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a b s t r a c t

To investigate whether the manipulation of brain excitability by transcranial direct current stimulation
(tDCS) modulates the heart rate variability (HRV), the effect of tDCS applied at rest on the left temporal
lobe in athletes (AG) and non-athletes (NAG) was evaluated. The HRV parameters (natural logarithms of
LF, HF, and LF/HF) was assessed in 20 healthy men before, and immediately after tDCS and sham stimula-
tion. After anodal tDCS in AG the parasympathetic activity (HFlog) increased (P < 0.01) and the sympathetic
activity (LFlog) and sympatho-vagal balance (LF/HFlog) decreased (P < 0.01), whereas no significant effects
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eart rate variability
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ardiac autonomic system

were detected in NAG (P > 0.05). No significant changes in HRV indexes were provoked by sham stimu-
lation in both AG and NAG (P > 0.05). In conclusion, tDCS applied on the left temporal lobe significantly
increased the overall HRV in AG, enhancing the parasympathetic and decreasing the sympathetic mod-
ulation of heart rate. Consequently the sympatho-vagal balance decreased at rest in AG but not in NAG.
Releasing a weak electric current to stimulate selected brain areas may induce favorable effects on the
autonomic control to the heart in highly fit subjects.

Published by Elsevier Ireland Ltd. Open access under the Elsevier OA license.
ranscranial Direct Current Stimulation (tDCS) has been used to
odulate brain activity in order to optimize treatments of vari-

us neurological or psychiatric disorders, as depression and chronic
ain [6,16]. In addition, previous studies have also shown the clini-
al effectiveness of this technique to enhance physical performance
10]. Basically, tDCS applies a weak electrical direct current to the
rain cortex through two electrodes. One electrode stimulates the

ortex, whereas the other is usually positioned on a contralat-
ral area as a reference electrode [26,29]. Anodal tDCS has been
hown to induce neurological changes in the cell membrane rest-

Abbreviations: AG, athletic group; NAG, non-athletic group; HFn, normalized
igh frequency; LFn, normalized low frequency; LF/HF, low frequency and high fre-
uency ratio; HRV, heart rate variability; LIC, left insular cortex; RIC, right insular
ortex; tDCS, transcranial direct current stimulation.
∗ Corresponding author at: Federal University of Rio Grande do Norte/UFRN, Phys-

cal Education Departament, Campus Universitário BR 101, Lagoa Nova, 59072-970
atal, Rio Grande do Norte, Brazil.
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Open access under the Elsevier OA license.
ing potential, favoring depolarization and increasing spontaneous
neuronal firing rate. On the other hand, opposite effects seem to be
generated by cathodal current polarity [25]. However, the underly-
ing effect of stimulation in different cortical areas warrants future
investigation.

Green et al. [17] showed that deep brain stimulation of the
periventricular/periaqueductal grey area for the relief of chronic
neuropathy modulated the blood pressure up or down, depending
on the electrode placement. Therefore Cogiamanian et al. [9] spec-
ulated that tDCS might induce favorable blood pressure changes in
humans with hypertension. Previous studies suggested that electri-
cal stimulation applied over the insular cortex (IC) could influence
the autonomic cardiovascular control [27,28]. The right anterior
insular stimulation during surgery increased the sympathetic car-
diovascular responses, whereas the left insular stimulation resulted

in parasympathetic activity increase [27]. Although it has been
shown that direct current applied on the scalp can stimulate sur-
rounding sub-cortical areas such as IC [23], which are related to the
autonomic nervous system and blood pressure control, the under-
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ying effect on the autonomic nervous system due to tDCS targeting
he IC remains unclear.

The heart rate variability (HRV) has been used as a strategy to
ssess the autonomic control to the heart [8,36]. Previous studies
howed that regular exercise practice may induce changes in the
utonomic nervous system control [15]. Therefore, athletes would
ave lower sympathetic autonomic and higher vagal autonomic
ctivity compared to sedentary subjects [12,30,32]. Therefore the
nfluence of endurance training on the heart rate control would be
n part due to neurocardiac mechanisms [15].

Since there are evidences indicating that the application of tDCS
ver the scalp can stimulate surrounding sub-cortical areas such as
C [27], the present study investigated whether tDCS applied on the
eft temporal lobe (T3) would affect the autonomic nervous activity
s reflected by HRV indexes. Additionally, it has been hypothesized
hat the influence of tDCS on the HRV would be higher in subjects
ith better fitness levels.

