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In this note we derive the exact order of magnitude of the moments of the 
modulus of continuity for multiparameter Poisson and, almost as a corollary, for 
multivariate empirical processes. I” 1987 Academic Press. Inc. 

1. INTRODUCTION AND MAIN RESULT 

In Silverman [S] the convergence to zero of the expectation of the 
modulus of continuity of the weighted univariate empirical process appears 
to be an important tool for establishing weak convergence of empirical 
processes based on U-statistics. Apart from this practical motivation, the 
study of the moments of the modulus of continuity seems interesting for 
purely theoretical reasons as well. It is a complement to investigations con- 
cerning the a.s. properties of the modulus of continuity. For mul- 
tiparameter Brownian motion the almost sure behavior of the modulus of 
continuity has been specified in Orey and Pruitt [S] and for the univariate 
empirical process in Mason, Shorack, and Wellner [4]; a related problem 
has been considered in Komlos, Major, and Tusnady [a]. 

In this note we derive the exact order of magnitude of the moments of 
the modulus of continuity for multiparameter Poisson processes and, 
almost as a corollary, for multivariate empirical processes. The remainder 
of this section is devoted to the formulation of the main result, the proof of 
which is deferred to Section 2. In Section 3 we briefly comment on the 
result. 

Received March 1984. 

AMS 1980 subject classifications: Primary 60699, Secondary 62E20. 
Keywords and phrases: Multiparameter Poisson and empirical processes, modulus of con- 

tinuity, exponential bound. 

263 
0047-259X/87 $3.00 

Copyright c> 1987 by Academic Press, Inc. 
All rights of reproduction m  any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82710312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


264 EINMAHLANDRUYMGAART 

For dcs N let X,, X2,..., be i.i.d. random vectors in [0, 11” with common 
d.f. F having Uniform (0, 1) marginals. Let 9 be the class of these d.f.‘s; 
note that any FE 9 is continuous. The empirical process based on the first 
II vectors is written as 

u,= {u,,(t)=n’12(~~(r)-F(f)), tE co, ll”), (1.1) 

where the empirical d.f. pR is defined in the usual way by rip,,(t) = 
#~l~idn:X,~[O,t,]x...x[O,t~]}.Let N,=(N,(t), t~[O,cc)~} bea 
Poisson process with 

8”N,,(r)=nF(t); fE[O, cJ3)d,nEN. (1.2) 

We will focus on the standardized Poisson process, restricted to the unit 
cube [0, l]“, 

.z,,= {.&(t)=n “‘(N,(l) - mf)), f E [O, 11”). (1.3) 

In this note we will exploit the fact that, conditional on N,( l,..., 1) = n, the 
processes Z,, in ( 1.3) are equal in law to the processes U, in ( 1.1). 

The half-open rectangles (s, , t, ] x . . x (So, fd] will be written as 
R= R(s, 1) and by 

.&‘= {R(s, t): R(s, t)c [0, l]“}, (1.4) 

we denote the class of all such rectangles contained in the unit cube. Given 
any (random) function A : [0, l]“- R and an arbitrary rectangle 
R= R(s, t)~9? we write 

A{R}=.4{R(s,t))=d:A, (1.5) 

where A,: is the usual difference operator. The modulus of continuity that 
will be considered here is based on the partition 9m c B of the unit cube 
into the squares of equal size 

R=R k( I )... .k(dl = 

k(d) - 1 k(d) 
-,- , rn~N, (1.6) 

m m I 

and is for the arbitrary function A defined as 

M(4m)=maxR..pm SUP&I,,? In(s)-4t)l. (1.7) 

This modulus of continuity is obviously of the same order of magnitude as 
the official modulus of continuity. 

THEOREM 1.1. Let 6 E (0, 4) be arbitrary. For integers m 2 2 and v E N 
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there exist numbers 0 < C, = C,(d, v, 6) < C2 = C2(d, v, 6) < ccl such that for 
each FE 8 we have 

‘I2 c log m ‘I2 log m 
I 

H 
< &M”(Z,; m) < C, 

( > 
- 

m m ’ 
(1.8) 

for all n >, m ’ + “. The same result holds true for &W( U,, ; m ). 

