
Theoretical Computer Science 410 (2009) 2649–2658

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A cache-friendly truncated FFT
David Harvey ∗
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012-1185, United States

a r t i c l e i n f o

Article history:
Received 16 November 2008
Received in revised form 5 March 2009
Accepted 15 March 2009
Communicated by V. Pan

Keywords:
Polynomial multiplication
Fast Fourier transform

a b s t r a c t

We describe a cache-friendly version of van der Hoeven’s truncated FFT and inverse
truncated FFT, focusing on the case of ‘large’ coefficients, such as those arising
in the Schönhage–Strassen algorithm for multiplication in Z[x]. We describe two
implementations and examine their performance.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In typical implementations of the FFT method for dense univariate polynomial multiplication, the input polynomials are
zero-padded up to an appropriate power-of-two length, causing a jump in the running timewhen the lengths cross a power-
of-two boundary. Various approaches to reducing these jumps have been proposed – for example, splitting into pieces of
distinct power-of-two lengths, or using roots of unity of small odd order – but the most effective and elegant is the recent
algorithm of van der Hoeven [16,17]. He introduces a novel TFT (truncated FFT) and ITFT (inverse truncated FFT), achieving
relatively smooth performance without sacrificing the simplicity of a power-of-two transform length.
However, the transforms that he describes suffer from suboptimal locality. The transforms follow the divide-and-conquer

FFT paradigm, recursively splitting the problem into two half-sized transforms. If the transform length is 2`, and only 2k
coefficients fit into a given level of cache, then only the deepest k layers of the transform take advantage of that cache; the
remaining `− k layers do not.
In this paper we address this difficulty, achieving superior temporal locality by reordering the sequence of butterfly

operations in van der Hoeven’s transforms. Our algorithm does not directly address spatial locality; this is discussed further
in Section 6. Our strategy is similar to Bailey’s algorithm [1]. Bailey rearranges the data into a 2`1 × 2`2 matrix, where
`1 + `2 = `, and then rewrites the transform as 2`2 column transforms of length 2`1 followed by 2`1 row transforms of
length 2`2 . The divide-and-conquer algorithm may be regarded as the special case where `1 = 1 and `2 = `− 1. However,
when `i ≈ `/2, the working set for each row and column is only about 2`/2 coefficients, greatly improving the algorithm’s
locality. This method can of course be applied recursively, until the working set for each subtransform fits into the lowest
level of cache, making efficient use of the entire memory hierarchy.
It is straightforward to adapt this idea to the TFT, obtaining a decomposition of the TFT into TFTs of half the depth

(Section 3). The corresponding decomposition of the ITFT is more involved; it becomes necessary to alternate between ITFTs
on the rows and columns in a slightly complicated way (Section 4).
In Section 5 we discuss the performance of two implementations. The first is an implementation of the Schönhage–

Strassen algorithm [14] for multiplication in Z[x]. The second is an implementation of the Schönhage–Nussbaumer
convolution algorithm [11,10] for the case of (Z/mZ)[x]wherem is an oddword-sizedmodulus. In both cases the individual

∗ Tel.: +1 212 998 3210; fax: +1 212 995 4121.
E-mail address: dmharvey@cims.nyu.edu.

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.03.014

ScienceDirect
www.elsevier.com/locate/tcs
www.elsevier.com/locate/tcs
www.elsevier.com/locate/tcs
www.elsevier.com/locate/tcs
www.elsevier.com/locate/tcs
dmharvey@cims.nyu.edu
dmharvey@cims.nyu.edu
dmharvey@cims.nyu.edu
doi:10.1016/j.tcs.2009.03.014
doi:10.1016/j.tcs.2009.03.014
doi:10.1016/j.tcs.2009.03.014
doi:10.1016/j.tcs.2009.03.014
doi:10.1016/j.tcs.2009.03.014
doi:10.1016/j.tcs.2009.03.014
doi:10.1016/j.tcs.2009.03.014
doi:10.1016/j.tcs.2009.03.014

2650 D. Harvey / Theoretical Computer Science 410 (2009) 2649–2658

Fig. 1. The TFT.

Fig. 2. The ITFT.

Fourier coefficients occupy relatively large blocks of memory, so spatial locality is largely automatic. A natural question is
whether the new algorithms are suitable for themore conventional case of ‘small’ coefficients, such as double-precision real
or complex coefficients. We offer some speculation in Section 6, although we have not attempted an implementation.

2. Notation and setup

Let R be a commutative ring in which 2 is invertible. We assume that R contains a principal Mth root of unity ω, where
M = 2m for some integer m ≥ 1; this means that ωM = 1 and moreover that

∑M−1
i=0 ω

ij
= 0 for all 0 < j < M . We have in

mind examples like R = Z/(2M/2 + 1)Z and ω = 2, which appears in the Schönhage–Strassen algorithm for multiplication
in Z[x].
If L | M , we denote by ωL the principal Lth root of unity ωM/L; we then have the compatibility relation (ωL′)L

′/L
= ωL for

any L | L′ |M .
Now suppose that L |M , L = 2`, and let ζ ∈ R×. Let (a0, . . . , aL−1) ∈ RL. The (weighted) discrete Fourier transform (DFT)

is defined by

âj = ζ j
′
L−1∑
i=0

ω
ij′
L ai, 0 ≤ j < L, (1)

where j′ denotes the length-` bit-reversal of j.
We define the truncated Fourier transform (TFT) as follows. Let 1 ≤ z ≤ L and 1 ≤ n ≤ L, and suppose that

az = · · · = aL−1 = 0. Then
TFT(L, ζ , z, n; (a0, . . . , az−1)) := (â0, . . . , ân−1).

