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Abstract

This paper deals with the asymptotic distribution of Wishart matrix and its application to the estimation
of the population matrix parameter when the population eigenvalues are block-wise infinitely dispersed. We
show that the appropriately normalized eigenvectors and eigenvalues asymptotically generate two Wishart
matrices and one normally distributed random matrix, which are mutually independent. For a family of
orthogonally equivariant estimators, we calculate the asymptotic risks with respect to the entropy or the
quadratic loss function and derive the asymptotically best estimator among the family. We numerically
show (1) the convergence in both the distributions and the risks are quick enough for a practical use, (2)
the asymptotically best estimator is robust against the deviation of the population eigenvalues from the
block-wise infinite dispersion.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Suppose that a p-dimensional random vector y has the covariance matrix �. The inference for
� has been studied in enormous amount of literature and is still an important topic from both
theoretical and practical points of view. Often we assume some structure of �, i.e., restriction on
its parameter space {�|� > 0}. A structure, in some cases, arises from a theoretical reason behind
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the data. In other cases, it appears as a result of exploratory analysis such as principle component
analysis or exploratory factor analysis.

For example suppose that y is generated in the following multivariate linear model;

y = Bx + e, (1)

where B is a p×m coefficient (factor loading) matrix with rank B = m, x is a latent m×1 random
vector (common factor) and p×1 vector e is an error term (unique factor) which is independently
distributed from x. If we further assume that e has �2Ip (Ip: p-dimensional identity matrix) as its
covariance matrix, � is written as

� = B�xB′ + �2Ip,

where �x is the nonsingular covariance matrix of x. In this case � has the eigenvalues �1 � · · · ��p

given by

�i =
{

�i + �2 if i = 1, . . . , m,

�2 if i = m + 1, . . . , p,
(2)

where �i > 0, i = 1, . . . , m, are the eigenvalues of B�xB′. It is often observed that �2 is quite
small compared to �i’s, which means that the first group of eigenvalues (�1, . . . , �m) is very large
compared to the second group (�m+1, . . . , �p). In this paper we call this state as “(two-)block-wise
dispersion” of the population eigenvalues.

What would happen to the sample covariance matrix, when the eigenvalues of population
covariance matrix are “infinitely” dispersed? This is an interesting question from a theoretical
standpoint. Takemura and Sheena [14] and Sheena and Takemura [10] deal with this problem
under “total dispersion” of population eigenvalues, namely

(�2/�1, �3/�2, . . . , �p/�p−1) → 0.

This paper is a generalization of Takemura and Sheena [14] from a theoretical point of view, while
the practical motivation is as follows; as we saw above, we often come across a practical situation
where the population eigenvalues are block-wise dispersed. It is helpful for the inference on � in
practical situations to understand the behavior of the sample covariance matrix, when the popu-
lation eigenvalues are block-wise “infinitely” dispersed. The state of the population eigenvalues
being infinitely dispersed is a theoretical approximation, but understanding the limiting behavior
leads to a better insight on its neighborhood where the eigenvalues are “largely” dispersed.

Now we formally state the framework of this paper. Let S = (sij ) be distributed according to
Wishart distribution Wp(n, �), where p is the dimension, n is the degrees of freedom, and � is
the covariance matrix. The spectral decompositions of � and S are given by

� = ���′, S = GLG′,

where G, � ∈ O(p), the group of p × p orthogonal matrices, and � = diag(�1, . . . , �p), L =
diag(l1, . . . , lp), are diagonal matrices with the eigenvalues �1 � · · · ��p > 0, l1 � · · · � lp > 0
of � and S, respectively. We use the notations � = (�1, . . . , �p) and l = (l1, . . . , lp) hereafter.
By the requirement that

G̃ = (g̃ij ) = �′G
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has positive diagonal elements, the spectral decomposition S = GLG′ is almost surely uniquely
determined. Then almost surely there exists a one-to-one correspondence between the set {S|S >

0} and L × O+(p), where

L = {l|l1 > · · · > lp > 0}, O+(p) = {G̃ ∈ O(p)|̃gii > 0, 1� i�p}.
Let m (mi in Section 2.3) denote the dividing point of the first block and the second block of

the eigenvalues. Now we parameterize �,l as follows:

�i =
{

�i� if i = 1, . . . , m,

�i� if i = m + 1, . . . , p,
(3)

li =
{

di� if i = 1, . . . , m,

di� if i = m + 1, . . . , p.
(4)

In this paper we always consider �’s are given and fixed. We also use the notations,

� = diag(�1, . . . , �p), � = (�1, . . . , �p),

D = diag(d1, . . . , dp), d = (d1, . . . , dp).

We will investigate the asymptotic distribution of S as �/� goes to 0 while � is fixed and its
application to the estimation of �. The state �/� ≈ 0 means that the eigenvalues of � are two-
block-wise “largely” dispersed. In the following, the notation �/� → 0 means a limiting operation
n → ∞ with arbitrary sequences �n, �n, n = 1, 2, . . ., such that �n/�n → 0.

We briefly describe the content of the following sections. In Section 2.1 we prepare a local
coordinate system of O+(p) around Ip. In Section 2.2 we present our main results on asymptotic
distributions and we further discuss the case of multi-block-wise infinite dispersion in Section
2.3. Section 3 deals with the estimation of � from decision-theoretic framework. In Section 3.1
we introduce orthogonally equivariant estimators and two loss functions and in Section 3.2 we
calculate the asymptotic risks.We concentrate on the special case of block-wise identity covariance
matrices in Section 3.3, which is practically important, and we propose the best estimator for the
case with respect to each loss function. In Section 3.4 the convergence speed of both distributions
and risks are numerically evaluated. Together with the application to discriminant analysis, the
numerical comparisons show the superiority of the new estimators.

Before concluding this subsection, we introduce some notational conventions in this paper. In
the sections other than Section 2.3, we always consider a same two-block partition of matrices.
For A = (aij ), a p × p matrix, Aij (1� i, j �2) denotes the (i, j)-block in the partition

A =
(

A11 A12
A21 A22

)
, A11 : m × m, A22 : (p − m) × (p − m).

If A is block diagonal, i.e., A12 = A21 = 0, we write

A = diag(A11, A22) =
(

A11 0
0 A22

)
.

For the particular case of diagonal matrix A = diag(a1, . . . , ap), we simply write A1, A2 instead
of A11, A22, i.e., A1 = diag(a1, . . . , am), A2 = diag(am+1, . . . , ap). Let a = (aij )1� j<i �p

denote the vector of the elements in the lower triangular part of A, which is correspondingly
partitioned as a = (a11, a22, a21), where

a11 = (aij )1� j<i �m, a22 = (aij )m+1� j<i �p, a21 = (aij )1� j �m<i �p.
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If a is a p-dimensional row vector, i.e., a = (a1, . . . , ap), then we make a partition of a as

a = (a1, a2), a1 = (a1, . . . , am), a2 = (am+1, . . . , ap).

We write etr X = exp(tr X) for a square matrix X.

2. Asymptotic distribution

2.1. Local coordinates

We consider a local coordinate of O+(p), u = (uij )1� j<i �p, around the identity matrix Ip.
For the proof of the existence of such coordinate, see Takemura and Sheena [14, Appendix B].
We have the following open sets U, V and functions �ij , 1� i�j �p;

0 ∈ U ⊂ Rp(p−1)/2,

Ip ∈ V ⊂ O+(p),

and �ij (u) is a C∞ function on U such that G(u) = (gij (u)) defined by{
gij (u) = �ij (u), 1� i�j �p,

gij (u) = uij , 1�j < i�p
(5)

is a one-to-one function from U onto V. Using V we can construct a finite open covering of O+(p)

as follows. For H1 ∈ O+(m), H2 ∈ O+(p − m), let

V (H1, H2) = diag(H1, H2)V ∩ O+(p) = {G|G = diag(H1, H2)G∗ , ∃G∗ ∈ V } ∩ O+(p).

denote the open neighborhood of diag(H1, H2). Let

O(m, p − m) = {diag(H1, H2)|H1 ∈ O+(m), H2 ∈ O+(p − m)},
then

O(m, p − m) ⊂
⋃

H1∈O+(m),H2∈O+(p−m)

V (H1, H2).

