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Defects in oxidative metabolism have been implicated in Alzheimer's disease (AD). The present 
study evaluated the level of cytochrome oxidase (C.O.), an indicator of neuronal oxidative capacity, 
in various brain regions of post-mortem AD and control patients. We found a statistically 
significant reduction in C.O. levels in all cortical areas examined, including the primary and 
secondary visual cortices. In addition, all layers of the dorsal lateral geniculate nucleus and 
sublaminae of the primary visual cortex in AD cases examined suffered a reduction in their relative 
C.O. activity and protein amount. Our results suggest a generalized suppression of oxidative 
metabolism throughout the cortex, as well as in a major subcortical visual center in AD. Such 
hypometabolism may form the basis for not only deficits in higher cortical functions, but also a 
variety of visual dysfunctions known to occur in AD. © 1997 Elsevier Science Ltd 
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INTRODUCTION 

The documentation of a severe form of presenile 
dementia by Alois Alzheimer in 1907 (Alzheimer, 
1907) heralded a new age of intense investigations into 
the cause, manifestations, and prognosis of the disease 
beating the founder's name. Much is known about the 
existence and chemical nature of amyloid plaques and 
neurofibrillary tangles in affected brain regions. The 
genes for the amyloid precursor proteins have been 
cloned and sequenced (reviewed by Muller-Hill & 
Beyreuther, 1989; Selkoe, 1991). A number of neuro- 
transmitters and neuromodulators, including acetylcho- 
line, somatostatin and glutamate have been found to be 
deficient in Alzheimer's disease (AD) (Wurtman, 1992; 
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Epelbaum et  al., 1993). The involvement of tau proteins 
and apolipoprotein E has been reported (Han et  al., 
1994). In recent years, however, attention has been turned 
to possible defects in energy metabolism in AD, as shown 
by positron emission tomography (PET) and single 
photon emission computed tomography (SPECT) in AD 
(Grady et al., 1993; Cutler, 1986; Horwitz et al., 1987; 
Johnson et  al., 1987; McGeer et al., 1990; Kessler et  al., 
1991; Nyback et  al., 1991; Blass & Gibson, 1991; 
Rapoport, 1991; Beal, 1992). 

The major source of energy supply for neurons is ATP, 
which is generated mainly from oxidative raetabolism in 
the mitochondria. Recent studies have impl!icated defects 
in mitochondrial oxidative phosphorylation as one of the 
key factors contributing to normal and premature aging. 
Dysfunction of the mitochondrial electron transport chain 
proteins has been associated with the pathophysiology of 
AD (reviewed in Blass & Gibson, 1991) as well as in 
another neurodegenerative disease, Parkinson's disease 
(Parker et al., 1989). 

A reliable and sensitive indicator of  a neuron's 
capacity for oxidative metabolism is cytochxome oxidase 
(C.O.). The level of this enzyme is heterogeneous among 
neurons, and is tightly regulated by nettronal activity 
(reviewed in Wong-Riley, 1989). C.O. activity has been 
shown to be reduced in platelets of AD patients (Parker et  
al., 1990), indicating a generalized molecular defect in 
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AD. The activity of this enzyme has been studied in 
various brain regions of AD cases, but reports vary as to 
the precise location that showed defective C.O. activity 
(Kish et al., 1992; Reichmann et al., 1993; Simonian & 
Hyman, 1993; Mutisya etal. ,  1994; Parker et al., 1994b). 

One region in question is the primary visual cortex, 
which does not show significant reduction in its regional 
metabolic rate when studied with PET (Haxby & 
Rapoport, 1986; Heiss et al., 1991; Rapoport, 1991). 
Yet, visual dysfunction has been reported in many AD 
patients (Uhlmann et al., 1991; Bassi et al., 1993; Hutton 
et al., 1993; Levine et al., 1993). In an effort to 
understand the metabolic involvement of the visual and 
other systems in AD, we undertook a study to examine 
the histopathological presence of senile plaques and 
levels of C.O. measured biochemically, histochemically, 
and immunohistochemically. In particular, we compared 
C.O. levels in the visual cortex, dorsal lateral geniculate 
nucleus, and other brain regions between AD and age- 
matched non-AD patients. 

