3
∂ξ1

∂x1
∂ξ2

− ∂x1
∂ξ1

∂x3
∂ξ2

∂x1
∂ξ1

∂x2
∂ξ2

− ∂x2
∂ξ1

∂x1
∂ξ2

⎤
⎥⎥⎦ .

A full 3 × 3 Jacobian matrix can be constructed by extending the 2 × 3 surface Jacobian with these additional terms,

∂x1

∂ξ3
= h1,

∂x2

∂ξ3
= h2,

∂x3

∂ξ3
= h3.

This matrix can be inverted to compute the values of ∂ξi
∂x j

as

∂ξ1

∂x1
= 1

J3D

(
∂x2

∂ξ2
h3 − ∂x3

∂ξ2
h2

)
,

∂ξ1

∂x2
= − 1

J3D

(
∂x1

∂ξ2
h3 − ∂x3

∂ξ2
h1

)
,

∂ξ1

∂x3
= 1

J3D

(
∂x1

∂ξ2
h2 − ∂x2

∂ξ2
h1

)
,

∂ξ2

∂x1
= − 1

J3D

(
∂x2

∂ξ1
h3 − ∂x3

∂ξ1
h2

)
,

∂ξ2

∂x2
= 1

J3D

(
∂x1

∂ξ1
h3 − ∂x3

∂ξ1
h1

)
,

∂ξ2

∂x3
= − 1

J3D

(
∂x1

∂ξ1
h2 − ∂x2

∂ξ1
h1

)
,

where the full three-dimensional Jacobian determinant is

J3D = h3

(
∂x1

∂ξ1

∂x2

∂ξ2
− ∂x1

∂ξ2

∂x2

∂ξ1

)
+ h2

(
∂x1

∂ξ2

∂x3

∂ξ1
− ∂x1

∂ξ1

∂x3

∂ξ2

)
+ h1

(
∂x2

∂ξ1

∂x3

∂ξ2
− ∂x2

∂ξ2

∂x3

∂ξ1

)
.

Finally, the surface Jacobian is computed as

J =
∣∣∣∣ ∂x

∂ξ1
× ∂x

∂ξ2

∣∣∣∣ = √
J3D .

The resulting terms of the divergence operator

∇ · viei =
2∑

j=1

∂ξ j

∂x

∂vi

∂ξ j

are mathematically equivalent to those obtained through the geometric tensor construction.
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3. Validation

We present a number of simulations using the implementation in Nektar++ to validate the methodology and to demon-
strate its capability to represent complex problems in the application area of cardiac electrophysiology. Problems with
analytic solutions are first considered to verify the correct numerical properties are being observed. An applied example then
follows in which we simulate the electrical activation of cells in the human left atrium, represented as a two-dimensional
surface, using the monodomain reaction–diffusion equation.

For analytic test cases, we consider the computational domain to be the unit-radius sphere S2 ⊂R
3, or a subset thereof.

This domain is sufficiently complex to demonstrate the effectiveness of the method without degenerating to a relatively
trivial problem, yet simple enough to retain mathematically elegant solutions for particular choices of parameters. The
sphere is parametrised by the mapping from spherical to Cartesian coordinates,

χ(θ,φ) = (sin θ cosφ, sin θ sinφ, cos θ)

which results in the Jacobian, metric tensor, and inverse metric tensor,

J =
(

cos θ cosφ cos θ sinφ − sin θ

− sin θ sinφ sin θ cosφ 0

)
, g =

(
1 0

0 sin2 θ

)
, g−1 =

(
1 0

0 1
sin2 θ

)
,

respectively. Substitution into Eq. (4) gives the expression for the Laplacian operator on the spherical surface as

�M u = 1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+ 1

sin θ

∂

∂φ

(
1

sin θ

∂u

∂φ

)

= cos θ

sin θ

∂u

∂θ
+ ∂2u

∂θ2
+ 1

sin2 θ

∂2u

∂φ2
. (7)

In spherical coordinates, solutions to the Laplace equation can be obtained analytically through expansion in spherical
harmonics,

Y m
� (θ,ϕ) = Cl,m Pm

� (cos θ)eimϕ,

where Pm
� are the associated Legendre polynomials and Cl,m are constants. Consequently, these functions are good candidates

for testing the formulation of the Laplacian on a sphere. It is apparent that if we take m = 0 to maintain real solutions
and discard the constants for clarity we are interested in solutions of the form Y 0

� (θ,ϕ) = P�(cos θ), where P�(z) are the
Legendre polynomials satisfying,

d

dz

[(
1 − z2) d

dz
Pn(z)

]
+ n(n + 1)Pn(z) = 0.