Since O(m, p − m) is compact, we can choose a finite number of sets O(�) = V (H(�)
1 , H(�)

2 ),
� = 1, . . . , T , such that

⋃T
�=1 O(�) ⊃ O(m, p − m).

For O(�), 1���T , we can use u as a local coordinate since G in O(�) can be uniquely expressed
as H(�)G(u) with some u in U, where

H(�) = diag(H(�)
1 , H(�)

2 ), � = 1, . . . , T . (6)

Now we have u as a local coordinate on each O(�), � = 1, . . . , T . We need another local
coordinate to investigate the asymptotic behavior of S. Let q = (qij )1� j<i �p be defined as
follows as another coordinate on O(�) for a fixed �, � = 1, . . . , T ; if 1�j �m < i�p,

qij = l
1/2
j �−1/2

i

p∑
t=m+1

(H(�)
2 )i−m,t−mutj

= �1/2�−1/2d
1/2
j �−1/2

i

p∑
t=m+1

(H(�)
2 )i−m,t−mutj (7)
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and qij = uij otherwise. If we use matrices Q = (qij ), U = (uij ) and their partitions, (7) is the
same as

Q21 = �1/2�−1/2�−1/2
2 H(�)

2 U21D1/2
1 , Q11 = U11, Q22 = U22. (8)

Conversely

U21 = �−1/2�1/2H(�)
2

′�1/2
2 Q21D−1/2

1 , U11 = Q11, U22 = Q22, (9)

or

uij =

⎧⎪⎨⎪⎩ �−1/2�1/2
p∑

t=m+1

(H(�)
2 )t−m,i−mqtj�

1/2
t d

−1/2
j if 1�j �m < i�p,

qij otherwise.

(10)

2.2. Main results

The following theorem says that G̃ asymptotically separates into two orthogonal matrices
G̃11, G̃22 on the diagonal blocks.

Theorem 1.(1) As �/� → 0, G̃21
p→ 0.

(2) lim�/�→0 P(G̃ ∈ O) = 1 for any open set O ⊂ O+(p) including O(m, p − m).

Proof. Since 2 is easily proved from 1, we only prove 1 here. Let

S̄ = (s̄ij ) = �−1/2�′S��−1/2 = �−1/2G̃LG̃′�−1/2 ∼ Wp(n, Ip),

Suppose 1�j �m < i�p. Note that

s̄ii = (g̃2
i1l1 + · · · + g̃2

iplp)�−1
i .

Therefore,

g̃2
ij � s̄ii

�i

lj
= s̄ii

�j

lj

�i

�j

� s̄ii
�j

lj

�i

�j

�

�
. (11)

Since s̄ii is distributed independently of �, for any ε > 0, there exists M such that

P(s̄ii < M) > 1 − ε, ∀�. (12)

Besides, from the result of Lemma 1 of Takemura and Sheena [14], for any ε > 0, there exists C
such that

P

(
�j

lj
< C

)
> 1 − ε, ∀�. (13)

From (12) and (13) we have

s̄ii
�j

lj

�

�
p→ 0 as

�

�
→ 0.

From this fact and (11) we have

g̃2
ij

p→ 0 as
�

�
→ 0, 1�∀j �m < ∀i�p. �
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Next we state a rather technical lemma, which will be used in the proofs of some theorems.
Consider a random variable x(G, l, �, �, �). We are often interested in the asymptotic expectation
of x(G, l, �, �, �) as �/� → 0 while � is fixed. For fixed � and H(�)(� = 1, . . . , T ), somewhat
abusing the notation, let

x(d, q, �, �, �; �, H(�)) = x(�H(�)G(u(d, q, �, �, �)), l(d, �, �), �(�, �, �), �, �) (14)

for emphasizing the right-hand side as the function of (d, q, �, �, �), where G(u), u(d, q, �, �, �),
l(d, �, �), �(�, �, �) are, respectively, defined by (5), (10), (4) and (3). For u = (u11, u22, u21),
we have

lim
�/�→0

u(d, q, �, �, �) = lim
�/�→0

(u11(q11), u22(q22), u21(d, q, �, �, �)) = (q11, q22, 0),

(15)

hence

lim
�/�→0

G(u(d, q, �, �, �)) = G(q11, q22, 0). (16)

Lemma 1. Suppose that there exist some a <
1

2
and b > 0 such that

|x(�G, l, �, �, �)|�b etr(aGLG′�−1) a.e. in (G, l) (17)

and suppose that for each �, � = 1, . . . , T , lim�/�→0 x(d, q, �, �, �; �, H(�)) exists and equals
to a function

x̄�(H(�)G(q11, q22, 0), d, Q21, �). (18)

Then

lim
�/�→0

E[x(G, l, �, �, �)]

= E[x̄�(diag(G11(W11), G22(W22)), (d1(W11), d2(W22)), Z21, �)], (19)

where the expectation on the right side of (19) is taken with respect to the following mutually
independent distributions

W11 ∼ Wm(n, �1),

W22 ∼ Wp−m(n − m, �2),

Z21 ∼ N(p−m)×m(0, Ip−m ⊗ Im), (20)

and Gss(Wss), ds(Wss), s = 1, 2, are the components in the unique spectral decomposition of
Wss for s = 1, 2;

W11 = G11D1G′
11, D1 = diag(d1, . . . , dm), d1 = (d1, . . . , dm),

W22 = G22D2G′
22, D2 = diag(dm+1, . . . , dp), d2 = (dm+1, . . . , dp). (21)

The proof is omitted. See Sheena and Takemura [11] for the proof.
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The following theorem on the asymptotic distributions is actually a corollary of Lemma 1. Let

W̃11 = G̃11D1G̃′
11,

W̃22 = G̃22D2G̃′
22,

Z̃21 = �1/2�−1/2�−1/2
2 G̃21D1/2

1 ,

where all the elements on the right-hand side are defined in Section 1.

Theorem 2. As �/� → 0,

W̃11
d→ Wm(n, �1),

W̃22
d→ Wp−m(n − m, �2),

Z̃21
d→ N(p−m)×m(0, Ip−m ⊗ Im)

and W̃11, W̃22, Z̃21 are asymptotically mutually independently distributed.

Proof. Let �11 : m × m symmetric matrix, �22 : (p − m) × (p − m) symmetric matrix and
�21 : m × (p − m) matrix. Consider the moment generating function

x(G, l, �, �, �) = exp(tr W̃11�11 + tr W̃22�22 + tr Z̃21�21)

= exp

(
2∑

s=1

tr W̃ss�ss + tr Z̃21�21

)
.

For H(�) = diag(H(�)
1 , H(�)

2 ), H(�)
1 ∈ O+(m), H(�)

2 ∈ O+(p − m), we have

x(�H(�)G(u), l, �, �, �) = exp

{
2∑

s=1

tr (H(�)G(u))ssDs(H(�)G(u))′ss�ss

+ tr �1/2�−1/2�−1/2
2 (H(�)G(u))21D1/2

1 �21

}
.

From (5)

(H(�)G(u))21 = H(�)
2 U21,

hence from (8)

�1/2�−1/2�−1/2
2 (H(�)G(u))21D1/2

1 = Q21.

This leads to

x(d, q, �, �, �; �, H(�)) = exp

{
2∑

s=1

tr (H(�)G(u))ssDs(H(�)G(u))′ss�ss + tr Q21�21

}
,
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with u = u(d, q, �, �, �). Therefore from (16)

lim
�/�→0

x(d, q, �, �, �; �, H(�))

= exp

{
2∑

s=1

tr (H(�)G(q11, q22, 0))ssDs(H(�)G(q11, q22, 0))′ss�ss + tr Q21�21

}
.

From Lemma 1,

lim
�/�→0

E[exp(tr W̃11�11 + tr W̃22�22 + tr Z̃21�21)]

= E

[
exp

{
2∑

s=1

tr Gss(Wss)Ds(Wss)Gss(Wss)
′�ss + tr Z21�21

}]
= E[etr W11�11]E[etr W22�22]E[etr Z21�21],

where in the second and third equations the expectations are taken with respect to the distributions
(20) in Lemma 1. �

2.3. Multi-block partition

In this section, we extend Theorem 2 into multi-block cases. We partition (1, . . . , p) into k
blocks;

1st block (m0 + 1, · · · , m1),

2nd block (m1 + 1, . . . , m2),
...

kth block (mk−1 + 1, · · · , mk),

where

m0 = 0 < m1 < m2 < · · · < mk = p.