MATERIALS AND METHODS 

Human brain samples 

Tissue from Alzheimer's disease brains was provided 
by the Wisconsin Alzheimer's Disease Brain Tissue 
Bank. All patients and controls were prospectively 
enrolled in the autopsy program and followed clinically 
before death. Information regarding medical history, 
records, and mode of death were reviewed by a 
neurologist to determine the clinical diagnosis in the 
case of AD patients, and the absence of neurological 
illness in the case of controls. At autopsy, tissue samples 
were collected for C.O. determinations. The diagnosis of 
AD was confirmed histologically by the Khachaturian 
criteria (Khachaturian, 1985). Samples were taken from 
various brain regions of 87 AD and 58 non-AD patients 
over a period of 9 yr. From these, we excluded: patients 
that were below 50 yr of age; those with other types of 
dementia or neurological diseases such as Creutzfeldt- 
Jacob disease, Huntington's disease, multiple sclerosis, 
Parkinson's disease, Pick's disease, significant cerebro- 
vascular diseases, and brain tumors; and patients with 
visual system disorders (including blindness, cataracts, 
retinopathy, and optic gliomas). Among the AD patients, 
brains from 64 of them were processed for C.O. 
histochemistry, 51 for C.O. biochemistry, and 7 for 
C.O. immunohistochemistry. The mean age of this group 
was 76 yr (range: 58-95 yr), and the mean weight of their 
brains without the dura was 1088 g (range: 71001490 g). 
The mean duration of illness for AD patients was 9.5 yr 
(range: 3-22 yr). Among the control group with no 
known neurological diseases, 26 were processed for C.O. 
histochemistry, 18 for C.O. biochemistry, and 8 for C.O. 
immunohistochemistry. While this group was age- 
matched with the AD group, with the mean age being 
73 yr (range: 53-94 yr), the mean weight of their brains 
without the dura, 1215g (range: 950-1430g), was 
significantly higher than that of the AD group 

(P < 0.001). The average length of post--mortem delay 
was 8 hr for AD cases and I 1 hr for non-AD cases. Data 
from these two groups went through a second screening, 
from which tissue samples that did not meet with our 
standard of preservation were discarded. Tissue integrity 
was of paramount importance, as AD brains tended to be 
more fragile and the values would be biased against them 
if poorly preserved AD brains were included in the final 
analysis. To avoid bias, tissue screening was carried out 
without prior knowledge of the diagnosis and irrespective 
of the levels of C.O. staining. The qualitative descriptions 
were based on well preserved samples, a subset of which 
were randomly chosen and subjected to further quanti- 
tative and statistical analysis as described below. 

Histopathology 

Brain sections of 6 pm thickness were processed with 
hematoxylin--eosin, luxol fast blue, King,. and ubiquitin 
stains. King stain, a modified Bielschowsky stain, was 
used to reveal neuritic plaques and neurofibrillary tangles 
in various regions of the brain, including primary visual 
cortex, primary motor cortex, prefrontal cortex, parietal 
cortex (supramarginal gyms), superior temporal cortex, 
insular cortex, hippocampus, and nucleus basalis of 
Meynert. The mean number of senile plaque counts per 
microscopic field (1 mm 2 at 200 x magnification) in each 
brain region was recorded for each case and analyzed. 

Cytochrome oxidase biochemistry 

Samples were taken from the primary visual, somato- 
sensory, motor, and auditory cortices, from the secondary 
visual cortex, prefrontal cortex, parietal cortex, and 
temporal cortex (superior temporal gyms),, hippocampus, 
cerebellum, substantia nigra, and the optic tract. Care was 
taken in dissecting only the gray matter (except in the 
case of the optic tract), and to include as little of the white 
matter as possible. Biochemical assays were conducted as 
previously described (Hevner et al., 1993), except that 
3.5-7.5% homogenates were used (with 3.5% being the 
final choice). 

Cytochrome oxidase histochemistry and immunohisto- 
chemistry 

A variety of fixatives were tested ow~r the years to 
achieve an optimal combination of tissue and enzyme 
preservations. A large number of samples that did not 
meet our standards were discarded. Samples from various 
brain regions were dissected and placed in the cold 
fixative. The volume of each sample was approximately 
3 cm 3. For C.O. histochemistry, the optimal fixative was 
found to be 2.5% paraformaldehyde and 1.5% glutar- 
aldehyde in 0.1 M sodium phosphate buffer, pH 7.35, and 
4% sucrose for 3-4 hr (Wong-Riley et al., 1993). For 
C.O. immunohistochemistry, glutaraldehyde was 
omitted, the concentration of paraformaldehyde was 
increased to 4%, and the length of fixation was increased 
to 6 hr (Wong-Riley et al., 1993). After cryoprotection 
with increasing concentrations of sucrose (10020--30%) 
in 0.1 M sodium phosphate buffer, pH 7.35, brain 
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FIGURE 1. Sections of the cortex from AD cases stained with the modified Bielschowsky's (King's) stain. (A) Two classic 
neuritic senile plaques (arrows). The prevalence of neuritic plaques (arrowheads) is shown in cross-sections of the primary 
visual cortex (B), parietal cortex (C), and superior temporal cortex (D). Note that the parietal cortex has abundant plaques, but 
plaques are also present in the visual and other cortical areas. The layers are indicated on the left of each section. W/el, white 

matter. (B)-(D) have the same magnifcation. 
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FIGURE 2. Graph of the mean numbers of senile plaques per microscopic field (1 mm z at 200x magnification) in va~.ous brain 
regions of AD and control patients. All regions examined have significantly higher numbers than controls (P <: 0.0001), 

confirming their diagnosis of AD according to Khachaturian criteria. The n for each region of each group was given. 

samples were frozen in powdered dry ice for immediate 
or subsequent sectioning. Frozen sections at 40-50 #m 
thickness were processed for C.O. histochemistry 
(Wong-Riley, 1979) or C.O. immunohistochemistry 
against brain-specific C.O. (Hevner & Wong-Riley, 
1989). Antibodies were used at dilutions of 1:1000 to 
1:4000 and were detected by the indirect inununoperox- 
idase method. Controls included preimmune serum and 
the omission of primary antibodies. 