Choosing z = cos θ , and applying the chain rule,

cos θ

sin θ

d

dθ

(
Pn(cos θ)

) + d2

dθ2

(
Pn(cos θ)

) + n(n + 1)Pn(cos θ) = 0,

and we can conclude from Eq. (7) that

�M Pn(cos θ) = −n(n + 1)Pn(cos θ)

on the surface of the sphere. An illustrative example of P6(cos θ) on the sphere is shown in Fig. 3(a).

3.1. Helmholtz equation

To illustrate that the discretisation retains the spatial convergence properties of the spectral/hp element method we
extend the result above to solve the Helmholtz equation,

�M u(x) − λu(x) = f (x), x ∈ Ω,

u(x) = gD(x), x ∈ ∂Ω, (8)

on the spherical patch Ω = {S2(r, θ,φ) | (θ,φ) ∈ [−π
4 , π

4 ]×[−π
2 , π

2 ], r = 1}. Extending our analysis for the Laplace equation
above, we choose the forcing function

f = −(
λ + n(n + 1)

)
Pn(cos θ)

and impose Dirichlet boundary conditions

gD(x) = Pn(cos θ),
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Fig. 3. (a) Representative solution u = P6(cos θ). Such functions are spherical harmonics which are analytic solutions to the Laplace equation in spherical
coordinates. (b) High-order mesh of a patch of the unit sphere given by Ω = {S2(r, θ,φ) | (θ,φ) ∈ [− π

4 , π
4 ] × [− π

2 , π
2 ], r = 1}. This example consists of 36

triangular elements. The equivalent quadrilateral mesh consists of 18 elements obtained through recombining pairs of triangles.

Fig. 4. Error of the numerical solution in the L2 norm with polynomial order for the Helmholtz problem given by Eq. (8) on a patch of the unit sphere,
shown in Fig. 3(b), using either (a) curvilinear triangular elements, or (b) curvilinear quadrilateral elements. Exponential convergence is obtained with
increasing polynomial order P on both meshes across a range of geometric orders P g . Errors saturate when the geometric error dominates the spatial
discretisation error.

which, by construction, has an exact solution on Ω of

u(x) = Pn(cos θ).

The computational meshes used for this example consist of either 36 triangular elements, as illustrated in Fig. 3(b), or 18
quadrilateral elements. On each element polynomial bases with maximum degrees of P = 1 through P = 8 are considered.
Both the triangular and quadrilateral discretisations result in the same number of degrees of freedom for a given P , since
elemental edge modes are coupled under the continuous Galerkin formulation. In a curvilinear manifold, the accuracy of a
numerical solution is dependent on both the ability of the expansion basis to capture the solution and on the geometric
accuracy of parametric coordinate mappings and consequently the differential operators. The coordinate mappings χi , from
the two-dimensional reference regions to the physical elements are constructed in terms of high-order bases much like
those used to represent the solution. The derivatives of these mappings and the entries of the Jacobian matrix are then
evaluated pointwise at the quadrature points used for integration in the solution space when constructing the differential
operators. The quality of the resulting solution is therefore a function of the characteristic mesh element size (h), the
solution polynomial order (P ) and the order of the geometric representation (P g ) of the elements.

Fig. 4 shows the error in the solution to the Helmholtz problem given in Eq. (8) on a number of triangular and quadri-
lateral meshes, ranging in order from P g = 1 to P g = 6. A fixed number of curvilinear elements are used across the range of
P g for each shape. Errors are computed as the difference between the computed solution at the mesh points and the exact
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Fig. 5. Comparison of solution convergence for the Helmholtz problem using triangular meshes. L2-error is plotted against number of degrees of freedom
on a log-log scale for the 18 element mesh shown in Fig. 3(b).

solution at the corresponding radially projected point on the true surface. An exponential reduction in error is observed
for all cases, in line with the spectral convergence properties expected of the method. The error is seen to saturate when
the error introduced by the representation of the geometry dominates the error from the spectral/hp element discretisa-
tion of the solution. In this example planar elements capture the geometry very poorly and introduce significant errors in
the differential operators, while higher values of P g resolve the geometry much better and significantly reduce the error.
Quadrilateral tessellations attain a lower error than their triangular counterparts in general. The convergence of the solution
using both mesh and polynomial refinement is shown in Fig. 5. In the case of mesh refinement, both the geometry and
solution expansions are linear. P -refinement obtains more rapid convergence than h-refinement.