In otherwords, the TFT computes a prescribed initial segment of the transform, assuming that someprescribed final segment
of the untransformed data is zero (see Fig. 1).
The definition of the inverse truncated Fourier transform (ITFT) is more involved. Let f ∈ {0, 1}. Suppose that 1 ≤ z ≤ L

and 1 ≤ n+ f ≤ L, and moreover that z ≥ n. Suppose as before that az = · · · = aL−1 = 0. Then

ITFT(L, ζ , z, n, f ; (â0, . . . , ân−1, Lan, . . . , Laz−1)) :=
{
(La0, . . . , Lan−1) f = 0,
(La0, . . . , Lan−1, ân) f = 1.

In other words, the ITFT takes as input an initial segment of the transformed data together with the complementary final
segment of the untransformed data (some components ofwhich are known to be zero), and returns the initial segment of the
untransformeddata, andoptionally (if f = 1) thenext transformed coordinate (see Fig. 2).When z = n = L, f = 0 and ζ = 1,
the TFT and ITFT reduce to the usual DFT and inverse DFT, with inputs in normal order and outputs in bit-reversed order.
It is not obvious a priori that the ITFT is well defined, and in particular that the coordinates â0, . . . , ân−1, an, . . . , aL−1

are linearly independent. Van der Hoeven deduced this from the correctness of his algorithm for computing the ITFT; it will
follow in the same way from the proof of correctness of our cache-friendly ITFT algorithm in Section 4.
Van der Hoeven allowed the input and output coordinates to come from a wider class of subsets of {0, . . . , L− 1}. In this

paper we restrict ourselves to the initial and final segments mentioned above, which suffices for our intended application
to univariate polynomial multiplication.
The TFT and ITFT may be used to deduce a polynomial multiplication algorithm in R[X] as follows. Suppose that

g, h ∈ R[X], and let u = gh. Let z1 = 1 + deg g , z2 = 1 + deg h, n = z1 + z2 − 1, and assume that n ≤ L. Let g0, . . . , gz1−1
be the coefficients of g and h0, . . . , hz2−1 be the coefficients of h. Compute

(ĝ0, . . . , ĝn−1) = TFT(L, 1, z1, n; (g0, . . . , gz1−1)),

(ĥ0, . . . , ĥn−1) = TFT(L, 1, z2, n; (h0, . . . , hz2−1)),

D. Harvey / Theoretical Computer Science 410 (2009) 2649–2658 2651

and then compute ûi = ĝiĥi in R for 0 ≤ i < n. Then û0, . . . , ûn−1 are the first n Fourier coefficients of u, and moreover
un = · · · = uL−1 = 0 since n = deg u+ 1. Therefore we recover u via

(Lu0, . . . , Lun−1) = ITFT(L, 1, n, n, 0; (û0, . . . , ûn−1)).

(This multiplication algorithm has not used the parameters f or ζ in a nontrivial way; these enter the picture when the
algorithms are called recursively in Sections 3 and 4.)
The standard FFT algorithms compute the DFT (or inverse DFT) using `L/2 ‘butterfly operations’. In contrast, van der

Hoeven showed that the TFT and ITFT may be computed using at most `n/2 + L butterfly operations, and we will see
that this estimate holds for our cache-friendly TFT and ITFT algorithms as well. Furthermore, in themultiplication algorithm
sketched above, only n pointwisemultiplications are performed, compared to the Lmultiplications incurred by the standard
FFT method. Therefore, in this simplified algebraic complexity model, the ratio of the running time of the TFT/ITFT-based
multiplication algorithm to the running time of the usual FFT multiplication algorithm is n/L + O(`−1), indicating that the
performance is relatively smooth as a function of n.
Algorithms 1 and 2 below (CacheFriendlyTFT and CacheFriendlyITFT) implement the TFT and ITFT in a cache-friendly

manner. They operate on an array x0, . . . , xL−1, where L = 2`. In general all L elements of the array, even those elements
not containing input or output, are used in intermediate computations.
For the TFT, the first z elements are expected to contain the inputs a0, . . . , az−1, and the outputs â0, . . . , ân−1 are written

in-place to the same array. For the ITFT, the first z elements are expected to contain the inputs â0, . . . , ân−1, Lan, . . . , Laz−1,
and the outputs La0, . . . , Lan−1 (optionally followed by ân if f = 1) are written in-place to the same array.
Both algorithms make use of the following well-known decomposition of (1). Let L = L1L2 where L1 = 2`1 and L2 = 2`2

(so that `1 + `2 = `). Write i = i2 + L2i1 where 0 ≤ i1 < L1 and 0 ≤ i2 < L2, and similarly for j. Then j′ = j′1 + L1j
′

2, where
j′1 and j

′

2 are respectively the length-`1 and length-`2 bit-reversals of j1 and j2. We obtain

âj = âj2+L2j1 = ζ
j′1+L1j

′
2

L2−1∑
i2=0

L1−1∑
i1=0

ω
(i2+L2i1)(j′1+L1j

′
2)

L ai2+L2 i1 = (ζ
L1)j
′
2

L2−1∑
i2=0

ω
i2j′2
L2

(
(ζω

i2
L)
j′1

L1−1∑
i1=0

ω
i1j′1
L1
ai2+L2 i1

)
.