Optical densitometry 

Optical densitometric measurements were taken from 
various layers of histochemically and/or immunohisto- 
chemically reacted dorsal lateral geniculate nucleus 
(LGN), the primary visual cortex (area 17), parietal 
cortex, prefrontal cortex, hippocampus, and the entorh- 
inal cortex of AD and control brains. Of the 64 AD and 26 
control brains that were processed for C.O. histochem- 
istry, we randomly selected 12 AD and 12 controls for 
optical densitometric measurements and statistical ana- 
lyses for each of the brain regions described in the 
Results section (except for LGN, which had an n of 5 
each). Of the seven AD and eight control brains that were 
processed for C.O. immunohistochemistry, optical den- 
sity readings were taken from various brain regions of 
five AD and three controls that were randomly chosen. 

The method for optical densitometry was as described 
previously (Wong-Riley et al., 1993). All lighting 
conditions, measuring spot size, and magnifications were 
kept constant between AD and control samples for each 
brain region. At least 25 readings were taken for each 
laminae/sublaminae zone of each brain region in each 
case. The white matter of each section was used as the 
reference point and its value was subtracted from those of 
the gray matter in each section to achieve some 
uniformity in the level of baseline staining intensity. 
Statistical analysis was carried out using Student's t-test. 
A P value of 0.05 or less was considered significant. 

RESULTS 

Senile plaques 
Twenty-one Alzheimer's disease and 13 control brains 

that were processed for the modified Bielschowsky stain 
were analyzed in detail. Neuritic plaques [Fig. I(A)] 
reached Khachaturian criterion level for AD in many 
cortical areas [Fig. I(B-D)],  including the primary and 
secondary visual cortices. Figure 2 shows our quantita- 
tive analysis. The mean number (+_SEM) of senile 
neuritic plaques per microscopic field (1 mm 2 at 
200 x magnification) within the AD group was highest 
in the parietal cortex (supramarginal gyrus: 34.42 __ 6.73 
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FIGURE 3. Cytochrome oxidase activity in valious brain regions of post-mortem AD and control patients. (A) and (B) show 
C.O. activity coment (by tissue wet weight) and C.O. specific activity, respectively, as determined by biochemical a~;says of 
tissue homogenates. Activity is significantly reduced (note P values) in all regions except substantia nigra and the optic tract. 

Specific activity was not done for substantia nigra because of limited samples. 
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plaques; n = 18), followed by the superior temporal 
cortex (26.12 ___ 4.48; n = 13), hippocampus 
(24.05 + 3.52; n = 20), insular cortex (23.91 _+ 3.15; 
n ---- 19), visual cortex (22.35 _ 2.72; n = 20), prefrontal 
cortex (21.27 _+ 3.96; n = 13), primary motor cortex 
(16.74 _ 3.83; n = 21), and lowest in the nucleus basalis 
of Meynert (9.97 _+ 2.12; n = 19). All of these AD brains 
were included in our C.O. biochemical studies described 
below. In age-matched control cases, mean plaque 
densities in all of these regions were less than three per 
microscopic field (Fig. 2). The difference between AD 
and control values was statistically significant for all 
brain regions (P < 0.0001). 

C ytochrome oxidase biochemical assays 

Of the 51 AD and 18 control brains that were processed 
for C.O. biochemistry, we eliminated those that were 
used initially for the testing of various parameters to 
achieve optimal results, those that had questionable tissue 
integrity, as well as those that had exceptionally long 
post-mortem delay. Selections were made without 
knowledge of the biochemical data. Figure 3 shows the 
quantitative analysis of the remaining 26 AD and 12 
control cases. It is clear that all cortical regions had a 
significant decrease in C.O. activity, with the greatest 
reduction in the superior temporal gyrus (STG) 
(P _< 0.001), followed by the parietal cortex, prefrontal 
cortex, secondary visual cortex, primary auditory cortex, 
hippocampus, and the cerebellum (P <0.01).  The 
primary visual, primary sensory, and primary motor 
cortices had less severe though significant reductions in 
their enzyme activity (P < 0.05). By comparison, the 
substantia nigra and the optic tract did not show 
statistically significant changes when compared to 
control cases. 