3.2. Parabolic problem

The second example is a time-dependent diffusion problem on S2. The mesh consists of 1456 quadrilateral elements
with P g = 5 and the solution is represented using polynomial expansions up to order P = 5 on each element. We extend
our solution of the Laplace equation to solve the heat equation and define our initial value problem to be

∂u

∂t
(x, t) = ε�M u(x, t), x ∈ Ω, (9)

u(x,0) = Pn(cos θ). (10)

This has an analytic solution of the form u(x, t) = Pn(cos θ)e−n(n+1)εt . A representative illustration of this function on the
spherical domain can be seen in Fig. 3(a). Fig. 6 shows the convergence of the solution in time using the second-order
implicit backwards difference formula. The correct second-order convergence is obtained until the spatial discretisation and
geometric errors begin to dominate.

4. Application to cardiac electrophysiology

The most prevalent PDE model used to describe electrical propagation in the heart is the monodomain reaction–diffusion
equation. The reaction term is a system of Ordinary Differential Equations (ODEs) which characterise the flow of ions in and
out of individual cells. The diffusion component of the system describes the propagation of the electrochemical action
potential between cells in the tissue. Since the myocardium is fibrous in nature, this diffusion is highly anisotropic and
can lead to conduction velocities which are an order of magnitude higher in the direction of the fibre compared to the
transverse direction in some types of cardiac tissue. The PDE is defined as

β

(
Cm

∂u

∂t
+ J

)
= ∇ · (σ∇u),

∂ v

∂t
= f (u, v),

where u(x, t) is the potential difference across the membrane of a cell, v(x, t) is the cell model state, β is the cellular
surface-to-volume ratio, Cm is the membrane capacitance and J (x, t) = J ion(x, t) + Js(x, t) is the total outward flowing
current from a cell as given by the cell model f (u, v), and the stimulus current used to activate the system.

The diffusivity tensor σ reflects the coupling between adjacent cells through gap junctions and the orientation of cells
within the tissue. This directly affects the propagation velocity of wavefronts with greater coupling leading to higher con-
duction velocities. We consider two choices for the diffusivity tensor: the isotropic homogeneous case where there are no



C.D. Cantwell et al. / Journal of Computational Physics 257 (2014) 813–829 823
Fig. 6. Error in solving diffusion equation for T = 0.1 time units, showing time convergence of a second-order backwards difference formula implicit scheme,
P = 5, P g = 5 and ε = 0.1, with an initial condition of u0 = P6(cos θ), on a 1452-quadrilateral spherical mesh.

spatial variations in conductivity and fibre direction is not accounted for, and an anisotropic heterogeneous case where this
information is included in the model.

Cardiac cells maintain a resting cellular transmembrane potential of approximately −85 mV, but the movement of ions
leads to a change in the potential difference across the membrane of the cell and the development of an action potential,
which numerically is described by the system of ODEs. A broad choice of ionic and phenomenological cell models exist
which capture the characteristics of different types of cardiac cells with differing levels of biophysical accuracy. The model
chosen for the atrium simulations presented here is the Courtemanche et al. model [16] consisting of 20 ODEs and derived
from experimental recordings on human and animal atrial cells.

The particular numerical challenges which arise when modelling cardiac electrophysiology are: the stiffness of the cell
model and the necessary time-step restrictions; the resulting steep spatial gradients which need to be effectively captured
by the spatial discretisation in order to correctly predict conduction velocities; and the geometric complexity of accurately
representing the anatomy. As a consequence, the computational cost of such whole-chamber models is very high, often
requiring extended time on large clusters.