Let [i], i = 1, . . . , p, denote the block containing i, i.e.,

[i] = s if ms−1 + 1� i�ms.

We also use the notations m̄s = ms − ms−1, s = 1, . . . , k, for the block sizes.
Correspondingly to the above partition, we make the following partition of a p × p matrix

A = (aij ):

A =
⎛⎜⎝ A11 · · · A1k

...
. . .

...

Ak1 · · · Akk

⎞⎟⎠ , Ast : m̄s × m̄t matrix, 1�s, t �k.

For a diagonal matrix A = diag(a1, . . . , ap), we use the notation

A =
⎛⎜⎝A1 0

. . .

0 Ak

⎞⎟⎠ , As = diag(ams−1+1, . . . , ams ), s = 1, . . . , k.
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Consider the following parametrization of l, �

�i = �i�[i], 1� i�p,

li = di�[i], 1� i�p.

In this subsection we again consider that �i’s are fixed. Now we define W̃ss , Z̃st , 1� t < s�k;

W̃ss = G̃ssDsG̃′
ss ,

Z̃st = �1/2
t �−1/2

s �−1/2
s G̃stD

1/2
t .

where notations of the right-hand side are defined in Section 1. The following theorem is the
extension of Theorem 2.

Theorem 3. As (�2/�1, �3/�2, . . . , �k/�k−1) → 0,

W̃ss
d→ W�s (n − ms−1, �s), 1�s�k,

Z̃st
d→ Nm̄s×m̄t (0, Im̄s ⊗ Im̄t ), 1� t < s�k,

and W̃ss(1�s�k), Z̃st (1� t < s�k) are asymptotically mutually independently distributed.

Proof. Though we can prove the theorem in the same manner as the proof of Theorem 2, it is
notationally too cumbersome. Instead we will prove the theorem by using Theorem 2 recursively.
Let r1 = �1 and rt = �t /�t−1, t = 2, . . . k, then

∏s
t=1 rt = �s , s = 1, . . . , k. Note for 1� i�p,

li = di�[i] = di

[i]∏
t=1

rt , �i = �i�[i] = �i

[i]∏
t=1

rt .

We consider the moment generating function

E

⎡⎣exp

⎛⎝tr
k∑

s=1

W̃ss�ss + tr
∑

1� t<s �k

Z̃st�st

⎞⎠⎤⎦ ,

where �ss(1�s�k) and �st (1� t < s�k) are, respectively, an m̄s × m̄s symmetric matrix and
an m̄t × m̄s matrix. We have

lim
(a2/a1,...,ak/ak−1)→0

E

⎡⎣exp

⎛⎝tr
k∑

s=1

W̃ss�ss + tr
∑

1� t<s �k

Z̃st�st

⎞⎠⎤⎦
= lim

(r2,...,rk)→0
E

⎡⎣exp

⎛⎝tr
k∑

s=1

W̃ss�ss + tr
∑

1� t<s �k

Z̃st�st

⎞⎠⎤⎦
= lim

r2→0
· · · lim

rk→0
E

⎡⎣exp

⎛⎝tr
k∑

s=1

W̃ss�ss + tr
∑

1� t<s �k

Z̃st�st

⎞⎠⎤⎦ .

We omit technical arguments on uniform convergences, which guarantee the decomposition of
lim(r2,...,rk)→0 in the second line into step-by-step limiting operations limr2→0 · · · limrk→0 in the
third line.
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Consider the partitions;

G̃ =

⎛⎜⎜⎜⎝
G̃1k

G̃
(k−1) ...

G̃k−1k

G̃k1 · · · G̃kk−1 G̃kk

⎞⎟⎟⎟⎠ ,

where

G̃
(k−1) =

⎛⎜⎝ G̃11 · · · G̃1k−1
...

. . .
...

G̃k−11 · · · G̃k−1k−1

⎞⎟⎠ .

Define D∗, �∗ as partitioned matrices;

D∗ =
(

L(k−1) 0
0 Dk

)
, �∗ =

(
�(k−1) 0

0 �k

)
,

where

L(k−1) = diag(l1, . . . , lmk−1), �(k−1) = diag(�1, . . . , �mk−1).

Let � = 1, � = �k =∏k
t=1 rt . Then

L =
(

L(k−1)� 0
0 Dk�

)
, � =

(
�(k−1)� 0

0 �k�

)
.

Since as rk → 0, �/� → 0, from Theorem 2, we have

S(k−1) = G̃
(k−1)

L(k−1)G̃
(k−1)′ d→ Wmk−1(n, �(k−1)),

W̃kk
d→ Wm̄k

(n − mk−1, �k),

Z̃kt
d→ Nm̄k×m̄t (0, Im̄k

⊗ Im̄t ), 1� t �k − 1,

and the asymptotic distributions are mutually independent. Therefore

lim
rk→0

E

⎡⎣exp

⎛⎝tr
k∑

s=1

W̃ss�ss + tr
∑

1� t<s �k

Z̃st�st

⎞⎠⎤⎦
= E

⎡⎣exp

⎛⎝tr
k−1∑
s=1

W̃ss(S(k−1))�ss + tr
∑

1� t<s �k−1

Z̃st (S(k−1))�st

⎞⎠⎤⎦
×E[etr W̃kk�kk] ×

k−1∏
t=1

E[etr Z̃kt�kt ],

where the expectations on the right-hand side is taken with respect to the above asymptotic
distributions. If we apply Theorem 2 again to S(k−1) and recursively to the upper-left block
Wishart distribution which asymptotically arises, we gain the result. �

Note that Theorem 3 reduces to Theorem 2 of Takemura and Sheena [14] for the extreme case
of 1-element blocks m̄s = 1, s = 1, . . . , p. Therefore Theorem 3 is a generalization of Theorem
2 of Takemura and Sheena [14].
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3. Application to estimation of �

3.1. Loss functions and orthogonally equivariant estimators

In this section, we apply the asymptotic result on the distribution of S to the estimation of �
when �/� vanishes. We take a decision-theoretic approach to evaluate the performance of the
estimators. We deal with the two loss functions; one is Stein’s loss (entropy loss) function

L1(�̂, �) = tr (�̂�−1) − log |�̂�−1| − p, (22)

and the other is a scale-invariant quadratic loss function

L2(�̂, �) = tr (�̂�−1 − Ip)2. (23)

The associated risk functions are denoted as

Rd(�̂, �) = E[Ld(�̂, �)], d = 1, 2.

The classical estimator of � is the unbiased estimator

�̂
U = n−1S,

which has been widely used for many statistical analysis, especially with statistical software pack-
ages. However, as James and Stein [2] showed, this estimator is neither minimax nor admissible
with Stein’s loss function (22). The same drawback with respect to the quadratic loss function
(23) was reported by Olkin and Selliah [6]. Following these initiative papers, much literature has

been written seeking for a superior estimator to �̂
U

. See Pal [7] for the review on the estimation
of �. In this paper we only refer to orthogonally equivariant estimators proposed by Stein [12],
Dey and Srinivasan [1] and Krishnamoorthy and Gupta [3]. An estimator of the form

�̂ = G�(L)G′, �(L) = diag(	1(l), . . . ,	p(l))

is called orthogonally equivariant; i.e., �̂(GSG′) = G�̂(S)G′, ∀G ∈ O(p).

Stein [12] and Dey and Srinivasan [1] proposed the orthogonally equivariant estimator, �̂
SDS

,
defined by

	i (l) = li�
JS
i , 1� i�p,

where �JS
i = (n + p + 1 − 2i)−1. �̂

SDS
is of simple form but dominates �̂

U
with substantially

better risk w.r.t. the loss function (22). It is also a minimax estimator. See Dey and Srinivasan [1]
and Sugiura and Ishibayashi [13] for more details. Order preservation among 	i (l), i = 1, . . . , p,

is discussed in Sheena and Takemura [9].
The orthogonally equivariant estimator �̂

KG
is defined by

	i (l) = li�
OS
i , 1� i�p,

where �OS
i is given by

(�OS
1 , . . . ,�OS

p )′ = A−1b
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with a p × p matrix A = (aij ) and a p × 1 vector b = (bi) defined by

aij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(n + p − 2i + 1)(n + p − 2i + 3) if i = j,

(n + p − 2i + 1) if i > j,

(n + p − 2j + 1) if j > i,

bi = n + p + 1 − 2i, i = 1, . . . , p.