Cytochrome oxidase histochemical and immunohisto- 
chemical analyses 

Within both the AD and control groups, there were 
intra-group variations in the intensity of C.O. reaction 
product obtained histochemically or immunohistochemi- 
cally. However, as a whole, the AD group had 
significantly lower levels of C.O. in all regions processed 
histochemically and immunohistochemically than those 
of the control group. 

Dorsal lateral geniculate nucleus (LGN) 

The distribution of cytochrome oxidase in the human 
dorsal lateral geniculate nucleus resembled that in the 
macaque monkey (Liu & Wong-Riley, 1990). The two 
magnocellular layers had the highest level of activity, 
followed by parvicellular lamina 6, while the other 
parvicellular layers (3, 4, and 5) had the lowest activity. 
In AD, there was no change in the pattern of C.O. 
staining, but the level of histochemically ,'rod immuno- 
histochemically detectable reaction product was signifi- 
cantly reduced in all six layers [Fig. 4(A,B); Fig. 5(A,B); 
P < 0.05-0.001]. 

Prima~ visual cortex (area 17) 

The pattern of C.O. histochemistry or immunohisto- 
chemistry in the striate cortex of controls was as 
described previously in normal human subjects (Wong- 
Riley et al., 1993). C.O. levels were highe,;t in layer IVC 
(with IVCfl slightly darker than IVCc0, moderate-to-high 
in supragranular puffs (blobs or patches) and layer VI, 
and lowest in interpuffs, layers V and IVB. Puffs were 
extremely sensitive to suboptimal tissue preservation, 
such as extended post-mortem delay, freezing artifact, 
and overfixation, and were difficult to discern in some of 
the samples. Only those with acceptable tissue preserva- 
tion, irrespective of C.O. levels were used for our final 
analyses. 

The striate cortices from AD brains showed distinct 
variations in their levels of C.O. reaction product, with 
some brains exhibiting values slightly lower than those of 
the controls, while others had much reduced values. 
However, as a whole, the AD group had a consistent and 
statistically significant reduction in the relative activity 
(shown by histochemistry) and relative amount (shown 
by immunohistochemistry) of C.O. in all laminae of area 
17 examined (puffs, interpuffs, layers IVC:~, IVCfl, V, 
and VI) as compared to the control group [Fig. 4(C,D); 
Fig. 5(C,D); P _< 0.001 for all histochemical analyses; 
P < 0.05-0.01 for immunohistochemical analyses]. 

Parietal cortex, prefrontal cortex, and superior temporal 
cortex 

These association cortical areas shared very similar 
patterns of C.O. distribution, in that the supragranular 
layers 2 and 3 exhibited slightly higher levels of activity 
than the granular (layer 4) and infragranular layers 5 and 
6. In addition, pyramidal neurons in both supra- and 
infra-granular layers tended to have higher levels of C.O. 
than the majority of small, non-pyramidal neurons. 

In AD brains, levels of C.O. analyzed histochemically 
and immunohistochemically were significantly reduced 
in the supra-, infra-, and granular layers of all three 
associational cortical areas (Figs 6 and 7',. P < 0.001 for 
all histochemical analyses; P < 0.01-0.001 for immuno- 
histochemical analyses; data from temporal cortex not 
shown). 

Hippocampal formation and entorhinal cortex 

The laminar pattern of C.O. reactivity in the human 
hippocampus and dentate gyrus resembled those of 
macaque monkeys and other species described previously 
(Kageyama & Wong-Riley, 1982). Stratum moleculare of 
fields CA1-3 and the outer molecular layer of the dentate 
gyrus exhibited intense neuropil staining; neurons of 
CA3 and CA4 were also darkly reactive, while those of 
CA 1 had moderate levels of enzyme. Stratum radiatum of 
the hippocampus and dentate granule cell layer had the 
lowest level of C.O. activity. 

In AD, all CA fields (1, 3, and 4) ~tnd sublaminae 
examined (stratum radiatum of CAI,  straltum moleculare 
of CA1, the dentate granule cell layer, and the outer 
molecular layer of the dentate gyrus) showed a significant 
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FIGURE 4. Coronal sections of the dorsal lateral geniculate nucleus (LGN) [(A) and (B)] and the primary visual cortex [(C) and 
(D)] reacted for C.O. histochemistry [(A) and (C)] and C.O. immunohistochemistry [(B) and (D)], respectively. The laminae and 
sublaminae of each region are listed on the left of each section. Puffs in the supragranular layers are shown by arrows in (C) and 
(D). These AD samples retained the same staining patterns as those in controls, but their levels of activity and immunoreactivity 
were significantly lower than those of controls (see Fig. 5). Since patterns of C.O. histochemistry and immunohistochemistry in 
various brain regions examined are similar between AD and control patients, only those from AD patients are shown. Control 
samples simply have higher levels of activity and immunoreactivity in most brain regions, as shown by optical densitometric 

readings in Figs 5, 7, and 9. 
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reduction in C.O. activity (Figs 8 and 9; P ___ 0.001). 
Reductions in C.O. immunoreactivity also reached 
statistical significance for CA1, 3, and 4 neurons, as well 
as for stratum moleculare of CA1 (P <_ 0.001). 