The computational mesh Ω , used for the simulations presented here, is obtained through segmentation of magnetic
resonance angiography (MRA) images. A surface mesh is then generated, which is post-processed to ensure appropriate
element density and uniformity to capture the sharp gradient in the wavefronts using high-order elements. The pulmonary
veins are initially closed over in the generated surface mesh so these are opened to correctly model human physiology.
No-flux Neumann boundary conditions are imposed on the edge of these pulmonary vein sleeves. The other main feature
is the appendage, a finger-like extension from the main body of the atrium. Each element is augmented with high-order
geometric information using the spherigon technique [30] which, in the limit P g → ∞, produces a C1-smooth surface. In
this method, vertex normals are calculated as the average of the surrounding face normals and these are then fitted to a
sphere to define the curvature of each element.

The spatial and temporal discretisation is controlled by a number of parameters. A convergence study provides guidance
on suitable choices of these parameters for achieving accurate solutions efficiently. Results of these tests are shown in
Table 1 where for each test we report the time at which complete activation of the atrium occurs, as well as the time of
the simulation, on 80 cores of an SGI Altix ICE 8200 EX. Activation time is used as a metric for accuracy, since conduction
velocity is particularly sensitive to spatial resolution. For each mesh, the original STL description of the atrial surface was
remeshed using Gmsh using elements of the specified characteristic length h. Based on this data, a suitable choice of
parameters would be h = 1.4 mm, P = 5, �t = 0.02 which achieves an accuracy of within 5%. We also plot in Fig. 7
a comparison of the performance scaling of the solver when using h- and p-refinement using a subset of the data in Table 1.
Increasing resolution by refining the polynomial order results in faster simulations for comparable degrees of freedom and
wall time increases at a slower rate relative to using h-refinement. We note that although these data include timings of
the whole solve (linear system and cell model evaluation), the ionic model is evaluated pointwise and therefore it can be
reasonably assumed that its computational cost scales linearly with the number of degrees of freedom and by the same
factor in both cases.

4.1. Isotropic propagation

In the isotropic case, the conductivity of the tissue is fixed at σ (x) = Iσ for a physiologically appropriate choice of the
scalar σ = 0.13341 mS mm−1. Fig. 8 shows a sequence of snapshots characterising the depolarisation propagation through
the atrium. The coloured contours indicate the value of the transmembrane potential u ranging from a depolarised +25 mV
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Table 1
Results of a convergence study for a human atrium mesh with isotropic conductivity for a range of values of polynomial order P , element characteristic
length h and time-step �t . Timings show absolute wall time for a 600 ms simulation on 80 cores of an SGI Altix ICE 8200 EX.

h (mm) P Nelmt DOF �t (ms) Amax (ms) T

0.6 1 297 898 149 493 0.02 172 56 m 56 s
0.8 1 93 309 46 960 0.02 194 17 m 10 s
1.0 1 38 144 19 268 0.02 241 6 m 58 s
1.2 1 18 222 9246 0.02 321 3 m 21 s
1.4 1 9869 5033 0.02 442 1 m 53 s

0.8 2 93 309 187 232 0.02 175 29 m 55 s
1.0 2 38 144 76 684 0.02 186 12 m 16 s
1.2 2 18 222 36 717 0.02 211 5 m 55 s
1.4 2 9869 19 938 0.02 250 3 m 12 s

0.8 3 93 309 420 811 0.02 176 45 m 58 s
1.0 3 38 144 172 245 0.02 178 18 m 25 s
1.2 3 18 222 82 410 0.02 187 8 m 48 s
1.4 3 9869 44 712 0.02 207 4 m 55 s

1.4 4 9869 79 355 0.02 188 7 m 07 s

1.4 5 9869 123 867 0.10 193 1 m 57 s
1.4 5 9869 123 867 0.08 190 2 m 26 s
1.4 5 9869 123 867 0.06 187 3 m 14 s
1.4 5 9869 123 867 0.04 185 4 m 48 s
1.4 5 9869 123 867 0.02 182 9 m 38 s
1.4 5 9869 123 867 0.01 180 18 m 58 s
1.4 5 9869 123 867 0.005 177 39 m 21 s

1.4 6 9869 178 248 0.02 178 12 m 33 s

Fig. 7. Comparison of solver scaling for h- and p-refinement based on values from Table 1. Timings are for 600 ms simulations, �t = 0.02, of the isotropic
case on 80 cores of an SGI Altix ICE 8200 EX. Initial discretisation with smallest number of DOFs is h = 1.4, P = 1.