2. PROOF OF THE THEOREM 

First, M(A; m) will be bounded above by a (random) variable that is 
easier to deal with in the Poisson case. For this purpose we introduce the 
cylinder sets 

C,,,=(O,l]‘-‘x y,; x(0,1]“-‘, ( 1 (2.1) 

and the (random) variables 

(2.2) 

where SEW and the notation (1.5) is used. Let us now observe that 

sup I A(s) - A(r)I 6 i W,,+,(A), 
3.1 E 4, ).. .~,c/) j= I 

(2.3) 

and consequently 

M(A; m) 6 max 

(2.4) 

Before we start with the actual proof let us make the convention that 
a, 6, cl ,..., c,, E (0, co) will denote numbers that may depend on d, v, or 6, 
but not on m, n, nor F. 

Prooffor the Poisson Process. For fixed j the Cj,k are disjoint for different 
k. Since the Poisson process has the property that 

Z,{R,j andZn{R2) are stochastically independent (2.5) 
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for rectangles R,, R,E$! with R, n R, = 0, it follows that the random 
variables 

W,,l(ZJ,..., W,,(Z,) are mutually independent (2.6) 

for anyje (l,..., d) 
Since we have 

&M”(Z,; m) = jK P(M(Z,; m) > A”“) dl, (2.7) 
0 

we need to find an upper and lower bound of the same order for the 
exceedance probability in (2.7). Let us note that 

1- fi (1 -P(Z,(C,,~ >P)f 
k=l 

<P( max Iz,{Cj.k}I ~i”“‘)dP(M(Z,;m)3j.““) 
I<k<m 

=;$,(‘-kc, j’-P(W,,(Z.)~i”“/d)}j: 
for the lower bound we may take any je { l,..., d}. 

Let $ : [0, co ) -+ (0, cc ) be the decreasing function given by 

(2.8) 

II/(l) = 21, 2 1’ log( 1 + x) dx, A> 0; $(O) = 1. (2.9) 
0 

It has been shown in Shorack and Wellner [7] that 

$(A) > l/(1 + )“/3), i > 0. (2.10) 

For any R E 9’ and F as in (1 .l )-( 1.3) let us moreover introduce the 
function 

1’ O<;i<c,F’I”{R} 

c,F”2{R)~A<c2F”2~ii{R} (2.11) 

where 6 E (0, $) is arbitrary but fixed. 
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The following inequalities are the key part of the proof Provided that 
~I>F-‘-~~(R}, h t ere exist a, b, c,, c2 E (0, 00) such that 

P(sup ]Z,(S}l >%)G Y,;,$), E”>O, (2.12) 
SCR 

and there exist possibly different a, b, c,, CUE (0, co) such that 

P(Z,,{R} an)> y,[R,(i), c,F”~{R} <~c,F”~-~{R}. (2.13) 

It is clear from the proof of Theorem 1.1 in Ruymgaart and Wellner [6] 
that for the left-hand side in (2.12) we have the upper bound 

22d+3 exp (& ti (4Fjil n,,2)), A> W{R))“2. (2.14) 

Using (2.10) it follows that 

il= F”2{ R} 

‘32FiRj ~1’2{~} +A/(12(F{R} n)“2) 

1,’ 1 2 
‘32FL’21Rj A(1 + 1/12)‘35F”Z{Rj’ 

(2.15) 

provided we choose L > F’/‘{ R} and n > l/F(R). Hence for 
%ac,F ‘I2 ~ “{ R} we get the upper bound 

(2.16) 

Assuming that ;1< c2 FL/’ ~ ’ {R} and again using (2.10) we see that 

32$R/ * ( 
1 

b- 
4F”2-6{R} 

A computation similar to the one in (2.16) yields for the probability the 
upper bound in the middle of (2.1 l), provided cr F”‘(R) d ;i < 
c~F”~~“(R}. 