The distribution of C.O. in the human entorhinal cortex 
has been described in detail previously and will not be 
repeated here (Hevner & Wong-Riley, 1992). We 
compared primarily field EI (intermediate) between AD 
and controls, and found a reduction in C.O. activity both 
within layers II and III neuronal clusters forming C.O.- 
reactive islands and within the deep layers [Fig. 9(A); 
P < 0.001). 

DISCUSSION 

The present study documents that a key energy- 
generating mitochondrial enzyme, cytochrome oxidase, 
is significantly reduced in a number of brain regions, 
including the visual system of Alzheimer's disease 
patients. These findings confirmed and extended some 
of the recent reports linking defects in cytochrome 
oxidase and other oxidative stresses to AD. We shall 
examine some of these investigations below. 

Defects in oxidative metabolism and A D  

Several lines of evidence have pointed to abnormality 
in oxidative metabolism being involved in the pathogen- 
esis of AD (reviewed in Blass & Gibson, 1991): (a) 
cultured cells exposed to a mitochondrial uncoupler 
CCCP (carbonyl cyanide m-chlorophenylhydrazone) 
exhibited increased immunoreactivity against paired 
helical filaments and Alz-50, both of which are 
pathologic changes seen in AD (Blass et al., 1990); (b) 
the synthesis and metabolism of neurotransmitters are 
highly sensitive to oxidative abnormality and severely 
impaired in AD (Gibson et al., 1987); (c) cellular calcium 
homeostasis, being intimately linked to oxidative meta- 
bolism in the mitochondria, is abnormal in AD (Gibson et 
al., 1987). Calcium is an important intracellular second 
messenger, and calcium/calmodulin-dependent protein 
kinase is known to phosphorylate tan proteins, the 
abnormal processing of which leads to the accumulation 
of paired helical filaments in AD (Baudier & Cole, 1987). 
Such correlations of oxidative stresses with AD have 
prompted Blass and Gibson (1991) to propose the 
"Mitochondrial hypothesis of Alzheimer's disease". 

Consistent with the mitochondrial hypothesis is the 
finding of a high incidence of mitochondrial DNA 
(mtDNA) deletions in AD patients younger than 75 yr 
of age (Corral-Debrinski et al., 1994). Point nautations of 
mitochondrial NADH dehydrogenase subunit 2 gene 
were also reported in AD (Lin et al., 1992). Reichmann et 
al. (1993) searched for and failed to find deletions larger 
than 500 bp in parietal and entorhinal cortex of AD 
brains; however, they could not rule out the possibility of 
small-scale deletions or point mutations in AD. Mutation 
of mtDNA would be manifested as a non-Mendelian 
inheritance, and only about 10% of AD cases are 
Mendelian (Appel, 1981). 

Mitochondrial DNA encodes 13 polypeptides that form 

some but not all subunits of the four eleclxon transport 
chain enzymes (complexes I, III, IV [C.O.], and V). A 
defect in mtDNA would be expected to result in 
deficiency of one or more of these enzymes. Reichmann's 
group (Reichmann et al., 1993) did find a reduction in the 
activities of complexes II, III, and IV in AD brains, but 
Mutisya et al. (1994) claimed that complexes I and H/Ill 
were only mildly affected in the occipital but not the 
other cortical areas, indicating that C.O. might be 
selectively involved in AD. 

Cytochrome oxidase and Alzheimer 's  diset:se 

Parker's group first reported a significant reduction in 
cytochrome oxidase activity in platelets of AD patients 
(Parker et al., 1990), suggesting strongly that the defect 
was a generalized phenomenon. This finding was 
subsequently challenged (Van Zuylen et al., 1992) but 
was reconfirmed (Parker e t a l . ,  1994a). Purified C.O. 
from AD brains showed an anomalous kinetic behavior 
compared to controls (Parker & Parks, 1995). C.O. 
activity was also found to be decreased biochemically in 
AD brains (Kish et al., 1992; Reichmann et al., 1993; 
Mutisya et al., 1994; Parker et al., 1994b). although the 
location and severity of deficits varied among these 
reports. Kish's group found a significant reduction in 
frontal (-26%) and temporal (-17%) cortices, but the 
other regions were either not affected (occipital cortex 
and putamen) or were nonsignificantly elevated (hippo- 
campus). Reichmann and colleagues claimed a reduction 
in all four regions that they examined (temporal, parietal, 
and entorhinal cortices, and hippocampus), and Muti- 
sya's group reported a 25-30% reduction in frontal, 
temporal, parietal, and occipital cortices. T]hus far, only a 
single histochemical study has been reported on AD 
brains, and it concentrated solely on the hippocampus and 
dentate gyrus, both of which exhibited decreased C.O. 
activity (Simonian & Hyman, 1993), in contrast to Kish's 
biochemical findings (Kish e ta l . ,  1992). 