Twenty male subjects were assigned in two groups: ath-
etes (AG) (n = 10; 33 ± 9 yrs; 171.5 ± 5.8 cm; 72.8 ± 9.5 kg;
4.8 ± 3.2 kg/m2) and non-athletes (NAG) (n = 10; 27 ± 4 yrs;
74.6 ± 6.8 cm; 90.9 ± 24.0 kg; 29.6 ± 6.3 kg/m2). A non-exercise
odel developed for healthy population was used to estimate

he maximal oxygen uptake (VO2max) and therefore classify the
hysical fitness level in both groups [24]. The AG was composed by
ational road race cyclist competitors, with 10 ± 2 years of practice,
×/week training frequency, and 2.5 ± 0.5 training hours/session
mean ± SD, VO2max: 51.2 ± 2.2 mL kg−1 min−1]. The NAG was
omposed by healthy subjects not regularly engaged in physical
ctivity programs [mean ± SD, VO2max: 35.6 ± 7.3 mL kg−1 min−1].
xclusion criteria included clinical diagnosis of cardiovascular dis-
ase and the use of any medication with potential cardiovascular
nfluence. All participants signed an informed consent and the
tudy was approved by institutional ethics committee.

The experimental protocol was completed within a month. Sub-
ects were asked to maintain their daily routine and to avoid
trenuous physical activity, as well as alcohol and caffeinated drinks
n the 24 h preceding data assessment. Data were assessed in 2
on-consecutive days separated by 48- to 120 h intervals. In both
essions the participants initially remained seated at rest during
5 min in a quiet room with low lights, controlled temperature
21 ◦C) and humidity (65%).

Afterwards an anodal or sham tDCS was applied in a counter-
alanced random order over T3 [2 mA during 20 min]. Immediately
fter the end of the stimulus the participants remained seated for
nother 15 min. The breathing cycle was controlled [15 breaths per
inute] throughout the testing sessions. Adequate hydration was

rovided during the experimental protocol. The continuous record-
ng of HRV was made along the experiment, however, only the last
min of each registration (before, during and post stimulation) was
sed for HRV analysis. The HRV data was analyzed in a single blind
ashion. The evaluators did not know whether the subjects were
ssigned to AG or NAG, or whether data corresponded to anodal
DCS or sham condition.

The electric current was applied using a pair of sponges soaked
n saline solution (140 mM of NaCl dissolved in Milli-Q water)
nvolving both electrodes (35 cm2) [26]. The electrodes (anodal and
athodal) were connected to a constant current stimulation device
ith three power batteries (9 V) presenting a maximal output of

0 mA. The batteries were regulated by a digital multimeter (EZA
Z 984, USA) with a standard error of ±1.5%.

For the anodic stimulation targeting left IC, the anode was placed
ver T3 area according to the international EEG 10–20 system. The

athode was placed over the supraorbital contralateral area (Fp2)
nd fixed by elastic bands. The electrodes were placed in the same
osition of the anodal stimulation to perform the sham condition.
owever, the stimulator was turned off after 30 s [33]. Thus, the
ce Letters 497 (2011) 32–36 33

subjects reported to feel a tingling or itching sensation coming from
the initial electrical stimulation, but they did not receive any further
current. This procedure allowed the subjects to remain “blind” in
respect to the type of polarity stimulation received during the test
and to assure a sham control effect [5].

The HR and R–R intervals were registered using an R–R heart rate
recorder (Polar®, model S810i, Polar Electro Oy, Finland). For data
analyses R–R intervals were processed in a Matlab routine (MATLAB
6.0, Mathworks Inc, Natick, MA) as described elsewhere [34]. The
artifacts were removed by filtering or manually by visual inspection
whenever necessary. In the frequency domain, spectral power were
calculated to obtain: (a) low frequency band (LF, 0.04–0.15 Hz),
which has been associated to both sympathetic and parasympa-
thetic activity; (b) high frequency band (HF, 0.15–0.40 Hz), which
reflects the parasympathetic activity; (c) LF-HF ratio (LF/HF) as an
index of sympathetic-vagal balance. The LF and HF components
were presented also in normalized units (LFn and HFn). Just fre-
quency domains were used, since it has been shown that these
components would be more accurate to evaluate HRV at rest in
short-term measurements [18].