Therefore if we put

bk = bk2+L2k1 = (ζω
k2
L)
k′1

L1−1∑
m=0

ω
mk′1
L1
ak2+L2m, (2)

we obtain

âj = (ζ L1)j
′
2

L2−1∑
r=0

ω
rj′2
L2
br+L2j1 . (3)

In other words, if a, b and â are thought of as L1× L2 matrices, then b is the result of applying an appropriately weighted DFT
to each of the columns of a, and â is the result of applying an appropriately weighted DFT to each of the rows of b.
For the base case L = 2 the routines compute the TFT/ITFT directly. If L = 2` ≥ 4, they write L = L1L2 where L1 = 2b`/2c

and L2 = 2d`/2e, so that 1 < L1 < L and 1 < L2 < L. They treat the array as an L1× L2 matrix, and recurse into TFTs/ITFTs on
the columns and rows. The column transforms correspond to recursively applying the TFT/ITFT to the transform given by
(2); the row transforms similarly correspond to the transform given by (3). (Van der Hoeven’s TFT and ITFT algorithms are
essentially the special case obtained by taking L1 = 2 and L2 = L/2.)
Wewill denote by cu the uth column (xu, xu+L2 , . . . , xu+(L1−1)L2) and by ru the uth row (xuL2 , xuL2+1, . . . , xuL2+L2−1). A real

implementation would use auxiliary variables to describe such sub-arrays; for example, a pointer to the first element and a
stride parameter.
Common to both routines is the decomposition n = n2 + L2n1 where 0 ≤ n1 ≤ L1 and 0 ≤ n2 < L2, and where n1 = L1

implies n2 = 0. This partitions the first n cells of the array into n1 complete rows followed by n2 cells in the subsequent row.
The parameter z is decomposed similarly into z1 and z2.

3. A cache-friendly TFT

We first consider the TFT; the idea is to compute only those parts of the DFT that are requested. We handle the column
transforms first, followed by the row transforms.

Theorem 1. Algorithm 1 correctly computes the TFT. The base case is executed at mostmin((n− 1)`/2+ L− 1, L`/2) times.

Proof. We first consider the base case L = 2. The relevant DFT is given by (â0, â1) = (a0 + a1, ζ (a0 − a1)). If z = 1 then
a1 = 0, and the transform becomes simply (â0, â1) = (a0, ζa0). If n = 2 then both â0 and â1 must be computed; if n = 1
then only â0 is needed. Lines 2–4 handle the various cases.
Now we consider the recursive case, for L = 2` ≥ 4. Fig. 3(a)–(c) show the possible input configurations, for L = 64,

L1 = L2 = 8. Cells labelled a contain some ai; cells labelled · contain uninitialised data, but implicitly represent ai = 0.

2652 D. Harvey / Theoretical Computer Science 410 (2009) 2649–2658

Algorithm 1: CacheFriendlyTFT(L, ζ , z, n; (x0, . . . , xL−1))
Input: L = 2` ≥ 2, ζ ∈ R×,

1 ≤ z ≤ L, 1 ≤ n ≤ L,
xi = ai for 0 ≤ i < z

Output: xi = âi for 0 ≤ i < n

if L = 2 then1
// base case
if n = 2 and z = 2 then (x0, x1)← (x0 + x1, ζ (x0 − x1))2
if n = 2 and z = 1 then x1 ← ζ x03
if n = 1 and z = 2 then x0 ← x0 + x14
return5

end6

// recursive case
L1 ← 2b`/2c, L2 ← 2d`/2e7
n2 ← n mod L2, n1 ← bn/L2c, n′1 ← dn/L2e8
z2 ← z mod L2, z1 ← bz/L2c9
if z1 > 0 then z ′2 ← L2 else z ′2 ← z210

// column transforms
for 0 ≤ u < z2 do CacheFriendlyTFT(L1, ωuL ζ , z1 + 1, n

′

1; cu)11
for z2 ≤ u < z ′2 do CacheFriendlyTFT(L1, ωuL ζ , z1, n

′

1; cu)12

// row transforms
for 0 ≤ u < n1 do CacheFriendlyTFT(L2, ζ L1 , z ′2, L2; ru)13

if n2 > 0 then CacheFriendlyTFT(L2, ζ L1 , z ′2, n2; rn1)14

Diagram (a) shows the case z1 = 0, in which case z ′2 = z2. Diagram (b) shows the case z1 > 0 and z2 = 0, and diagram (c)
shows the case z1 > 0, z2 > 0. In these latter cases z ′2 = L2. Lines 11–12 apply the TFT recursively to the columns to evaluate
the first n′1 rows of (2). Line 11 handles those columns containing z1 + 1 nonzero entries; line 12 handles those containing
only z1 nonzero entries.
After lines 11–12 have been executed, we have xi = bi for 0 ≤ i1 < n′1 and 0 ≤ i2 < z