The present study represents a comprehensive analysis 
of C.O. by biochemical, histochemical, and immuno- 
histochemical means, in multiple regions of a large group 
of AD cases over a period of several years. This approach 
allowed us to eliminate specimens that we, re suboptimal 
in structural and enzymatic preservations and to perform 
quantitative analyses on relatively well-preserved speci- 
mens. It is clear that all cortical regions examined 
exhibited a significant decrease in biochemical activity of 
C.O., with the greatest reduction in the superior temporal 
gyrus (STG) (P _< 0.001), and definitely affecting the 
primary and secondary visual cortices (P < 0.05-0.01). 
By comparison, the substantia nigra and optic tract 
retained activities that were comparable to those of age- 
matched, non-AD cases with no known neurological 
diseases. The heterogeneous effect of AD will be 
discussed further below. 

Histochemically and immunohistochemically, we were 
able to carry out the analyses to the laminar and 
sublaminar levels. All six layers of the dorsal lateral 
geniculate nucleus and all sublaminae of the primary 
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FIGURE 6. Sections perpendicular to the surface of parietal cortex [(A) and (B)] and prefrontal cortex [(C) and (D)] were 
reacted for C.O. histochemistry [(A) and (C)] and C.O. immunohistochemistry [(B) and (D)], respectively. The layers in each 
region are listed on the left of each section. These AD samples retained the same staining patterns as those in controls, but their 
levels of activity and immunoreactivity were significantly lower than those of controls (see Fig. 7). Since patterns of C.O. 
histochemistry and immunohistochemistry in various brain regions examined are similar between AD and control patients, only 
those from AD patients are shown. Control samples simply have higher levels of activity and immunoreactivity in most brain 

regions, as shown by optical densitometric readings in Figs 5, 7, and 9. 
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visual cortex examined exhibited statistically significant 
reductions in their C.O. activity (P < 0.05-0.001). Like- 
wise, the supragranular, granular, and infragranular 
layers of prefrontal and parietal association cortices 
demonstrated a fall in relative enzymatic activity and 
relative protein amount (P < 0.01-0.001). Thus, our 
histochemical and immunohistochemical analyses con- 
firmed our biochemical results and established that a 
reduction in C.O. activity was a generalized phenomenon 
in neocortical neurons and neocortical neuropil. 

Within the hippocampal formation, our results are 
consistent with those of Simonian and Hyman (1993)in 
that all subfields and sublaminae examined exhibited a 
significant reduction in C.O. activity. In addition, neurons 
of CA 1, 3, and 4 and the dentate molecular layer also had 
a loss in C.O. protein amount. These results are not 
surprising, since memory loss is one of the cardinal signs 
of AD. A corollary is our finding of a significant decrease 
in C.O. activity within neuronal clusters and deep layers 
of the entorhinal cortex, the major afferent source of the 
hippocampus. Again, this is consistent with known 
pathology in the entorhinal cortex of AD (Van Hoesen 
et al., 1991). 

Dysfunction of cytochrome oxidase would severely 
compromise several intra-mitochondrial functions: (a) 
electron transport, with the formation of oxygen free 
radicals known to induce mtDNA mutation and perox- 
idative membrane damage (Wallace, 1992); (b) ATP 
synthesis, affecting such ATP-dependent functions as the 
maintenance of a stable potential across the plasma 
membrane, as well as across the mitochondrial mem- 
brane; and (c) calcium sequestration, which affects 
intracellular calcium level and a host of calcium- 
dependent functions. In addition, disruption of cyto- 
chrome oxidase may be involved in lipid peroxidation 
found in the frontal cortex of AD patients (Volicer & 
Crino, 1990). Accumulation of these deficits with time 
could eventually lead to severe metabolic compromise 
and cell death. 

At present, it is not known if C.O. deficiency is the 
cause or effect of AD. Either way, it is clear from the 
present and previous studies that this important enzyme is 
affected in many regions of the AD brain. 

Regional  differences 

Our analyses of neuritic plaques are in general 
agreement with previous reports, which demonstrated 
that the prevalence of senile plaques increased from 
primary sensory areas to secondary and tertiary associa- 
tion areas (Pearson et al., 1985; Rogers & Morrison, 
1985). The distribution of abnormally phosphorylated tan 
proteins was uniformly high in the limbic, temporal, and 
parietal lobes of AD patients (Vermersch et al., 1992), 
but tended to be more variable among patients for the 
occipital and frontal cortex. Among the AD cases for 
which we had performed C.O. biochemistry, neuritic 
plaque density was highest in the parietal cortex 
(supramarginal gyrus), followed by the superior temporal 
cortex. However, the densities were equally high in the 

hippocampus, insular cortex, prefrontal cortex, and the 
primary visual cortex, indicating a close association 
between plaque deposits and reduced C.O. activity. Even 
the primary motor cortex and the nucleus basalis of 
Meynert had plaque densities significantly above those of 
control cases. 