�̂
KG

is conjectured to be a minimax estimator which dominates �̂
U

w.r.t. the loss function (23).
This was proved by Sheena [8] for the case p = 2.

In this section we only consider orthogonally equivariant estimators given by

	i (l) = ci li , 1� i�p (24)

with some constant ci (1� i�p), or in the matrix expression,

�(L) = L1/2CL1/2, C = diag(c1, . . . , cp).

It is interesting that �̂
SDS

and �̂
KG

are also the minimum risk estimators among the estimators
of the form (24), respectively, for L1(·, ·) and L2(·, ·) when all the population eigenvalues are
dispersed. See Takemura and Sheena [14] for more details.

3.2. Asymptotic risk

This subsection is devoted to the calculation of the asymptotic risks R̃d(�̂, �)

R̃d(�̂, �) = lim
�/�→0

Rd(�̂, �), d = 1, 2,

for an orthogonally equivariant estimator defined by (24). Note that

R1(�̂, �) = E[tr GL1/2CL1/2G′��−1�′] − log |C| − E[log |�−1/2S�−1/2|] − p

= E[tr GL1/2CL1/2G′��−1�′] −
p∑

i=1

log ci −
p∑

i=1

E[log 
2
n−i+1] − p. (25)

R2(�̂, �) = E[tr (GL1/2CL1/2G′��−1�′ − Ip)2]

= E[tr (GL1/2CL1/2G′��−1�′)2] − 2E[tr GL1/2CL1/2G′��−1�′] + p. (26)

For the evaluation E[log |�−1/2S�−1/2|], see e.g., Muirhead [5, (10), p. 132].
We start with the following lemma, the proof of which is omitted. (For the proof see Sheena

and Takemura [11].)

Lemma 2.

lim
�/�→0

E[tr GL1/2CL1/2G′��−1�′]

= E[tr G11D1/2
1 C1D1/2

1 G′
11�

−1
1 ] + E[tr G22D1/2

2 C2D1/2
2 G′

22�
−1
2 ]

+(p − m)tr C1, (27)
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lim
�/�→0

E[tr (GL1/2CL1/2G′��−1�′)2]

= E[tr (G11D1/2
1 C1D1/2

1 G′
11�

−1
1 )2] + E[tr (G22D1/2

2 C2D1/2
2 G′

22�
−1
2 )2]

+2(p − m)E[tr C2
1D1/2

1 G′
11�

−1
1 G11D1/2

1 ] + 2tr C1E[tr �−1
2 G22D1/2

2 C2D1/2
2 G′

22]

+(p − m)(p − m + 2)

m∑
i=1

c2
i + 2(p − m)

∑
1� i<s �m

cics, (28)

where the expectations on the right-hand side in (27) and (28) are taken with respect to the
distributions in (20) and the decompositions in (21).

Now suppose that under the distribution of Wss , s = 1, 2, in (20) and their spectral decompo-
sition in (21), we estimate �s , s = 1, 2, by the following orthogonally equivariant estimators

�̂1 = G11D1/2
1 C1D1/2

1 G′
11, C1 = diag(c1, . . . , cm),

�̂2 = G22D1/2
2 C2D1/2

2 G′
22, C2 = diag(cm+1, . . . , cp),

then the risks w.r.t. each loss function (22), (23) are given by

R11(�̂1, �1) = E[tr (�̂1�
−1
1 ) − log |�̂1�

−1
1 | − m],

R21(�̂2, �2) = E[tr (�̂2�
−1
2 ) − log |�̂2�

−1
2 | − p + m],

R12(�̂1, �1) = E[tr (�̂1�
−1
1 − Im)2],

R22(�̂2, �2) = E[tr (�̂2�
−1
2 − Ip−m)2].

The following theorem gives the decomposition of the asymptotic risk, R̃d(�̂, �), into the risks
R1d , R2d and the residuals R3d for d = 1, 2.

Theorem 4. For d = 1, 2,

R̃d(�̂, �) = R1d(�̂1, �1) + R2d(�̂2, �2) + R3d ,

where

R31 = (p − m)

m∑
i=1

ci,

and

R32 = 2(p − m)E[tr C2
1D1/2

1 G′
11�

−1
1 G11D1/2

1 ] + 2tr C1E[tr �−1
2 G22D1/2

2 C2D1/2
2 G′

22]

+ (p − m)(p − m + 2)

m∑
i=1

c2
i + 2(p − m)

∑
1� i<s �m

cics − 2(p − m)

m∑
i=1

ci .

All the expectations are taken with respect to the distributions (20) and the decom-
positions (21).
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Proof. From (25),

R11(�̂1, �1) = E[tr G11D1/2
1 C1D1/2

1 G′
11�

−1
1 ] −

m∑
i=1

log ci

−
m∑

i=1

E[log 
2
n−i+1] − m,

R21(�̂2, �2) = E[tr G22D1/2
2 C2D1/2

2 G′
22�

−1
2 ] −

p∑
i=m+1

log ci

−
p∑

i=m+1

E[log 
2
n−i+1] − p + m.

Using (27) together with the above result, we have the result for R̃1(�̂, �). From (26),

R12(�̂1, �1) = E[tr (G11D1/2
1 C1D1/2

1 G′
11�

−1
1 )2]

−2E[tr G11D1/2
1 C1D1/2

1 G′
11�

−1
1 ] + m,

R22(�̂2, �2) = E[tr (G22D1/2
2 C2D1/2

2 G′
22�

−1
2 )2]

− 2E[tr G22D1/2
2 C2D1/2

2 G′
22�

−1
2 ] + p − m.

Using (28) and (27) together with the above result, we have the result for R̃2(�̂, �). �

3.3. Minimum asymptotic risk estimator

Consider the model (1) and suppose �1 = · · · = �m(= �) in (2). Then � = � + �2 and � = �2

and

�1 = Im, �2 = Ip−m. (29)

This assumption may not be very realistic. However, note that it is trivially satisfied in the one-
factor model m = 1, which is frequently used in practice. In this subsection we focus on the
estimation of � under the condition (29). In this case, since we have no unknown parameters
anymore, the asymptotic risk is uniquely determined, hence we can derive the “best” i.e., minimum
asymptotic risk estimator among the orthogonally equivariant estimators of the form (24). The
following theorem gives the asymptotic risk for the case (29).

Theorem 5. If �1 = Im, �2 = Ip−m, then the asymptotic risk R̃d(�̂, �), d = 1, 2, is given by
the following function of c = (c1, . . . , cp)′:

R̃1(�̂, �) =
p∑

i=1

(bici − log ci) −
p∑

i=1

E[log 
2
n−i+1] − p, (30)

R̃2(�̂, �) = c′Ac − 2b′c + p, (31)

where b = (b1, . . . , bp)′ is given by

bi =
{

E[di] + p − m if 1� i�m,

E[di] if m + 1� i�p,
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and p × p symmetric matrix A = (aij ) is given by

aij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E[d2
i + 2(p − m)di] + (p − m)(p − m + 2) if 1� i = j �m,

E[d2
i ] if m + 1� i = j �p,

p − m if 1� i �= j �m,

E[dj ] if 1� i�m < j �p,

E[di] if 1�j �m < i�p,

0 otherwise.

All the expectations are taken with respect to the distribution (20) and the decompositions (21)
with �1 = Im, �2 = Ip−m.