All data were expressed as mean ± SD. Because absolute spec-
tral indexes are skewed, LF (LFlog) and HF (HFlog) power indexes
were transformed using the natural logarithms to allow parametric
statistical comparisons. A 3-way repeated measures ANOVA with
time (pre and post), physical fitness (athletes and non- athletes),
and stimulation (anodic or sham) as factors was used for between
and within group comparisons. In the case of significant F ratios,
Tukey post hoc tests were performed. The effect-size was calcu-
lated by dividing the difference between mean values associated
with either anodic or sham stimulations by the pooled SD. The sig-
nificance level was set at P ≤ 0.05. All calculations were performed
using SPSS 17 software (SPSS Inc., IL, USA).

No adverse effects were described by the participants dur-
ing the application of tDCS. All subjects reported to feel an
itching sensation in the sham condition. Fig. 1 shows the nat-
ural logarithms of LF, HF, and LF/HF during anodic and sham
condition in AG and NAG. Non significant main effects were
found for LFlog due to isolated physical fitness (F(1,19) = 0.76;
P = 0.40), stimulation (F(1,19) = 1.13; P = 0.30), and repeated mea-
sures (F(1,19) = 0.67; P = 0.42), but a significant interaction was
detected for the combination of these factors (F(1,19) = 4.40;
P = 0.04). In which concerns HFlog there were no significant main
effect of isolated physical fitness (F(1,19) = 0.10; P = 0.76) or stim-
ulation (F(1,19) = 2.43; P = 0.14), whereas the repeated measures
effect (time factor) was significant (F(1,19) = 5.42; P = 0.03), as well
the physical fitness × stimulation × time interaction (F(1,19) = 10.74;
P < 0.01). No isolate main effect on the LF/HFlog was detected
for the physical fitness (F(1,19) = 0.0.3; P = 0.88). Significant main
effects were found for the stimulation (F(1,19) = 4.91; P = 0.04), time
(F(1,19) = 7.81; P < 0.01), and physical fitness × stimulation × time
interaction (F(1,19) = 22.99; P < 0.01).

Post hoc analyses revealed that anodic tDCS elicited significant
increase in HFlog (P < 0.01) and decreases in both LFlog (P < 0.01) and
LF/HFlog (P < 0.01) in AG, whereas no significant alterations were
observed in NAG (P = 1.00). The sham condition did not alter LFlog,
HFlog, and LF/HFlog in both AG (P = 0.97; P = 1.00; P = 0.93, respec-
tively) and NAG (P = 0.33; P = 1.00; P = 1.00, respectively).

The effect-sizes of the differences related to sham and anodal
conditions in the different groups are presented in Table 1. The
effect-size was higher in athletes stimulated by anodic current in all
HRV indexes. The lower effect-sizes were obtained for the athletes
in the sham condition and non-athletes in both anodic and sham

conditions.

The present study is probably the first to verify the effects of
tDCS applied over T3 on the autonomic nervous activity reflected
by HRV in athletes and non-athletes. Our findings indicated that the
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ig. 1. Mean (SD) for HRV components of low frequency (LFlog), high frequency (HFlo

nd non-athletes. *Significant difference from PRE (P < 0.001).

arasympathetic activity increased whereas the sympathetic activ-
ty decreased with anodal tDCS in well trained athletes. However,
o changes were found in the untrained group. These data ratified
he hypothesis that tDCS might be able to reach deep cerebral areas
elated to autonomic nervous control (e.g., IC). Moreover, it is fea-
ible to think that such effect also relies on the individual fitness
evel.

Although the effects of physical activity on cardiac autonomic
ontrol have been extensively described [2] its possible influence on
erebral responses are not clear [1]. It has been demonstrated that
xercise can induce plasticity in some cerebral areas according to its
pecific demand [1,11,14,19,21]. Endurance exercise (e.g., long dis-
ance cycling) has been shown to increase the metabolic demand of

ortical neurons, inducing angiogenesis and increasing blood flow
35]. Upregulation of neurotrophic factors promoting neuronal sur-
ival and differentiation has been observed in endurance athletes
22]. Furthermore, Williamson et al. [39] showed that during mild

able 1
ffect size for the comparison of heart rate variability indices following sham and
nodal stimulation.