683!21/2-6 
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Let us now turn to the lower bound in (2.13). First observe that N,(R) 
is a Poisson(nF{ R} ) random variable. Without loss of generality we may 
assume that both nF{ R} and n”‘,I are integers. Applying Stirling’s formula 
we obtain 

P(Z,{ R} > A) 

} =nF{R} +n”‘1+k) 

It is clear that for 1 in the indicated range and for n 2 Fp ’ ~ 26( R} the last 
expression is bounded below by 

n’~2j. ~ I 
cj c (nF{R})-‘I2 exp 

k=O 

=c~F~‘/~{R} iexp ($) >exp ($). (2.19) 

Hence (2.13) is proved. 
Applying (2.12) to WiJZ,,) and noting that F(C,.,) = l/m for all indices, 

it follows that 

0 Wj,k(Z,) 2 n”v/d) < Yu,,,W’/d), A > 0. (2.20) 

Combining (2.7), (2.8), and (2.20) we see that the order of magnitude of an 
upper bound of the vth moment is determined by 

lx (1 - (1 - ~,,,bw4YY~~= j +J’,,,,+j,,,,7 (2.21) 
0 J( 1 ) 

where the intervals of integration are 

Z(1) = [0, cf’c;m-“2), 

I(2)= [$C~mpY’*, &c;m(-1/2+d)v), 

I(3)= [d’r;m(m”2+6)“, co). 
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For the first and the third integral on the right in (2.21) we easily find the 
upper bounds (see also (2.11)) 

s <dyc’;mpyJ2, 
I(1) 

(2.22) 

I I = (1 - (1 - exp( -bE.“‘m”2)}m) d,l 
03) I(3) 

6 c,(m ~ ’ log m)“‘=. (2.23) 

For the second integral, which is slightly more complicated, we need the 
inequality 

I z (1 - (1 -(l/m)“)“)x’~*-‘dx<c,, 
I 

(2.24) 

for m, v E N, m 2 2. To see this note that for fixed x > 1 the function 
(1 -(l/m)“]” is non-decreasing in m for m > 2. Hence we obtain 

d %(1-(1-(4)‘}=)~~/‘-‘d~~ 
I 

62 
s 

(i).’ y/2 ~ 1 d.x = 2( l/log 2)“” f($v) = cg. 

First, let us note that by substituting aml”‘/d2 =y’l’ we find 

5 j 6 J; (1 - { 1 -exp( -am~2”/d2)~“) dl, 
I(2) 0 
= d”a em - v/2 s z (l-{l-exp(-y*“)}“)d~ 

=d”ap”*m-“’ ill.,,+ j,12,2)). 
where the intervals of integration are 

Z(2, l)= [0, (logm)““), Z(2, 2)= [(log m)“12, co). 

(2.25) 

It is immediate that 

s 
< (log m)“‘. 

I(2.1) 
(2.26) 
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By substituting y*” = x logm and using (2.24) we see that 

s 
= 

I(2.2) 
f~(logm)‘~2~‘L’(l-{l-(l/m)‘)“‘).~”2~’d.~ 

I 

d c,(log m)yi2. (2.27) 

Combination of (2.25)-(2.27) yields 

5 < c,(m-’ log m)“*. (2.28) 
02) 

The upper bound of the theorem is immediate from (2.21), (2.22), (2.23) 
and (2.28), so that it remains to prove the lower bound. In this case we 
apply (2.13) to Z,{C,,}. Combination of (2.7) and (2.8) now yields 

bM”(Z,; m) 3 j (1 - (1 - Y,,,(A’l’)}m) d1, 
04) 

(2.29) 

where 

Similar to (2.25) let us make the substitution amI.‘!” = x2”, then we find 

_ 
s -a 

~ “‘2m I,/2 

s 
(1 - { 1 - exp( -.y2;V)}“) dx, (2.30) 

04) 1l4.1) 

with the interval 
I(4, 1) = [u~‘/~c;, uv’*c;ms’). 

Since there exists m, = m,(a, c2, v, 6) such that 

1(4, 1 ) 3 I(4, 2) = [a”‘~;, (log m)“‘) for mam,, (2.31) 

it follows that 

s 
> a ~~ v12m ~ 1’12 

s 
(1 - (1 - l/m}“‘)dx 

041 04.2) 

2 a ~ vjzm ~ v/2 s (1 - l/e) d.x 
114.2) 

2 c,(m-’ log m)“‘, (2.32) 

provided only that m >, m,. This proves the lower bound. The proof for the 
Poisson case is now completed. 