Proof. Evaluating Rjd(�̂j , �j ), 1�j, d �2 in Theorem 4 when �1 = Im, �2 = Ip−m, we have
the following results:

R11(�̂1, �1) = E[L1(�̂1, Im)] = E[tr �̂1 − log |�̂1| − m]
= E

[
m∑

i=1

dici − log |W11|
]

−
m∑

i=1

log ci − m

=
m∑

i=1

E[di]ci − E[log |W11|] −
m∑

i=1

log ci − m,

R21(�̂2, �2) =
p∑

i=m+1

E[di]ci − E[log |W22|] −
p∑

i=m+1

log ci − p + m,

R12(�̂1, �1) = E[L2(�̂1, Im)] = E[tr (�̂1 − Im)2]
= E[tr �̂

2
1 − 2tr �̂1] + m = E

[
m∑

i=1

d2
i c2

i − 2
m∑

i=1

dici

]
+ m

=
m∑

i=1

E[d2
i ]c2

i − 2
m∑

i=1

E[di]ci + m,

R22(�̂2, �2) =
p∑

i=m+1

E[d2
i ]c2

i − 2
p∑

i=m+1

E[di]ci + p − m.

Next we calculate R32 in Theorem 4 when �1 = Im, �2 = Ip−m. Note that

2(p − m)E[tr C2
1D1/2

1 G′
11�

−1
1 G11D1/2

1 ] = 2(p − m)E[tr C2
1D1]

= 2(p − m)

m∑
i=1

E[di]c2
i ,

2tr C1E[tr �−1
2 G22D1/2

2 C2D1/2
2 G′

22] = 2

(
m∑

i=1

ci

)(
p∑

i=m+1

E[di]ci

)
.
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Therefore,

R32 =
m∑

i=1

c2
i {(p − m)(p − m + 2) + 2(p − m)E[di]}

+ 2(p − m)
∑

1� i<s �m

cics + 2
∑

1� i �m<s �p

cicsE[ds] − 2(p − m)

m∑
i=1

ci .

Combining above results, we see that (30) and (31) hold. �

Corollary 1. The minimum asymptotic risk with respect to the loss function L1(·, ·) is given by

p∑
i=1

log bi −
p∑

i=1

E[log 
2
n−i−1].

It is attained by �̂
MA1 given by ci = b−1

i , i = 1, . . . , p. The minimum asymptotic risk with
respect to the loss function L2(·, ·) is given by

p − b′A−1b.

It is attained by �̂
MA2 given by c = A−1b.

Proof. The results are easily obtained by the minimization
∑p

i=1(bici − log ci) or c′Ac − 2b′c.
�

The calculation of the asymptotic risks in Theorem 5 and the ci’s of �̂
MA1 and �̂

MA2 requires
the evaluation of E[di], E[d2

i ], i = 1, . . . , p, that is, the first and the second moment of the
eigenvalues of the Wishart distribution with the identity covariance matrix. Generally, we need to
make use of Monte Carlo simulation or numerical integration for the evaluation of the moments
of the eigenvalues. However, when p is small and n is appropriately even or odd depending on p,
the analytic evaluation is feasible. See Appendix in Sheena and Takemura [11] for this evaluation.

Tables 1–3 give ci’s for �̂
U
, �̂

SDS
, �̂

KG
, �̂

MA1
, �̂

MA2 when p = 4 with several values of n.
(Tables for p = 3 are given in Sheena and Takemura [11].) The value of ci’s for the minimum

asymptotic risk estimators �̂
MA1

, �̂
MA2 is calculated by the aforementioned analytic method. As

it is well known, n−1li (i = 1, . . . , p) tends to overestimate the corresponding eigenvalue of
� when i is small, while it tends to underestimate the corresponding eigenvalue of � when i is

large. The estimators �̂
SDS

, �̂
KG

modify this tendency by increasing weight c1 < · · · < cp.

It is seen from the tables that �̂
MA1

, �̂
MA2 enlarge the weight difference within each block

in most cases; for example when p = 4, m = 2, the relation between ci’s of �̂
SDS

(�̂
KG

)

(say cSDS
i (cKG

i ), i = 1, . . . , 4) and those of �̂
MA1

(�̂
MA2

) (say c
MA1
i (c

MA2
i ), i = 1, . . . , 4) is

found as

c
MA1
1 < cSDS

1 < cSDS
2 < c

MA1
2 , c

MA1
3 < cSDS

3 < cSDS
4 < c

MA1
4 ,

and

c
MA2
1 < cKG

1 < cKG
2 < c

MA2
2 , c

MA2
3 < cKG

3 < cKG
4 < c

MA2
4 .
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Table 1
p = 4, m = 1

�̂
U

�̂
SDS

�̂
KG

�̂
MA1 �̂

MA2

n = 5
c1 0.2000 0.1250 0.0822 0.1250 0.0759
c2 0.2000 0.1667 0.0973 0.1200 0.0927
c3 0.2000 0.2500 0.1222 0.3333 0.2310
c4 0.2000 0.5000 0.1746 1.5000 0.6931
Asy.Risk1 3.0752 2.0603 1.5303
R.R.R. 33.00 50.24
Asy.Risk2 4.0000 1.8435 1.4655
R.R.R. 53.91 63.36

n = 7
c1 0.1429 0.1000 0.0690 0.1000 0.0647
c2 0.1429 0.1250 0.0796 0.0883 0.0726
c3 0.1429 0.1667 0.0959 0.2000 0.1559
c4 0.1429 0.2500 0.1259 0.5956 0.3816
Asy.Risk1 1.8508 1.2955 0.9241
R.R.R. 30.01 50.07
Asy.Risk2 2.8571 1.4923 1.1116
R.R.R. 47.77 61.10

n = 9
c1 0.1111 0.0833 0.0600 0.0833 0.0571
c2 0.1111 0.1000 0.0681 0.0707 0.0602
c3 0.1111 0.1250 0.0798 0.1429 0.1179
c4 0.1111 0.1667 0.0990 0.3497 0.2553
Asy.Risk1 1.3436 0.9790 0.6852
R.R.R. 27.13 49.00
Asy.Risk2 2.2222 1.2591 0.9083
R.R.R. 43.34 59.13

n = 11
c1 0.0909 0.0714 0.0533 0.0714 0.0513
c2 0.0909 0.0833 0.0596 0.0593 0.0517
c3 0.0909 0.1000 0.0685 0.1111 0.0949
c4 0.0909 0.1250 0.0819 0.2413 0.1890
Asy.Risk1 1.0585 0.7956 0.5496
R.R.R. 24.84 48.08
Asy.Risk2 1.8182 1.0927 0.7730
R.R.R. 39.90 57.49

n = 21
c1 0.0476 0.0417 0.0346 0.0417 0.0341
c2 0.0476 0.0455 0.0372 0.0338 0.0311
c3 0.0476 0.0500 0.0404 0.0526 0.0483
c4 0.0476 0.0556 0.0444 0.0879 0.0782
Asy.Risk1 0.5127 0.4183 0.2769
R.R.R. 18.41 45.99
Asy.Risk2 0.9524 0.6708 0.4526
R.R.R. 29.57 52.47



768 Y. Sheena, A. Takemura / Journal of Multivariate Analysis 99 (2008) 751–775

Table 1 contd.

�̂
U

�̂
SDS

�̂
KG

�̂
MA1 �̂

MA2

n = 51
c1 0.0196 0.0185 0.0170 0.0185 0.0169
c2 0.0196 0.0192 0.0176 0.0154 0.0148
c3 0.0196 0.0200 0.0182 0.0204 0.0197
c4 0.0196 0.0208 0.0189 0.0278 0.0266
Asy.Risk1 0.2016 0.1777 0.1122
R.R.R. 11.88 44.36
Asy.Risk2 0.3922 0.3207 0.2055
R.R.R. 18.22 47.59