A reduction in C.O activity is also consistent with PET 
findings that whole brain metabolic rate in AD is reduced, 
and that the reduction is related to the overall severity of 
dementia (Haxby & Rapoport, 1986). There appears to be 
a progression of hypometabolism from the parietotem- 
poral association cortex (which are affected early in the 
disease and suffer the most severe regional metabolic 
disturbance) to the frontal lobe, but PET does not detect 
any deficits in primary sensory and motor cortical areas 
(Duara et al., 1986; Jagust et al., 1988; Heiss et al., 1991; 
reviewed in Rapopon, 1991; Beal, 1992). In this regard, it 
is possible that C.O. biochemistry and histochemistry 
may have greater sensitivity and resolution than PET in 
revealing reduced oxidative metabolism in neurons. 
However, the latter has the distinct advantage of 
monitoring the living brain. Thus, the metabolic demands 
of different neuronal systems do differ and may form the 
basis for varying degrees of vulnerability in AD. Both 
neuropathologic (paired helical filaments, amyloid 
plaques) and imaging (CT, PET, and SPECT) studies 
suggest that brain regions of greatest vulnerability in AD 
include those particularly sensitive to oxidative impair- 
ments (Blass & Gibson, 1991). Discrepancies in the 
reported regions of metabolic disturbance may simply 
reflect the sensitivity of the measurement, the hetero- 
geneous nature of the patient population, and the severity 
of the disease. 

Visual system in A D  

The present study showed unequivocably that, at least 
in our population of AD patients, both the dorsal lateral 
geniculate nucleus and the visual cortex exhibited 
significant reductions in C.O. activity and protein amount 
as compared to the control group. The p:rimary visual 
cortex of these AD patients also had plaque density that 
was comparable to the affected prefrontal and insular 
cortices. Our findings are in agreement with those of 
Beach and McGeer (1992), who found a severe depletion 
of acetylcholinesterase fibers along with a significant 
aggregate of senile plaques and amylo:id /3-proteins 
(AflP) in the visual cortex of AD cases. However, they 
did not find a significant change in the density of 
synaptophysin there. A sizeable reduction (by ~ 30%) in 
the mean neuronal density was also found in both areas 
17 and 18, but the increase in glial density was significant 
only in area 17 (Leuba & Kraftsik, 1994). 

While the common manifestations of AD include 
memory loss, impaired language ability, decreased 
praxis, impaired judgment, and learning, recent attention 
has been focused on visual dysfunction in AD (Cronin- 
Golomb et al., 1991; Hof & Bouras, 1991; Mendola et al., 
1995; Pantel, 1995; Trick et al., 1995). Frequently, 
topographic agnosia, visual agnosia, alexia without 
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FIGURE 8. Coronal sections of the hippocampal formation reacted for C.O. histochemistry (A) and C.O. immunohistochem- 
istry (B), respectively. Note that the granule cell layer (GCL) of the dentate gyrus is well demarcated by C.O. 
immunohistochemistry (B), but shows a low level of C.O. activity (A). The molecular layer of the dentate gyms (DML) has 
relatively high levels of C.O. activity. The small, dark fold in the hippocampus in (A) is artifactual. These AD samples retained 
the same staining patterns as those in controls, but their levels of activity and immunoreactivity were significantly lower than 
those of controls (see Fig. 9). Since patterns of C.O. histochemistry and immunohistochemistry in various brain regions 
examined are similar between AD and control patients, only those from AD patients are shown. Control samples simply have 
higher levels of activity and immunoreactivity in most brain regions, as shown by optical densitometric readings in Figs 5, 7, 

and 9. 

agraphia, and prosopagnosia are found during the clinical 
evaluation of patients with mild to moderate dementia of 
the AD type. Less commonly, the presenting symptoms 
of AD may consist of difficulty with seeing a picture as a 
whole. This very first symptom of AD is manifested in 
patients as an ability to describe individual components 
of a picture, but an inability to see them as parts in a 
larger context. This is consistent with a greater severity of 
C.O. deficits in the association cortical areas. 