′

2, and we also know that bi = 0
for z ′2 ≤ i < L2 (the latter statement is non-vacuous only if z1 = 0). Fig. 4 illustrates the situation: cells labelled b contain
some bi; cells labelled · contain unspecified data but implicitly represent bi = 0; cells labelled ? are meaningless. Diagram
(a) shows the case z ′2 < L2, and diagram (b) shows z

′

2 = L2.
Next, lines 13–14 apply the TFT recursively to the first n′1 rows to evaluate (3). Fig. 5 shows the possible output

configurations. Cells labelled â contain some âi; cells labelled ? containmeaningless data. Diagram (a) shows the case n2 > 0,
where n′1 = n1+ 1, and diagram (b) shows the case n2 = 0, where n

′

1 = n1. Line 13 handles the first n1 rows, where âi must
be computed for 0 ≤ i2 < L2; line 14 handles the remaining partial row, where âi is needed only for 0 ≤ i2 < n2.
We prove the complexity estimate by induction on L. For L = 2 the bound is min((n− 1)/2+ 1, 1) = 1, so the estimate

holds. Now assume that L ≥ 4, and let `1 = log2 L1 and `2 = log2 L2.
We first verify that the number of calls to the base case is bounded by L`/2. By induction, lines 11–12 call the base case

at most L2(L1`1/2) times, and lines 13–14 call it at most n′1(L2`2/2) ≤ L1(L2`2/2) times. The sum is L1L2(`1+ `2)/2 = L`/2.
Second, we must verify that the number of calls is bounded by (n− 1)`/2+ L− 1. Let δ = n′1− n1 ∈ {0, 1}. Lines 11–12

call the base case at most L2((n1 + δ − 1)`1/2+ L1 − 1) times, line 13 calls it at most n1(L2`2/2) times, and line 14 calls it
at most δ((n2 − 1)`2/2+ L2 − 1) times. The sum of these terms is 12X + Y where

X = L2(n1 − 1)`1 + n1L2`2 + δ(L2`1 + (n2 − 1)`2)
= (n− n2)`− L2`1 + δ(L2`1 + (n2 − 1)`2)
= (n− 1)`+ (δ − 1)L2`1 + (n2 − 1)(δ`2 − `),

Y = L2(L1 − 1)+ δ(L2 − 1) = L− 1+ (δ − 1)(L2 − 1).

If δ = 1, then n2 ≥ 1 and (n2−1)(δ`2− `) = −`1(n2−1) ≤ 0. If δ = 0 then n2 = 0 and (δ−1)L2`1+ (n2−1)(δ`2− `) =
−L2`1 + `1 + `2, which is non-positive since L2 = 2`2 ≥ `2 + 1. The desired estimate holds in both cases. �

4. A cache-friendly inverse TFT

The ITFT cannot be implemented by simply running the TFT in reverse, because when the ITFT commences there is
insufficient information to perform all the row transforms. In particular, if n 6≡ 0 mod L2, then the bn/L2cth row contains
some âi but does not contain the corresponding bi needed to apply (3).

D. Harvey / Theoretical Computer Science 410 (2009) 2649–2658 2653

a b c
Fig. 3. Before line 11 of CacheFriendlyTFT.

a b
Fig. 4. After line 12 of CacheFriendlyTFT.

a b
Fig. 5. After lines 13–14 of CacheFriendlyTFT.

To circumvent this difficulty, we proceed as follows. We first perform as many row transforms as possible. We are then
able to perform some of the column transforms. When these are complete, it becomes possible to execute the last row
transform thatwas inaccessible before. After this row transform, the remainder of the column transformsmay be completed.
Algorithm 2 gives a precise statement.

Theorem 2. Algorithm 2 correctly computes the ITFT. The base case is executed at mostmin((n+ f −1)`/2+L−1, L`/2) times.

Proof. We first consider the base case L = 2. As before, the relevant DFT is given by (â0, â1) = (a0+a1, ζ (a0−a1)). If n = 2,
then we must have z = 2 and f = 0, and we are computing the map (â0, â1) 7→ (2a0, 2a1) = (â0 + ζ−1â1, â0 − ζ−1â1).
This is handled by line 2. Now suppose that n = 1. If f = 1 and z = 2, we must compute the map (â0, 2a1) 7→ (2a0, â1) =
(2â0− 2a1, ζ (â0− 2a1)) (van der Hoeven’s ‘cross butterfly’). This is handled by line 3. Lines 4–6 handle the analogous cases
where f = 0 (the second output is not needed) or where z = 1 (a1 is assumed to be zero). Finally suppose that n = 0. Then
wemust have f = 1. If z = 2, we must compute (2a0, 2a1) 7→ â0 = (2a0+ 2a1)/2. This is handled by line 7. The z = 1 case
(where we assume a1 = 0) is handled by line 8.
We now suppose that L ≥ 4 and consider the four cases below. Figs. 6–10 illustrate the various stages of the algorithm for

each of these cases. Cells labelled a, b and â indicate respectively Lai, L2bi or âi; cells labelled · are uninitialised, but implicitly
represent ai = 0; cells containing ? contain unspecified data not used in subsequent computations. A symbol in parentheses
indicates that the symbol is only valid if f = 1; if f = 0 the cell behaves like a ? cell. Cells in bold are those about to be
transformed by a recursive call.