Table 2
p = 4, m = 2

�̂
U

�̂
SDS

�̂
KG

�̂
MA1 �̂

MA2

n = 5
c1 0.2000 0.1250 0.0822 0.1034 0.0762
c2 0.2000 0.1667 0.0973 0.2308 0.1261
c3 0.2000 0.2500 0.1222 0.2000 0.1173
c4 0.2000 0.5000 0.1746 1.0000 0.3988
Asy.Risk1 3.0752 2.2687 1.9819
R.R.R. 26.23 35.55
Asy.Risk2 4.0000 1.8668 1.7317
R.R.R. 53.33 56.71

n = 7
c1 0.1429 0.1000 0.0690 0.0820 0.0632
c2 0.1429 0.1250 0.0796 0.1724 0.1055
c3 0.1429 0.1667 0.0959 0.1304 0.0885
c4 0.1429 0.2500 0.1259 0.4286 0.2425
Asy.Risk1 1.8508 1.4334 1.2107
R.R.R. 22.55 34.59
Asy.Risk2 2.8571 1.5273 1.3728
R.R.R. 46.54 51.95

n = 9
c1 0.1111 0.0833 0.0600 0.0682 0.0546
c2 0.1111 0.1000 0.0681 0.1362 0.0910
c3 0.1111 0.1250 0.0798 0.0980 0.0719
c4 0.1111 0.1667 0.0990 0.2632 0.1727
Asy.Risk1 1.3436 1.0774 0.8908
R.R.R. 19.81 33.70
Asy.Risk2 2.2222 1.2992 1.1422
R.R.R. 41.54 48.60

n = 11
c1 0.0909 0.0714 0.0533 0.0586 0.0482
c2 0.0909 0.0833 0.0596 0.1119 0.0798
c3 0.0909 0.1000 0.0685 0.0790 0.0609
c4 0.0909 0.1250 0.0819 0.1872 0.1337
Asy.Risk1 1.0585 0.8700 0.7080
R.R.R. 17.81 33.11
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Table 2 contd.

�̂
U

�̂
SDS

�̂
KG

�̂
MA1 �̂

MA2

Asy.Risk2 1.8182 1.1337 0.9792
R.R.R. 37.65 46.14

n = 21
c1 0.0476 0.0417 0.0346 0.0349 0.0330
c2 0.0476 0.0455 0.0372 0.0577 0.0531
c3 0.0476 0.0500 0.0404 0.0410 0.0352
c4 0.0476 0.0556 0.0444 0.0735 0.0615
Asy.Risk1 0.5127 0.4477 0.3477
R.R.R. 12.68 32.18
Asy.Risk2 0.9524 0.7013 0.5722
R.R.R. 26.36 39.92

n = 51
c1 0.0196 0.0185 0.0170 0.0162 0.0153
c2 0.0196 0.0192 0.0176 0.0227 0.0211
c3 0.0196 0.0200 0.0182 0.0173 0.0163
c4 0.0196 0.0208 0.0189 0.0248 0.0232
Asy.Risk1 0.2016 0.1857 0.1377
R.R.R. 7.90 31.73
Asy.Risk2 0.3922 0.3331 0.2544
R.R.R. 15.06 35.13

Table 3
p = 4, m = 3

�̂
U

�̂
SDS

�̂
KG

�̂
MA1 �̂

MA2

n = 4
c1 0.2500 0.1429 0.0919 0.1071 0.0852
c2 0.2500 0.2000 0.1111 0.2500 0.1670
c3 0.2500 0.3333 0.1449 0.6000 0.2383
c4 0.2500 1.0000 0.2174 1.0000 0.1698
Asy.Risk1 4.8592 3.6569 3.4447
R.R.R. 24.74 29.11
Asy.Risk2 5.0000 2.0872 1.9697
R.R.R. 58.26 60.61

n = 6
c1 0.1667 0.1111 0.0749 0.0812 0.0678
c2 0.1667 0.1429 0.0873 0.1667 0.1248
c3 0.1667 0.2000 0.1072 0.3733 0.2028
c4 0.1667 0.3333 0.1461 0.3333 0.1209
Asy.Risk1 2.2985 1.7446 1.5186
R.R.R. 24.10 33.93
Asy.Risk2 3.3333 1.6702 1.5097
R.R.R. 49.89 54.71

n = 8
c1 0.1250 0.0909 0.0642 0.0660 0.0569
c2 0.1250 0.1111 0.0733 0.1250 0.0999
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Table 3 contd.

�̂
U

�̂
SDS

�̂
KG

�̂
MA1 �̂

MA2

c3 0.1250 0.1429 0.0870 0.2591 0.1670
c4 0.1250 0.2000 0.1108 0.2000 0.0966
Asy.Risk1 1.5538 1.2032 0.9929
R.R.R. 22.57 36.10
Asy.Risk2 2.5000 1.3948 1.2111
R.R.R. 44.21 51.56

n = 10
c1 0.1000 0.0769 0.0565 0.0560 0.0493
c2 0.1000 0.0909 0.0636 0.1000 0.0833
c3 0.1000 0.1111 0.0737 0.1944 0.1385
c4 0.1000 0.1429 0.0896 0.1429 0.0810
Asy.Risk1 1.1828 0.9327 0.7412
R.R.R. 21.15 37.34
Asy.Risk2 2.0000 1.1991 1.0067
R.R.R. 40.05 49.66

n = 20
c1 0.0500 0.0435 0.0358 0.0326 0.0303
c2 0.0500 0.0476 0.0386 0.0500 0.0455
c3 0.0500 0.0526 0.0421 0.0808 0.0694
c4 0.0500 0.0588 0.0465 0.0588 0.0450
Asy.Risk1 0.5385 0.4484 0.3218
R.R.R. 16.73 40.24
Asy.Risk2 1.0000 0.7122 0.5395
R.R.R. 28.78 46.05

n = 50
c1 0.0200 0.0189 0.0172 0.0151 0.0146
c2 0.0200 0.0196 0.0179 0.0200 0.0192
c3 0.0200 0.0204 0.0186 0.0271 0.0256
c4 0.0200 0.0213 0.0193 0.0213 0.0192
Asy.Risk1 0.2069 0.1836 0.1207
R.R.R. 11.28 41.65
Asy.Risk2 0.4000 0.3293 0.2236
R.R.R. 17.68 44.11

The tables also give asymptotic risk comparison w.r.t. L1 among the estimators �̂
U

, �̂
SDS

, �̂
MA1

(see “Asy.Risk1”) and that w.r.t. L2 among the estimators �̂
U
, �̂

KG
, �̂

MA2 (see “Asy.Risk2”).
The risks are analytically calculated except for evaluating

∑p
i=1 E[log 
2

n−i+1] by Monte Carlo
simulation method using 105 random numbers. “R.R.R.” under “Asy.Risk1” or “Asy.Risk2” shows
the risk reduction rate defined by

R.R.R. of �̂ = The risk of �̂
U − The risk of �̂

The risk of �̂
U × 100.

It has been observed that �̂
SDS

and �̂
KG

drastically reduce the risk of �U when the population
eigenvalues are close to each other. Lin and Perlman [4] report that when � = Ip, R.R.R. of
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�̂
SDS

often reaches 70%. See also Sugiura and Ishibayashi [13] for a risk comparison by elabarate
simulation. In the situation of the block-wise dispersion, the risk reduction rate of these estimators
rarely approaches 50%. Especially when n is as large as 50, the rate is always under 20%. On the

other hand, the risk reduction rates of �̂
MA1 and �MA2 are constantly over 30% and often reach

50% irrespective of the values of n. It is interesting that �̂
MA2 always outperforms �̂

MA1 in view
of R.R.R.

3.4. Simulation studies

In this subsection, we evaluate the performance of �̂
MA1

, �̂
MA2 by Monte Carlo simulation

under the situation (29). As we saw in the previous subsection, in view of the asymptotic risks,

�̂
MA1

, �̂
MA2 provide better risk reduction compared to �̂

SDS
, �̂

KG
. In practical point of view,

however, it is important to see how largely the population eigenvalues must be dispersed so that

the use of �̂
MAd

, d = 1, 2, is recommended. The convergence speed of the distributions given in
Theorem 2, which is an interesting topic by itself, is closely related to this problem.