When compared with other age-matched controls, AD 
patients show specific deficits in contrast sensitivity (all 
but the lowest spatial frequency tested), while deficits in 
color vision were age-related and deficits in stereoacuity 
were related to other types of dementia (Bassi et  al., 
1993; Hutton et  al., 1993; Levine et  al., 1993). AD 
patients had deficits in texture discrimination, blue-violet 
discrimination, and 4.72 deg/sec motion detection (Kur- 
ylo et  al., 1994). Selective degeneration of large ganglion 
cell axons was observed in the optic nerves of AD 
patients, suggesting an exclusive impairment of broad- 
band channel visual function; however, visual psycho- 
physical tests indicate that broad-band visual capacities 
are not selectively impaired in AD (Kurylo et  al., 1994). 
Our analysis of the dorsal lateral geniculate nucleus also 
indicates that both magno- and parvicellular neurons 
were significantly affected in our population of AD 
patients. It has also been reported that AD patients were 
impaired at low rather than at high spatial frequencies, 
which contrasts with the normal aging pattern of high- 
frequency loss (Cronin-Golomb et al., 1991). This would 
imply that regions subserving low spatial frequency 
processing in the primary visual cortex (cytochrome 
oxidase-rich puffs or blobs; reviewed in Wong-Riley, 
1994) would be affected more than those for high spatial 

frequency (interpuffs or interblobs) (Tootell et  al., 1988). 
Our data indicate that both puffs and interpuffs in our AD 
patients exhibited decreased cytochrome oxidase activ- 
ity, and that there was a global reduction in oxidative 
capacity in both primary and secondary visual cortices. 

The marked variability in C.O. levels among AD cases 
is not unexpected, as cases vary in their length and 
severity of illness. In the early stages of 1;he disease, a 
bilateral increase in regional cerebral blood flow (rCBF) 
was actually observed in occipitotemporal extrastriate 
cortex during face matching, indicating a reliance on the 
extrastriate cortex to perform visuoperceptual tasks, 
similar to that seen in age-matched controls (Grady et  
al., 1993). However, mild to moderately affected AD 
patients also showed an increased rCBF activation in 
regions of occipital and frontal cortex not seen in healthy 
controls, suggesting a need for increased attentional load 
due to a reduced cognitive capacity. 

F u t u r e  s tudies  

The difficulty facing the pathogenesis ,of AD is that 
most, if not all, of  the abnormalities reported are 
interrelated: altered processing of amyloid precursor 
protein, oxidative stress, oxygen free radicals, neuro- 
transmitter abnormality, mtDNA mutation, hypometabo- 
lism, and neuronal degeneration. Defect in one would 
directly or ultimately lead to some or all of the other 
abnormalities. It seems clear, however, that cytochrome 
oxidase is compromised, perhaps more severely than the 
other enzymes of the electron transport chain, and that it 
affects certain brain regions more so than others. 

Among the 13 subunits, mitochondrial-encoded C.O. 1 
and 3 mRNAs were found to be significantly reduced (by 
50-65%) in the temporal association, but not the primary 
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m o t o r  c o r t e x  o f  A D  brains ,  s u g g e s t i n g  the i n w ) l v e m e n t  o f  

m t D N A  in A D  p a t h o g e n e s i s  ( C h a n d r a s e k a r a n  et al., 
1994). L i k e w i s e ,  m i t o c h o n d r i a l - e n c o d e d  C.O.  2 was  a lso  

r e d u c e d  in the  h i p p o c a m p u s  o f  A D  but,  su rp l i s ing ly ,  the  

n u c l e a r - e n c o d e d  C .O.  4 was  r e p o r t e d l y  no t  a f f ec t ed  

( S i m o n i a n  & H y m a n ,  1994). T h e s e  da ta  sugges t  that  

r e d u c e d  e x p r e s s i o n  o f  C.O.  genes  in the  m i t o c h o n d r i a  o f  

A D  bra ins  m a y  con t r ibu te  to r e d u c e d  o x i d a t i v e  m e t a b o -  

l i sm in A D .  H o w e v e r ,  m i t o c h o n d r i a l - e n c o d e d  C.O.  

subuni t  3 g e n e  was  f o u n d  to be  o v e r e x p r e s s e d  in t e m p o r a l  

c o r t e x  o f  A D  (Alber t s  et al., 1992). T h e  s ign i f i cance  o f  

such  d i s c r epanc i e s  is no t  c lea r  at present .  I t  is poss ib l e  

that  the  seve r i ty  o f  the i l lness  va r ies  w i d e l y  a m o n g  A D  

pat ients ,  and that  the d i sease  man i f e s t s  i t se l f  d i f f e r en t ly  

in d i spara te  b ra in  r e g i o n s  and to v a r y i n g  degrees .  

T h e  i m p o r t a n c e  o f  o x i d a t i v e  stress in A D  is und is -  

puted .  H o w e v e r ,  w h e t h e r  a gene t i c  de fec t  in o x i d a t i v e  

e n z y m e s  is the  cause  or  the e f fec t  o f  A D  awai t s  fu r the r  

l a rge - sca l e  m o l e c u l a r  s tudies .  
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