(red) down to a polarised −81 mV (blue). Initial activation is induced through a 2 ms stimulus current Js, of strength
50 μA/mm2 applied to a region Ωs = Ω ∩ S2(xs, rs), for some position xs and radius rs of stimulation, as indicated by the
black dot in the figure. Activation is characterised by rapid depolarisation followed by a gradual recovery of the polarised
state. The activation wavefront propagates uniformly across the surface from the region of activation, following the contours
of the surface. Conduction velocity is uniformly 0.5 m/s and complete activation of the atrium occurs after 182 ms. The
wavelength of the depolarisation wave is typically greater than the diameter of the atrium in a healthy heart, inherently
reducing the opportunity for reentry and arrhythmias. Atrial tissue in a depolarised plateau phase after the wavefront passes
cannot support further activation until it has repolarised.

4.2. Anisotropic heterogeneous propagation

The isotropic model is now extended with information describing scarring of the myocardium and fibre orientation. This
data represents electrophysiological characteristics of the tissue and so better reflects the true activation pattern of the
atrium. Fibre orientation is prescribed using histological examination of ex-vivo human atria and is shown in Fig. 9(a). At
each quadrature point the diffusion tensor σ ii is defined as the i-th component of the unit vector in the primary fibre
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Fig. 8. Electrical propagation across an atrium from a circular stimulus in the left-superior wall (black dot). Images show transmembrane voltage at 20 ms,
40 ms, 60 ms and 80 ms (top row), and 100 ms, 150 ms, 200 ms and 250 ms (bottom row) after initial stimulus. (For interpretation of the references to
colour in this figure, the reader is referred to the web version of this article.)

Fig. 9. (a) Representative fibre orientation of the human left atrium used to prescribe anisotropic conductivities in the model. (b) Conductivity map (σ )
derived from late gadolinium DE-MRA imaging intensities. (For interpretation of the references to colour in this figure, the reader is referred to the web
version of this article.)

direction. Fibre direction is oriented around the pulmonary veins and includes the main Bachmann fibre bundle which is
the primary connection to the right atrium and runs laterally relative to the perspective of the figure and through the
point of stimulus. Conductivities are set to reflect physiologically measured values from the literature, with an anisotropic
ratio of 1:8 and preferential conductivity along the fibres. Scar tissue can be obtained through late-gadolinium enhanced
magnetic resonance imaging (LG-MRI) where higher intensity voxels correlate with the location of scarred tissue. Healthy
tissue is defined as intensities equal to, or less than, the mean blood pool intensity. Full scar is defined as intensities of
3 standard deviations (S.D.) above the blood pool mean intensity. Representative scar data is shown in Fig. 9(b) where
grey indicates low intensity and red indicates intensities of 3 S.D. above the blood pool mean. Electrical propagation in an
atrium incorporating scar tissue and fibre orientation is shown in Fig. 10 with the same stimulus protocol applied as for
the isotropic case in Fig. 8. Activation wavefronts now propagate in a non-uniform manner and advance faster along the
direction of fibres. Conduction is slowed by partial scar and propagates around full scar. Average conduction velocities are
significantly reduced and increase the time taken to fully activate the atrium.

5. Discussion

In this paper we have outlined the construction of a high-order finite element method on arbitrary smooth
codimension-1 surfaces embedded in a three-dimensional space. We use a geometric tensor approach to give a rigorous
definition (see Appendix A) and compare it with an extension of the conventional Euclidean construction of planar geo-
metric terms in finite element methods. We confirm the validity of the numerical and geometric approximations through
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Fig. 10. Electrical propagation across the atrium, incorporating scar information and fibre orientation, from a circular stimulus in the left-superior wall.
Images show transmembrane voltage at 20 ms, 40 ms, 60 ms and 80 ms (top row), and 100 ms, 150 ms, 200 ms and 250 ms (bottom row) after the initial
stimulus.

example test cases. Finally, the method is demonstrated using a more complex biophysical modelling problem in cardiac
electrophysiology.