To see the convergence speed in both distributions and risks, we carried out Monte Carlo
Simulation for the case p = 4, m = 1. We took 11 values 1.0, 0.8, 0.6, 0.4, 0.2, 10−i (i =
1, . . . , 6) in the convergence parameter �, while � is fixed at 1. We took three different values of n
and generated 106 random Wishart matrices under given n, �. The result is given in Table 4. (The
result for p = 3, m = 1 is given in Sheena and Takemura [11].) The upper part of each table shows
the speed of the distributional convergence in Theorem 2. Note that when �1 = Im, �2 = Ip−m,

the asymptotic distribution of a diagonal element of W̃ss , s = 1, 2, is a 
2 distribution. The labels
in the tables are given as follows with 
2

n(�), z(�) denoting the lower � percentage points of 
2

distribution with n degrees of freedom and the standard normal distribution, respectively ;

Prob 1a = P(W̃11 �
2
n(0.05)), Prob 1b = P(W̃11 �
2

n(0.95)),

Prob 2a = P((W̃22)11 �
2
n−1(0.05)), Prob 2b = P((W̃22)11 �
2

n−1(0.95)),

Prob 3a = P((W̃22)33 �
2
n−1(0.05)), Prob 3b = P((W̃22)33 �
2

n−1(0.95)),

Prob 4a = P((̃Z21)11 �z(0.05)), Prob 4b = P((̃Z21)11 �z(0.95)),

Prob 5a = P((̃Z21)31 �z(0.05)), Prob 5b = P((̃Z21)31 �z(0.95)).

In the lower part of each table, “Risk 1_*” and “Risk 2_*” show the risks of the corresponding
estimator �̂

∗
, respectively, for L1 and L2. The tables show that

1. The convergence of the diagonal elements of W̃ss , s = 1, 2, is so rapid that when � = 0.1, the
asymptotic distribution already gives a good approximation for the exact distribution. When
� = 0.1, every probability of the diagonal elements is within 0.01 deviation from the exact
asymptotic probability.

2. The convergence speed of Z̃ is quite slow compared to that of the diagonal elements of W̃ss , s =
1, 2. For a good approximation as above, � must be as small as 10−5 or 10−6.

3. The risks also rapidly converge to the asymptotic risks so that � = 0.1 is small enough to give
a good approximation. Actually all the risks in the tables when � = 0.1 are within the ±5%
interval centered at the exact asymptotic risk.

4. The risk of �̂
MAd

, d = 1, 2, is always lower than that of the competing estimators. Most
notably their superiority in risk is kept even when the population eigenvalues are all equal.
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Table 4
Convergence speed for p = 4, m = 1

1 0.8 0.6 0.4 0.2 10−1 10−2 10−3 10−4 10−5 10−6 Asymp.

n = 11
Prob 1a 0.5852 0.4760 0.3396 0.1881 0.0751 0.0554 0.0517 0.0497 0.0495 0.0498 0.0489 0.0500
Prob 2a 0.3156 0.2620 0.1937 0.1166 0.0660 0.0557 0.0505 0.0494 0.0510 0.0501 0.0492 0.0500
Prob 3a 0.3146 0.2620 0.1920 0.1172 0.0651 0.0560 0.0515 0.0503 0.0496 0.0494 0.0503 0.0500
Prob 4a 0.1955 0.1794 0.1533 0.1124 0.0650 0.0431 0.0283 0.0284 0.0315 0.0449 0.0507 0.0500
Prob 5a 0.1312 0.1206 0.1005 0.0685 0.0342 0.0205 0.0131 0.0131 0.0172 0.0391 0.0497 0.0500
Prob 1b 0.9761 0.9676 0.9610 0.9547 0.9521 0.9510 0.9500 0.9510 0.9495 0.9508 0.9501 0.9500
Prob 2b 0.9986 0.9977 0.9948 0.9863 0.9690 0.9581 0.9505 0.9510 0.9507 0.9509 0.9493 0.9500
Prob 3b 0.9985 0.9979 0.9947 0.9861 0.9681 0.9570 0.9509 0.9515 0.9499 0.9508 0.9508 0.9500
Prob 4b 0.6525 0.6774 0.7152 0.7789 0.8576 0.8979 0.9251 0.9276 0.9310 0.9454 0.9501 0.9500
Prob 5b 0.5899 0.6184 0.6607 0.7327 0.8304 0.8751 0.9091 0.9115 0.9185 0.9399 0.9508 0.9500
Risk 1_U 1.0566 1.0583 1.0552 1.0592 1.0577 1.0583 1.0603 1.0544 1.0574 1.0573 1.0559 1.0585
Risk 1_SDS 0.6514 0.6572 0.6714 0.7092 0.7558 0.7781 0.7954 0.7920 0.7943 0.7942 0.7927 0.7956
Risk 1_MA1 0.4064 0.4154 0.4367 0.4738 0.5104 0.5295 0.5485 0.5471 0.5484 0.5478 0.5468 0.5496
Risk 2_U 1.8199 1.8213 1.8147 1.8170 1.8175 1.8199 1.8210 1.8147 1.8206 1.8180 1.8176 1.8182
Risk 2_KG 1.0173 1.0214 1.0291 1.0493 1.0749 1.0876 1.0939 1.0921 1.0929 1.0926 1.0915 1.0927
Risk 2_MA2 0.5967 0.6075 0.6326 0.6767 0.7268 0.7516 0.7728 0.7724 0.7737 0.7733 0.7719 0.7730

n = 21
Prob 1a 0.7030 0.5419 0.3317 0.1428 0.0601 0.0532 0.0503 0.0505 0.0498 0.0495 0.0509 0.0500
Prob 2a 0.4043 0.3183 0.2017 0.0985 0.0579 0.0547 0.0508 0.0495 0.0492 0.0505 0.0505 0.0500
Prob 3a 0.3995 0.3222 0.2019 0.0975 0.0581 0.0527 0.0507 0.0504 0.0496 0.0497 0.0493 0.0500
Prob 4a 0.2413 0.2156 0.1748 0.1172 0.0601 0.0421 0.0297 0.0292 0.0344 0.0480 0.0503 0.0500
Prob 5a 0.1720 0.1533 0.1185 0.0711 0.0331 0.0201 0.0141 0.0137 0.0211 0.0484 0.0505 0.0500
Prob 1b 0.9830 0.9737 0.9627 0.9557 0.9502 0.9506 0.9503 0.9504 0.9497 0.9505 0.9505 0.9500
Prob 2b 0.9989 0.9977 0.9929 0.9809 0.9617 0.9548 0.9507 0.9501 0.9488 0.9500 0.9514 0.9500
Prob 3b 0.9988 0.9975 0.9935 0.9805 0.9628 0.9549 0.9509 0.9502 0.9501 0.9496 0.9487 0.9500
Prob 4b 0.5985 0.6278 0.6881 0.7757 0.8657 0.8998 0.9262 0.9272 0.9339 0.9476 0.9494 0.9500
Prob 5b 0.5303 0.5632 0.6291 0.7282 0.8368 0.8794 0.9118 0.9130 0.9219 0.9479 0.9504 0.9500
Risk 1_U 0.5121 0.5136 0.5135 0.5116 0.5115 0.5128 0.5110 0.5127 0.5115 0.5109 0.5119 0.5127
Risk 1_SDS 0.3503 0.3552 0.3677 0.3871 0.4056 0.4134 0.4167 0.4183 0.4172 0.4169 0.4177 0.4183
Risk 1_MA1 0.2241 0.2315 0.2461 0.2568 0.2650 0.2715 0.2759 0.2772 0.2759 0.2764 0.2765 0.2769
Risk 2_U 0.9512 0.9514 0.9537 0.9503 0.9516 0.9521 0.9477 0.9535 0.9520 0.9501 0.9505 0.9524
Risk 2_KG 0.6059 0.6109 0.6233 0.6429 0.6607 0.6669 0.6692 0.6708 0.6700 0.6695 0.6707 0.6708
Risk 2_MA2 0.3510 0.3622 0.3861 0.4114 0.4326 0.4433 0.4516 0.4532 0.4521 0.4524 0.4525 0.4526