Case (a): z1 = 0. This implies that 0 < n2 ≤ z2 = z ′2 < L2, n1 = 0, m = n2, m
′
= z2, and f ′ = 1. Line 17 has no effect

since n1 = 0. Line 18 computes xi = L2bi for n2 ≤ i < z2, and destroys xi for n2 ≤ i2 < z2, 1 ≤ i1 < L1. Line 19 has no
effect since z2 = z ′2. Line 20 computes xi = L2bi for 0 ≤ i < n2, computes xn2 = xn = ân if f = 1, and destroys xi for
n2 + f ≤ i < L2. Line 21 computes xi = Lai for 0 ≤ i < n2 = n, and destroys xi for 0 ≤ i2 < n2, 1 ≤ i1 < L1. Line 22 has no
effect sincem = n2.

Case (b): z1 > 0 and n2 = 0. This implies that z1 ≥ n1 > 0, z ′2 = L2, m = 0, m
′
= z2 and f ′ = f . Line 17 computes

xi = L2bi for 0 ≤ i < n1L2 = n. Lines 18–19 compute xi = Lai for 0 ≤ i < n1L2 = n, and if f = 1 also compute xi = L2bi for

2654 D. Harvey / Theoretical Computer Science 410 (2009) 2649–2658

Algorithm 2: CacheFriendlyITFT(L, ζ , z, n, f ; (x0, . . . , xL−1))
Input: L = 2` ≥ 2, ζ ∈ R×,

f ∈ {0, 1}, 1 ≤ n+ f ≤ L, 1 ≤ z ≤ L, z ≥ n,
xi = âi for 0 ≤ i < n, xi = Lai for n ≤ i < z

Output: xi = Lai for 0 ≤ i < n,
xn = ân if f = 1

if L = 2 then1
// base case
if n = 2 then (x0, x1)← (x0 + ζ−1x1, x0 − ζ−1x1)2
if n = 1 and f = 1 and z = 2 then (x0, x1)← (2x0 − x1, ζ (x0 − x1))3
if n = 1 and f = 1 and z = 1 then (x0, x1)← (2x0, ζ x0)4
if n = 1 and f = 0 and z = 2 then x0 ← 2x0 − x15
if n = 1 and f = 0 and z = 1 then x0 ← 2x06
if n = 0 and z = 2 then x0 ← (x0 + x1)/27
if n = 0 and z = 1 then x0 ← x0/28
return9

end10

// recursive case
L1 ← 2b`/2c, L2 ← 2d`/2e11
n2 ← n mod L2, n1 ← bn/L2c12
z2 ← z mod L2, z1 ← bz/L2c13
if n2 + f > 0 then f ′ ← 1 else f ′ ← 014
if z1 > 0 then z ′2 ← L2 else z ′2 ← z215
m← min(n2, z2),m′ ← max(n2, z2)16

// row tranforms
for 0 ≤ u < n1 do CacheFriendlyITFT(L2, ζ L1 , L2, L2, 0; ru)17

// rightmost column transforms
for n2 ≤ u < m′ do CacheFriendlyITFT(L1, ωuL ζ , z1 + 1, n1, f

′
; cu)18

form′ ≤ u < z ′2 do CacheFriendlyITFT(L1, ωuL ζ , z1, n1, f
′
; cu)19

// last row transform
if f ′ = 1 then CacheFriendlyITFT(L2, ζ L1 , z ′2, n2, f ; rn1)20

// leftmost column transforms
for 0 ≤ u < m do CacheFriendlyITFT(L1, ωuL ζ , z1 + 1, n1 + 1, 0; cu)21
form ≤ u < n2 do CacheFriendlyITFT(L1, ωuL ζ , z1, n1 + 1, 0; cu)22

0 ≤ i2 < L2, i1 = n1; they destroy xi for L2(n1 + f) ≤ i < L. If f = 1, then line 20 computes xn1L2 = xn = ân and destroys xi
for n1L2 < i < (n1 + 1)L2. Lines 21–22 have no effect sincem = n2 = 0.

Case (c): z1 > 0, n2 > 0 and n2 ≤ z2. This implies that z ′2 = L2, 0 ≤ n1 < L1, m = n2, m
′
= z2, and f ′ = 1. Line 17

computes xi = L2bi for 0 ≤ i < n1L2. For each n2 ≤ i2 < L2, lines 18–19 compute xi = Lai for 0 ≤ i1 < n1, compute xi = L2bi
for i1 = n1, and destroy xi for n1 < i1 < L1. Line 20 computes xi = bi for 0 ≤ i2 < n2, i1 = n1, computes xn = ân if f = 1,
and destroys xi for n2+ f ≤ i2 < L2, i1 = n1. Finally, for each 0 ≤ i2 < n2, lines 21–22 compute xi = Lai for 0 ≤ i1 < n1+ 1
and destroy xi for n1 + 1 ≤ i1 < L1.

Case (d): z1 > 0, n2 > 0 and n2 > z2. The discussion for this case is essentially the same as for (c), with m and m′
exchanged, and with slightly different diagrams.