Athletes Non athletes

ANODIC SHAM ANODIC SHAM

LF −0.88 0.02 0.09 0.22
HF 0.68 −0.02 −0.07 0.06
LF/HF −1.43 0.04 0.22 −0.05
sympathetic-vagal balance (LF/HFlog) during anodic and sham condition in athletes

exercise the insular region is evoked by the central command and
that LIC may be a site for the parasympathetic control of HR [39].
Thus, endurance athletes may have specific adaptations on cardio-
vascular brain-related areas such as IC, which is possibly due to
a more supportive neural environment. These adaptations might
improve the responsiveness of an endurance athlete’s brain to tDCS
and explain the differences found in the present study, since only
AG showed differences on the autonomic responses.

Another possible explanation for the differences between AG
and NAG is that well conditioned subjects show different car-
diac autonomic control when compared to non-athletic subjects
[2]. Usually, fit subjects are expected to show higher parasym-
pathetic activity and reduced sympathetic activity at rest [7,20],
as well as faster recovery from exercise [2]. In other words, ath-
letes might have better neural efficiency on the central command
for the autonomic nervous system, which could help explain-
ing the increase of autonomic modulation via parasympathetic
pathways after tDCS in AG, and therefore significant changes on
HRV.

The HF component is generally considered as a marker of car-
diac vagal control [31]. In AG the anodal tDCS induced significant
changes in HF in comparison with the rest condition (P < 0.01).
These results agree with previous data showing that electric stimu-
lation applied over LIC may induce bradycardia and, consequently,

a reduction of blood pressure at rest [27]. Furthermore the anodal
tDCS decreased the LFn values, which are associated with cardiac
sympathetic activity [4]. This finding suggests that there would be
an antagonistic relationship between the function of IC in the left
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nd right cerebral hemispheres [27]. The LIC would be related to
arasympathetic autonomic activity, whereas the right IC would
ediate sympathetic autonomic activity [27]. Hence it is feasible

o believe that tDCS increased the LIC relative influence on the auto-
omic control. The sympathetic-vagal balance decrease in AG after
nodal tDCS concurs with this idea. Some previous studies corrob-
rate these findings. It has been extensively demonstrated that LIC
timulation together with surrounding cortical sites (as the nucleus
ractus solitarii or rostral ventrolateral medulla) induces signifi-
ant changes in the heart rate and blood pressure [9,13]. Vernieri
t al. [38] demonstrated that tDCS applied to the left motor cortex
ould also induce a decrease in HRV consequently to an increase in
Fn.

In the present study we have chosen to place the anodic elec-
rode over T3. Although tDCS stimulated only the cortical area
irectly beneath the electrode, it could also modulate subcortical
reas since there is a connection within cortico-cortical neural net-
orks [23]. The IC was found to connect with the temporal pole

nd superior temporal sulcus of the temporal lobe [3]. It can be
herefore speculated that at least in AG the tDCS applied over T3

ay have modulated subcortical areas such as IC and change the
ardiac autonomic regulation.

In which concerns the electrodes distribution used in this study
bi-cephalic), the “active” electrode was placed over T3 and the
reference” electrode over the contralateral orbita [26]. It should
e considered that usually one electrode is defined as the refer-
nce and the other as the stimulation electrode. However, both
lectrodes have similar current and both are placed on the scalp.
herefore, this is a functional definition and does not imply that
he “reference” electrode is physiologically inert. Given this, the
ephalic reference electrode might have also helped modulating
rain regions involved in cortical cardiovascular modulation [37]
uch as prefrontal cortex (PFC). In addition, frontal lobe afferents
o IC come from the orbital cortex [3], which may also yield some
nfluence of the “reference” electrode on the autonomic nervous

odulation.
Despite the fact that the brain related areas to the autonomic

ervous system control have been well described, we have not
resently verified the specific function of the activated cells due
o tDCS. This significant limitation might compromise some of our
nterpretations for the results. Furthermore, the projection fields
f such neurons and their identity as excitatory or inhibitory neu-
ons are still unknown. Other studies are necessary to a better
nderstanding of the underlying mechanisms associated with our
ndings.

In conclusion, tDCS applied over T3 targeting autonomic
ervous control areas (e.g., LIC) significantly increased the
arasympathetic activity and decreased the sympathetic activity

n endurance trained athletes, whereas no changes were found
n non-athletic subjects. Hence, releasing a weak electric current
o stimulate selected brain areas may induce favorable effects on
he autonomic control to the heart. Additional research should be
ncouraged to ratify these results and to help clarifying the physio-
ogical mechanisms underlying possible changes in the autonomic
ontrol pattern due to tDCS.
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