n = 51
Prob 1a 0.8209 0.5805 0.2691 0.0916 0.0533 0.0492 0.0498 0.0504 0.0501 0.0504 0.0500 0.0500
Prob 2a 0.5101 0.3626 0.1647 0.0721 0.0560 0.0522 0.0501 0.0502 0.0501 0.0504 0.0500 0.0500
Prob 3a 0.5098 0.3610 0.1669 0.0722 0.0555 0.0533 0.0500 0.0507 0.0479 0.0498 0.0506 0.0500
Prob 4a 0.2912 0.2595 0.1878 0.1118 0.0604 0.0415 0.0303 0.0291 0.0403 0.0507 0.0491 0.0500
Prob 5a 0.2191 0.1863 0.1307 0.0689 0.0308 0.0196 0.0133 0.0148 0.0313 0.0501 0.0499 0.0500
Prob 1b 0.9891 0.9762 0.9649 0.9548 0.9507 0.9501 0.9504 0.9501 0.9504 0.9505 0.9497 0.9500
Prob 2b 0.9992 0.9970 0.9889 0.9700 0.9573 0.9526 0.9502 0.9498 0.9503 0.9507 0.9504 0.9500
Prob 3b 0.9990 0.9973 0.9891 0.9712 0.9565 0.9521 0.9499 0.9513 0.9503 0.9506 0.9492 0.9500
Prob 4b 0.5383 0.5836 0.6703 0.7803 0.8683 0.9022 0.9272 0.9286 0.9411 0.9494 0.9503 0.9500
Prob 5b 0.4666 0.5129 0.6101 0.7334 0.8386 0.8789 0.9081 0.9153 0.9312 0.9496 0.9503 0.9500
Risk 1_U 0.2018 0.2022 0.2019 0.2017 0.2019 0.2017 0.2020 0.2017 0.2020 0.2023 0.2018 0.2016
Risk 1_SDS 0.1566 0.1592 0.1658 0.1721 0.1758 0.1768 0.1780 0.1777 0.1780 0.1783 0.1779 0.1777
Risk 1_MA1 0.1037 0.1083 0.1109 0.1088 0.1104 0.1113 0.1125 0.1124 0.1123 0.1124 0.1125 0.1122
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Table 4 contd.

1 0.8 0.6 0.4 0.2 10−1 10−2 10−3 10−4 10−5 10−6 Asymp.

Risk 2_U 0.3923 0.3939 0.3920 0.3916 0.3920 0.3924 0.3927 0.3919 0.3931 0.3929 0.3920 0.3922
Risk 2_KG 0.2896 0.2938 0.3038 0.3127 0.3179 0.3194 0.3208 0.3203 0.3211 0.3215 0.3208 0.3207
Risk 2_MA2 0.1785 0.1867 0.1943 0.1959 0.2010 0.2033 0.2057 0.2055 0.2054 0.2056 0.2059 0.2055

It seems that �̂
MAd

, d = 1, 2, has robustness to the deviation from the dispersion of the
population eigenvalues.

Because of the robustness, �̂
MAd

, d = 1, 2, seem to be useful for various applications. Now as
the last topic in this section, apart from a decision-theoretic approach, we evaluate these new esti-
mators’ performance in discriminant analysis. We use a well-known example of Fisher’s iris data.
The data consist of 50 samples from each of the three groups(species) with 4-dimensional variable
(x1:sepal length(cm), x2:sepal width(cm), x3:petal length(cm), x4:petal width(cm)). We down-
loaded the data from the website http://www-unix.oit.umass.edu/˜statdata. We
let x(i)

j , i = 1, 2, 3, j = 1, . . . , 50 denote the jth sample in the ith group. The estimators to be

tested are the traditional estimators �̂
U

, �̂
SDS

, �̂
KG

and the new estimators �̂
MA1, �̂

MA2 which
are formulated under the condition p = 4, m = 1.

We carry out cross validations. Suppose a learning data set y(i)
j , j = 1, . . . , N , is chosen from

the ith group, i = 1, 2, 3. Estimates for the population covariance matrix of the ith group are

calculated from �̂
U

, �̂
SDS

, �̂
KG

, �̂
MA1 , �̂

MA2 based on

A(i) =
N∑

j=1

(y(i)
j − ȳ(i))(y(i)

j − ȳ(i))′,

where ȳ(i) = N−1∑N
j=1 y(i)

j . As a discriminant function, we use a Mahalanobis distance based

on each estimates �̂
U
(A(i)), �̂

SDS
(A(i)), �̂

KG
(A(i)), �̂

MA1
(A(i)), �̂

MA2
(A(i)), that is, for a test

data x

MD∗
i = (x − ȳ(i))′�̂∗

(A(i))−1(x − ȳ(i)), i = 1, 2, 3.

The eigenvalues of the covariance matrix within each group is as follows:

Group 1: (0.234, 0.039, 0.027, 0.009),

Group 2: (0.482, 0.075, 0.056, 0.011),

Group 3: (0.688, 0.107, 0.057, 0.036).

(32)

We observe that (1) in each group, the largest eigenvalue is about 6 times as large as the
second largest eigenvalue, (2) the second largest eigenvalue is about 3–7 times as large as the
smallest eigenvalue. We are interested in the performance of �MAd , d = 1, 2, with the population
eigenvalues in (32) which are considered as a deviation from (∞, c, c, c), the ideal eigenvalues
for �MAi , i = 1, 2.

http://www-unix.oit.umass.edu/~{}statdata
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Table 5
10-sample-set

Learning data set �̂
U

�̂
SDS

�̂
KG

�̂
MA1 �̂

MA2

1 82.50 83.33 83.33 81.67 82.50
2 85.83 85.00 85.00 85.00 85.00
3 82.50 82.50 82.50 82.50 82.50
4 81.67 83.33 82.50 85.83 84.17
5 76.67 77.50 77.50 79.17 79.17

Average 81.83 82.33 82.17 82.83 82.67

Table 6
5-sample-set

Learning data set �̂
U

�̂
SDS

�̂
KG

�̂
MA1 �̂

MA2

1 66.67 71.85 68.89 75.56 75.56
2 78.52 80.00 78.52 85.19 82.96
3 41.48 41.48 41.48 44.44 42.96
4 43.70 46.67 45.93 53.33 50.37
5 88.89 88.15 88.89 92.59 90.37
6 73.33 78.52 77.78 89.63 88.15
7 64.44 68.89 67.41 73.33 71.85
8 73.33 75.56 72.59 82.96 79.26
9 73.33 75.56 72.59 82.96 79.26
10 69.63 72.59 71.85 82.22 77.78

Average 67.33 69.93 68.59 76.22 73.85

We made three types of cross validations.

1. Leave-one-out: For a chosen (i, j), i = 1, 2, 3, j = 1, . . . , 50, leave x(i)
j out from the whole

data to be a test data, and use the rest as a learning data set. We repeat this trial for every
possible (i, j). Consequently 150 trials were carried out.

2. 10-sample-set: First choose x(i)
1 , . . . , x(i)

10 , i = 1, 2, 3, as a learning data set and use all the

rest as a test data. Next use x(i)
11 , . . . , x(i)

20 , i = 1, 2, 3, as a learning data set and the others as
a test data. Repeatedly change a learning data set until every data is used once as a learning
data. Totally we carried out 600(= 120 × 5) trials.

3. 5-sample-set: First choose x(i)
1 , . . . , x(i)

5 , i = 1, 2, 3, as a learning data set and use all the rest

as a test data. Next use x(i)
6 , . . . , x(i)

10 , i = 1, 2, 3, as a learning data set and the others as a
test data. Repeatedly change a learning data set until all data are used once as a learning data.
Totally we carried out 1350(= 135 × 10) trials.

We summarize the result on the correct classification percentage (“C.C.P.” for abbreviation) of
each discriminant function.

1. Leave-one-out: All the discriminant functions returned the same classification for every test
data and scored 96.67% of C.C.P. The misclassification occurred at the sample x(2)

19 , x(2)
21 , x(2)

23 ,
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x(2)
34 , x(3)

32 . With as much as 49 learning data, all the discriminant functions work quite correctly
and make no differences among the functions.

2. 10-sample-set: See Table 5 for the C.C.P. in each learning data set and the average. Depending
on the learning data set, different discriminant functions records the best C.C.P, but the margins
are small and negligible. It seems that even 10-sample-learning set is too large to differentiate
the functions.

3. 5-sample-set: See Table 6 for the C.C.P. in each learning data set and the average. In every

learning data set, the functions based on �̂
MAd

, d = 1, 2, outperform the other functions.

Especially �̂
MA1 always keeps the highest C.C.P. In total, �̂

MA1 and �̂
MA2 record better C.C.P.

than �̂
U

by 8.89% and 6.52%, respectively, while the margins of �̂
SDS

and �̂
KG

over �̂
U

are,
respectively, 2.60% and 1.26%.
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