Now we verify the complexity bound. The argument is similar to that used for the TFT. For L = 2 the bound is
min((n+ f − 1)/2+ 1, 1) = 1, so the estimate holds. Now assume that L ≥ 4, and let `1 = log2 L1 and `2 = log2 L2.

We first verify that the number of calls to the base case is bounded by L`/2. By induction, lines 18–19 and 21–22 call
the base case at most L2(L1`1/2) times altogether. Lines 17 and 20 call it at most L1(L2`2/2) times (note that if line 20 is
executed then n1 ≤ L1 − 1). The sum is L1L2(`1 + `2)/2 = L`/2.

Second, we must verify that the number of calls is bounded by (n + f − 1)`/2 + L − 1. Line 17 calls the base case at
most n1(L2`2/2) times, lines 18–19 call it at most (L2 − n2)((n1 + f ′ − 1)`1/2 + L1 − 1) times, line 20 calls it at most

D. Harvey / Theoretical Computer Science 410 (2009) 2649–2658 2655

a b c d
Fig. 6. Before line 17 of CacheFriendlyITFT. The bold rows are about to be transformed by line 17.

a b c d
Fig. 7. After line 17 of CacheFriendlyITFT. The bold columns are about to be transformed by lines 18–19.

a b c d
Fig. 8. After lines 18–19 of CacheFriendlyITFT. The bold row is about to be transformed by line 20.

a b c d
Fig. 9. After line 20 of CacheFriendlyITFT. The bold columns are about to be transformed by lines 21–22.

a b c d
Fig. 10. After lines 21–22 of CacheFriendlyITFT.

f ′((n2 + f − 1)`2/2 + L2 − 1) times, and lines 21–22 call it at most n2(n1`1/2 + L1 − 1) times. The sum of these terms is
1
2X + Y , where

X = n1L2`2 + L2(n1 + f ′ − 1)`1 − (f ′ − 1)n2`1 + f ′(n2 + f − 1)`2
= (n− n2)`+ (f ′ − 1)(L2 − n2)`1 + f ′(n2 + f − 1)`2
= (n+ f − 1)`+ (f ′ − 1)(L2 − n2)`1 + (n2 + f − 1)(`2f ′ − `),

Y = L2(L1 − 1)+ f ′(L2 − 1) = L− 1+ (f ′ − 1)(L2 − 1).

2656 D. Harvey / Theoretical Computer Science 410 (2009) 2649–2658

 64

 128

 256

 512

 1024

 2048

 4096

 512 1024 2048 4096 8192 16384

R
un

ni
ng

 ti
m

e
(m

s)

Polynomial length

FLINT (cache-friendly)
FLINT (divide-and-conquer)

Magma
NTL

Fig. 11. Performance of several implementations of the Schönhage–Strassen algorithm for 8000-bit coefficients.

If f ′ = 1 then n2+ f ≥ 1 and the bound follows since `2f ′− ` = −`1 ≤ 0. If f ′ = 0 then n2 = f = 0 and the bound follows
since−L2`1 + ` ≤ 0 (as in the proof of Theorem 1). �

5. Empirical performance and applications

5.1. The Schönhage–Strassen algorithm

Both the Magma computer algebra system (version 2.14-15, [3]) and Victor Shoup’s NTL library (version 5.4.2, [12])
use the Schönhage–Strassen algorithm [14] for multiplication of dense polynomials in Z[x] when (roughly speaking) the
coefficient size of the input polynomials (in bits) is larger than their degree. The algorithm may be sketched as follows.
Suppose that f , g ∈ Z[x], and put h = fg . Let R = Z/(2kN/2 + 1)Z, where we choose N = 2n > deg h and kN/2 larger than
the size of the coefficients of h. Multiply the polynomials in R[x]/(xN−1), using an FFTwith respect to the principalNth root
of unity ωN = 2k ∈ R, and lift the result back to Z[x]. Arithmetic in R is especially efficient owing to the ease of reduction
modulo 2kN/2 + 1 and of multiplication by powers of ωN .
The author, in joint work with William Hart, implemented the Schönhage–Strassen algorithm using the techniques of

this paper to improve smoothness and locality. The implementation is part of the fmpz_polymodule in the FLINT library
(version 1.0.13, [8]),which is used as the default back-end for arithmetic inZ[x] in the Sage computer algebra system (version
3.1.1, [13]).
The following performance measurements were conducted on a 16-core 2.6 GHz Opteron server running Ubuntu Linux.

This is a 64-bit processor with a 64 KB L1 cache and 1 MB L2 cache. Only a single core was used for the tests. Our own code
and NTL were compiled with gcc 4.1.3, and linked with GMP (GNU Multiple Precision Arithmetic Library, [4]) version 4.2.3.
We also applied an assembly patch of Pierrick Gaudry that improves the performance of GMP on the Opteron. Magma also
uses Gaudry’s patch, and links statically against GMP.
Fig. 11 compares four implementations for the case of polynomials with random non-negative 8000-bit coefficients,

with lengths ranging from 512 to 16 384 in 5% increments. The graphs for Magma and NTL exhibit the jumps characteristic
of FFT-basedmultiplication algorithms. The two graphs for FLINT show themultiplication performance obtained for van der
Hoeven’s divide-and-conquer truncated transforms, and for the cache-friendly truncated transforms. The latter is between
15% and 35% faster than the former for this range of polynomial lengths, and the relative improvement in performance
increases with the degree. Note that the Fourier coefficients are about 16000 bits long (≈2 KB), so about 32 coefficients fit
into the L1 cache and about 512 coefficients fit into the L2 cache.