Proof for the Empirical Process. To a large extent the method can be 
reduced to that of the previous case. Hence we may restrict ourselves to an 
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outline. The following inequality relates the upper bound almost 
immediately to the upper bound for the Poisson process. Given the (ran- 
dom) function A and a rectangle R ES??, by AR we denote the 
corresponding set function restricted to subrectangles of R. Let 9, be 
the class of all such set functions and let q!~ : L?~ + [w. Provided that F{ R > < 4 
we have 

P(d(U,.,) E A) G W4(Z,,,) E A ), AELH’, (2.33) 

under the assumption that the sets are measurable. For a proof see 
Ruymgaart and Wellner [6, Lemma 1.11. 

Without loss of generality we take m = 21, 1~ N. Proceeding as in (2.7) 
and (2.8) we obtain the upper bound 

P( M( U,;,) >, kl’,) 
d 

+ 2 2 p’,Fkym W,,,(Z,,) 2 ,I’l”/d). 
i= 1 

(2.34) 

In the last step in (2.34) we apply (2.33) to the first sum with 
R = Ci.( v . . . v C,, and to the second sum with R = C,, + , v . . . v C,., ; in 
both cases we have F{ R} = 4. Now we are back in the Poisson case and 
essentially the same technique as before applies, with only a minor 
modification. This yields an upper bound of the same order of magnitude. 

For the lower bound first observe that the random vector (nfn{Cj,r},..., 
n8’“{ C,,,}) has a multinomial distribution for any j. Using a result in 
Mallows [3] we see that (cf. (2.8)) 

P(M( u,,; m) > 1”“) 

(2.35) 
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for an arbitrary j. At this point we might again proceed as in the Poisson 
case, provided that we show that 

P(U,{R}>1)3exp 
- aE,’ 

( j FIR)’ 

for c,,F”~(R} <E,<c,,F”~~- “CR). Th e proof is very similar to that of 
(2.13), see (2.18), and will be omitted. Hence the theorem is also proved for 
the empirical process. 

3. SOME COMMENTS 

The order of magnitude of the moments appears to be independent qf 
both the dimension d (apart from multiplicative constants) and the intensity 
or distribution function F (within the class 9). It should be noted that the 
choice of intensity function may have its influence on the actual dimension 
of the process. Taking, e.g., d= 2 and F(s, t) = s A f for (s, t) E [0, l]‘, this 
intensity function corresponds to a degenerate probability measure concen- 
trating mass 1 on the diagonal from (0,O) to (1, 1). Hence the actual 
dimension is 1 rather than 2 in this example. This observation makes clear 
that independence of only one of the two, i.e., either on dimension or on 
intensity function, would be suspect. 

Writing B for the d-parameter Brownian sheet, in our notation Orey and 
Pruitt [S, Theorem 2.41 requires that there exists C(d) E (0, m) such that 

I;?. 
MB; m) < C(d) a.s. 

This result too is apparently independent of the dimension (apart from the 
constant). The order of magnitude, moreover, coincides with ours for the 
expectation in the case of d-parameter Poisson processes. 

Without going into any detail let us just mention that computations of 
the kind in (2.25)(2.28) and (2.30)-(2.32) lead to the following result: for 
any rns N with m 22 and any x>O there exists C,(X)E (0, co) such that 

C,(x)(logm)“< f (-l)k+’ ‘I: 
0 

(l/k)-’ d C,(x)(log m)-‘. (3.2) 
k=l 

This is an extension of the formula 

kc, (-l)C’l(;)(lik)= f l/k, 
k=l 

13.3) 
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see, e.g., Gradshteyn and Ryzhik [ 1, Formula 0.155,4]. The formula in 
(3.3) can be generalized to arbitrary integer powers of l/k by standard 
methods. The main novelty of (3.2) is that the power x need no longer be 
restricted to integer values. 
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