The test cases confirm that the high-order discretisation retains exponential convergence properties with increasing ge-
ometric and expansion polynomial order if both the solution and true surface are smooth. Errors are found to saturate
when the geometric errors, due to the parametrisation of the surface elements, begin to dominate the temporal and spatial
discretisation errors. For the smooth solutions considered as test cases, the results show that this dominance of geometric
errors quickly limits the effectiveness of further increases in the number of degrees of freedom, either through mesh re-
finement or higher solution polynomial orders. Increasing the order of the geometry parametrisation reduces the geometric
error. The analytic test cases presented here use a coarse curvilinear mesh; for applications, meshes are typically more
refined in order to capture features in the solution and so will better capture the geometry and consequently reduce this
lower bound on the solution error. If the solution is not smooth, we do not expect to see rapid convergence. In the case that
the solution is smooth, but the true surface is not, then exponential convergence with P and P g can only be achieved if,
and only if, the discontinuities are aligned with element boundaries. However, if discontinuities lie within an element, con-
vergence will be limited by the geometric approximation, since the true surface cannot be captured. In the cardiac problem,
we consider both the true surface and solution to be smooth.

Numerical convergence tests on the atrium reflect the significant speed-up obtained using high-order discretisations in
comparison to linear discretisations for the same level of accuracy. While a proportion of this speed-up can be attributed
to the faster convergence rate of polynomial refinement over mesh refinement, high-order methods are significantly faster
for comparable numbers of degrees of freedom. This is most likely due to the increased data locality of elemental regions
and therefore greater CPU cache coherence when performing operations element-wise, compared to the cost of memory
indirection when evaluating a large sparse matrix in the linear case.

The general metric formulation was compared with an extension of a traditional two-dimensional finite element method
implementation to the embedded manifold. While the two approaches can be seen to be mathematically equivalent, the
metric formulation possesses greater implementational simplicity. The metric tensor is of size 2 × 2 compared to the 2 × 3
matrix of factors resulting from extending the conventional formulation. For a large mesh, this may be a significant storage
consideration. Furthermore, in the general case when the geometric definition and the quadrature points do not share
the same points distribution, interpolation is necessary on each usage of the Jacobian or metric factors. Consequently, the
proposed metric tensor approach will have a reduced computational cost.
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Appendix A. Differential geometry formulation of the Laplace operator

We outline a rigorous derivation of the Laplace–Beltrami operator. Further to the notation used in Section 2, we use
the convention that indices appearing once in the upper position and once in the lower position are considered dummy
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indices and are implicitly summed over their range, while non-repeated indices are considered free to take any value.
Derivatives are also denoted using the lower-index comma notation, for example gij,k . With this in mind, we now construct
the fundamental differential operators we require for a 2-dimensional manifold embedded in a 3-dimensional space. In order
to express these operators in curvilinear coordinates we start by assuming that we have a smooth surface parametrisation
given by

x
(
ξ1, ξ2) := (

x1(ξ1, ξ2), x2(ξ1, ξ2), x3(ξ1, ξ2)).
Next we will define the Jacobian of x as the tensor

J j
i = ∂x j

∂ξ i

where J j
i can be viewed as a covariant surface vector (by fixing the upper index) or as a contravariant space vector (by

fixing the lower index). The surface metric tensor gij can be defined in terms of the J j
i as

gij =
3∑

k=1

J k
i J k

j , (A.1)

which can be considered to transform a contravariant quantity to a covariant quantity. Similarly the conjugate tensor gij ,
which does the reverse transformation, is given by

g11 = g22/g, g12 = g21 = −g12/g, g22 = g11/g, (A.2)

where g is the determinant of gij . The metric tensor and its conjugate satisfy the condition

δ
j
i = gik g jk =

{
1, if i = j,

0, if i �= j.