5.2. The Schönhage–Nussbaumer algorithm

The author implemented the cache-friendy transforms in the context of the Schönhage–Nussbaumer algorithm [11,10]
for multiplication in S[x] where S = Z/mZ and where m is an odd word-sized modulus. The implementation is part of the
zn_poly polynomial arithmetic library (version 0.9, [7]). The code has been used in several number-theoretic applications,
including computations of zeta functions of hyperelliptic curves over prime fields of large characteristic [5], computations
of L-functions of hyperelliptic curves over Q [9], computing Hilbert class polynomials [15], and an ongoing project with Joe
Buhler to extend the verification of Vandiver’s conjecture and computation of irregular primes and cyclotomic invariants
carried out in [2].

D. Harvey / Theoretical Computer Science 410 (2009) 2649–2658 2657

The basic idea of the Schönhage–Nussbaumer algorithm is to split the input polynomials into pieces of length M/4,
and then map the problem to a convolution in R[z]/(zK − 1) for R = S[y]/(yM/2 + 1), where K | M so that R contains a
principal K th root of unity (namely yM/K), and where K is large enough to accommodate the product. Our implementation
performs the FFTs over R using the transforms of Sections 3 and 4, ensuring relatively smooth performance as a function of
the input polynomial length. The pointwise multiplications are handled using a multipoint Kronecker substitution method
[6], switching to Nussbaumer’s algorithm for sufficiently largeM . (Note that we do not perform an FFT over Z/mZ; such an
FFT is usually not possible since Z/mZ rarely contains appropriate roots of unity.)
We compared the performance of the cache-friendly transforms to the divide-and-conquer transforms for a range of

polynomial lengths (104 to 3× 107) and modulus sizes (5 to 63 bits). We observed a modest improvement in speed of up to
15%, depending on the polynomial length and modulus. As expected, polynomials of higher degree enjoy a greater relative
improvement, as locality plays a greater role in such multiplications. Somewhat counterintuitively, the modulus size had
the opposite effect on relative performance. Thismay be explained by noting that the FFTs in our implementation operate on
arrays with each element of Z/mZ occupying a single machine word, so the total FFT time does not depend on the modulus;
on the other hand, the pointwise multiplications are faster for smaller moduli, as the Kronecker substitution reduces them
to smaller integer multiplications. The implementation thus spends a smaller proportion of the total time in the FFTs when
the modulus is larger, leading to a smaller relative improvement derived from the cache-friendly transforms.

6. The small coefficient case

In the applications described in Section 5, elements of the coefficient ring R occupy moderately large blocks of memory.
However, FFTs are also commonly applied over ‘small’ coefficients, such as double-precision floating point numbers,
or residues modulo a word-sized prime p where Z/pZ contains suitable roots of unity. We have not attempted an
implementation in this context, but in this section we make several relevant observations.
An essential consideration in the small coefficient case is spatial locality, which we have largely ignored in this paper.

In typical contemporary cache hardware, the cache is organised into cache lines, each capable of storing several words
from consecutive locations in main memory. If an algorithm operates on coefficients spaced out in memory, then only a
single word of each cache line will be utilised, greatly reducing the effective size of the cache. Moreover, the mapping from
physical addresses to cache lines often depends on only the last few bits of the address. If two coefficients are separated by
a large power-of-two distance in memory – exactly the situation during the column transforms of a matrix FFT – then the
cache cannot simultaneously hold both of them (although this can be mitigated to some extent by cache associativity). The
standard solution to these problems is to transpose the matrix for the duration of the column transforms, using a cache-
friendly matrix transpose algorithm, so that the subtransforms always operate on consecutive data. A similar approach
would be needed to adapt our TFTs/ITFTs to the small coefficient case.
A second remark is that in the small coefficient case, it is quite reasonable to zero-pad the inputs so that there is no

‘partial row’. The rationale is that the lowest level of cache can hold a large number of coefficients, making the penalty
for zero-padding quite small. For example, suppose that the cache can hold 213 coefficients (typical for a 64 KB L1 cache
with double-precision floating-point coefficients), and that we are multiplying polynomials whose product has length
n = 12 801 = 100× 27 + 1. This requires a transform length of 214, which we may decompose into a 27 × 27 matrix. If we
zero-pad the inputs so that n increases to 12928 = 101×27, an integral number of rows, the running time penalty incurred
is at most 1%. This approach simplifies the ITFT routine considerably, since it may be implemented by simply reversing the
steps of the TFT, removing the need for the special row transform (line 20 of Algorithm 2). The reduction in code complexity
is likely worthwhile. We also note that the presence of a partial row makes it more difficult to maintain spatial locality
during the special row transform.
Finally, in the implementations described in Section 5, the parameter ζ = ωs is represented simply by the integer s. With

this representation, computing roots of unity (for example, computing ζ L1 in line 13 of Algorithm 1) is very cheap compared
to the cost of arithmetic in R. In the small coefficient case this is no longer necessarily true, and the cost of computing or
storing roots of unity must be taken into account.

Acknowledgments

Many thanks to William Hart for his collaboration in implementing these algorithms in FLINT, to William Hart, Andrew
Sutherland, Joris van der Hoeven and the referees for their comments on a draft of this paper, and to the Department of
Mathematics at Harvard University for supplying the hardware on which the performance measurements were carried out.

References

[1] David H. Bailey, FFTs in external or hierarchical memory, J. Supercomput. 4 (1990) 23–35.
[2] Joe Buhler, Richard Crandall, Reijo Ernvall, Tauno Metsänkylä, M. Amin Shokrollahi, Irregular primes and cyclotomic invariants to 12 million, J.
Symbolic Comput. 31 (1–2) (2001) 89–96. Computational algebra and number theory (Milwaukee, WI, 1996).

[3] Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (3–4) (1997) 235–265.
[4] Torbjörn Granlund, The GNU multiple precision arithmetic library, 2008. http://gmplib.org/.
[5] David Harvey, Kedlaya’s algorithm in larger characteristic, Int. Math. Res. Notices 2007 (2007) 29 pp. Article ID rnm095, doi:10.1093/imrn/rnm095.

http://gmplib.org/
http://gmplib.org/
http://gmplib.org/
doi:10.1093/imrn/rnm095
doi:10.1093/imrn/rnm095
doi:10.1093/imrn/rnm095
doi:10.1093/imrn/rnm095
doi:10.1093/imrn/rnm095

2658 D. Harvey / Theoretical Computer Science 410 (2009) 2649–2658

[6] David Harvey, Faster polynomial multiplication via multipoint Kronecker substitution, arXiv preprint, 2008. cs.SC/0712.4046v1.
[7] David Harvey, The zn_poly library, 2008. http://www.cims.nyu.edu/∼harvey/zn_poly/.
[8] William Hart, David Harvey, The FLINT library, 2008. http://www.flintlib.org/.
[9] Kiran S. Kedlaya, Andrew Sutherland, Computing L-series of hyperelliptic curves, in: ANTS VIII, in: Lecture Notes in Computer Science, vol. 5011,
Springer, 2008, pp. 312–326.

[10] Henri J. Nussbaumer, Fast polynomial transform algorithms for digital convolution, IEEE Trans. Acoust. Speech Signal Process. 28 (2) (1980) 205–215.
[11] A. Schönhage, Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, Acta Informat. 7 (4) (1976–77) 395–398.
[12] Victor Shoup, NTL: A library for doing number theory, 2007. http://www.shoup.net/ntl/.
[13] William Stein, David Joyner, Sage: System for algebra and geometry experimentation, Communications in Computer Algebra (ACM SIGSAM Bulletin)

39 (2) (2005) 61–64. http://sagemath.org/.
[14] A. Schönhage, V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing (Arch. Elektron. Rechnen) 7 (1971) 281–292.
[15] Andrew V. Sutherland, Computing Hilbert class polynomials with the Chinese Remainder Theorem, 2009 (in press). URL: http://arxiv.org/abs/0903.

2785.
[16] Joris van der Hoeven, The truncated Fourier transform and applications, in: ISSAC 2004, ACM, New York, 2004, pp. 290–296.
[17] Joris van der Hoeven, Notes on the truncated Fourier transform, unpublished, retrieved September 2008 from http://www.math.u-psud.fr/

∼vdhoeven/, 2005.

cs.SC/0712.4046v1
cs.SC/0712.4046v1
cs.SC/0712.4046v1
cs.SC/0712.4046v1
http://www.cims.nyu.edu/~harvey/zn_poly/
http://www.cims.nyu.edu/~harvey/zn_poly/
http://www.cims.nyu.edu/~harvey/zn_poly/
http://www.cims.nyu.edu/~harvey/zn_poly/
http://www.cims.nyu.edu/~harvey/zn_poly/
http://www.cims.nyu.edu/~harvey/zn_poly/
http://www.cims.nyu.edu/~harvey/zn_poly/
http://www.cims.nyu.edu/~harvey/zn_poly/
http://www.flintlib.org/
http://www.flintlib.org/
http://www.flintlib.org/
http://www.flintlib.org/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
http://sagemath.org/
http://sagemath.org/
http://sagemath.org/
http://arxiv.org/abs/0903.2785
http://arxiv.org/abs/0903.2785
http://arxiv.org/abs/0903.2785
http://arxiv.org/abs/0903.2785
http://arxiv.org/abs/0903.2785
http://arxiv.org/abs/0903.2785
http://www.math.u-psud.fr/~vdhoeven/
http://www.math.u-psud.fr/~vdhoeven/
http://www.math.u-psud.fr/~vdhoeven/
http://www.math.u-psud.fr/~vdhoeven/
http://www.math.u-psud.fr/~vdhoeven/
http://www.math.u-psud.fr/~vdhoeven/

	A cache-friendly truncated FFT
	Introduction
	Notation and setup
	A cache-friendly TFT
	A cache-friendly inverse TFT
	Empirical performance and applications
	The Schönhage--Strassen algorithm
	The Schönhage--Nussbaumer algorithm

	The small coefficient case
	Acknowledgments
	References