To construct the divergence operator we will also need the derivative of g with respect to components of the metric, gij . We

know that g is invertible and from linear algebra we have that the inverse of the metric (A.2) satisfies g−1 = 1
g g̃� , where g̃

is the cofactor matrix of g . Therefore g̃� = g g−1, or in components g̃i j = g(g−1) ji . Using Jacobi’s formula for the derivative
of a matrix determinant with respect to its entries, and since g is invertible, the derivative of the metric determinant is

∂ g

∂ gij
= tr

(
g̃� ∂ g

∂ gij

)
= g̃i j = g

(
g−1)

ji = ggij . (A.3)

A.1. Divergence operator

The partial derivative of a tensor with respect to a manifold coordinate system is itself not a tensor. In order to obtain a
tensor, one has to use the covariant derivative, defined below. The covariant derivative of a contravariant vector is given by

∇kai = ai
,k + a jΓ i

jk, (A.4)

where Γ i
jk are Christoffel symbols of the second kind. The Christoffel symbols of the first kind are defined by

Γi jk = 1

2
[gkj,i + gik, j − gij,k].

Here we note that Γi jk is symmetric in the first two indices. To obtain the Christoffel symbols of the second kind we
formally raise the last index using the conjugate tensor,

Γ l
i j = Γi jk gkl (A.5)

which retains the symmetry in the lower two indices. We can now express the derivatives of the metric tensor in terms of
the Christoffel symbols as

gij,k = Γikj + Γ jki = gljΓ
l

ik + gliΓ
l
jk.

We now define the divergence operator on the manifold, ∇ · X = ∇k Xk . Consider first the derivative of the determinant
of the metric tensor g with respect to the components of some local coordinates system ξ1, ξ2. We apply the chain rule,
making use of the derivative of the metric tensor determinant with respect to components of the metric (A.3) and the
relationship (A.5), to get
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∂ g

∂ξk
= ∂ g

∂ gij

∂ gij

∂ξk
= ggij gi j,k = ggij(Γikj + Γ jki) = g

(
Γ i

ik + Γ
j

jk

) = 2gΓ i
ik.

We can therefore express the Christoffel symbol Γ i
ik in terms of this derivative as

Γ i
ik = 1

2g

∂ g

∂ξk
= 1√

g

∂
√

g

∂ξk
. (A.6)

Finally, by substituting for Γ i
ik in the expression for the divergence operator

∇k Xk = Xk
,k + XiΓ k

ki

= Xk
,k + XkΓ i

ik

= Xk
,k + Xk 1√

g
(
√

g ),k

and we can deduce a formula for divergence of a contravariant vector as

∇ · X = ∇k Xk = (Xk√g ),k√
g

. (A.7)

A.2. Laplacian operator

The covariant derivative (gradient) of a scalar on the manifold is identical to the partial derivative, ∇kφ = φ,k . To derive
the Laplacian operator we need the contravariant form of the covariant gradient above which can be found by raising the
index using the metric tensor, giving

∇kφ = gkjφ, j, (A.8)

and substituting (A.8) for Xk in (A.7) to get the Laplacian operator on the manifold as

�Mφ = 1√
g

(√
g gijφ, j

)
,i . (A.9)

A.3. Anisotropic Laplacian operator

Anisotropic diffusion is important in many applications. In the ambient Euclidean space, this can be represented by a
diffusivity tensor σ in the Laplacian operator as

�M = ∇ · σ∇.

On our manifold, we seek the generalisation of (A.9), in the form

�̃Mφ = ∇ jσ̃
j

i ∇ iφ,

where the σ̃
j

i are entries in the surface diffusivity. For a contravariant surface vector a j we can find the associated space
vector Ai as Ai = J i

ja
j . Similarly if Ai is a covariant space vector, then a j = J i

j Ai is a covariant surface vector. Using these
we can construct the anisotropic diffusivity tensor σ̃ on the manifold by constraining the ambient diffusivity tensor σ to
the surface. The contravariant surface gradient ∇ iφ is mapped to the corresponding space vector, which lies in the tangent
plane to the surface. This is scaled by the ambient diffusivity and then projected back to a covariant surface vector. Finally,
we use the conjugate metric to convert back to a contravariant form. The resulting surface Laplacian is

�̃Mφ = ∇m glm Jk
l σ jk J j

i ∇ iφ.

Following on from this we deduce that

σ̃
j

i = g jm J l
mσlk J k

i .

It can be seen that in the case of isotropic diffusion that σ̃
j

i = δi
j ⇔ σ = I ,

σ̃
j

i = gim Jk
mσlk J l

j = gim Jk
m Jk

j = gim gmj = δi
j .
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