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Abstract

In this paper, by using generalized logarithms of Dedekind eta-functions, generalized

logarithms of theta-functions are obtained. Applying these functions, the relations between

Hardy sums and Theta-functions are found. The special cases of these relations give Berndt’s

Theorems 6.1–8.1 (J. Reine Angew. Math. 303/304 (1978) 332) and explicit formulae of Hardy

sums. Using derivative of logarithms of the Dedekind eta-function, relations between

logarithm of the theta-functions and Eisenstein series are given. Applying connection between

Lambert series and generalized Dedekind sums, the relation between theta-functions and

Lambert series are obtained.
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1. Introduction

In 1972, Lewittes [20] generalized Eisenstein series as follows: Let H be a upper
half-space, H ¼fzAC: Im z > 0g: For zAH; s ¼ u þ ivAC with u > 1 and
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h ¼ ðh1; h2Þ; r ¼ ðr1; r2ÞAR2

Gðz; s; r; hÞ ¼
X

raðm;nÞAZ2

e2piðmh1þnh2Þ

ððm þ r1Þz þ n þ r2Þs:

The special case h ¼ r ¼ 0 gives Gðz; sÞ ¼
P
0aðm;nÞAZ2ðmz þ nÞ�s (for detail see

[20,2]). Lewittes [20] proved transformation formulae for the analytic continuation
of a very large class of Eisenstein series. These results give transformation formulae
for a large class of functions which generalizes Dedekind eta-function. He also
showed that this function has an analytic continuation over the entire s plane,
exhibited explicitly by a convergent Fourier expansion.
Recall that the Dedekind eta-function ZðzÞ is defined as follows;

ZðzÞ ¼ e
piz
12

YN
n¼1

ð1� e2pinzÞ

for zAH: (Here, we shall employ some of the notation in [2].) In many applications
of elliptic modular functions to Number Theory the Z-function, which was
introduced by Dedekind in 1877, plays a central role. The product has the formQ

N

n¼1ð1� xnÞ where x ¼ e2piz: If zAH then jxjo1; so the product converges
absolutely and is nonzero. Moreover, since the convergence is uniform on compact
subsets of H; ZðzÞ is analytic on H: Dedekind sums appear in the transformation
formulae of ZðzÞ: Here we shall review some well-known classical results on ZðzÞ: For
proofs and more details, we refer to [2,10,13,18]. Dedekind [25] gave under the
modular transformation an elegant functional equation which contains Dedekind
sums in the following theorem.

Theorem 1. If A ¼ a b

c d

� �
AG; c > 0 and zAH; we have

ZðAzÞ ¼ Z
az þ b

cz þ d

� �
¼ e

piðaþdÞ
12c

þpisð�d;cÞð�iðcz þ dÞÞ
1
2ZðzÞ; ð1:1Þ

where

sðh; kÞ ¼
X

m mod k

m
k

	 
	 
 hm
k

� �� �
;

where h is an arbitrary integer, k is a positive integer and the function ððxÞÞ is defined as

follows:

ððxÞÞ ¼ x � ½x
 � 1
2
; x is not an integer;

0; otherwise;

8<
:

where ½x
 is the largest integer px ( for detail see [2,25]).
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The sum sðh; kÞ in (1.1) is known Dedekind sum. For z ¼ x þ iy with x; y real. For
any complex number w; we choose that branch of log w with �pparg wop:We note
that Dedekind’s formula is a consequence of the following equation, obtained by
taking logarithms of both sides of (1.1) [2,24]

log ZðAzÞ ¼ log ZðzÞ þ piða þ dÞ
12c

� pisðd; cÞ � pi

4
þ 1
2
logðcz þ dÞ: ð1:2Þ

Rademacher’s first paper, which was published in 1932, devoted to the eta-
function and Dedekind sums [25]. Here he proves the transformation formula for
log ZðzÞ under modular transformations via contour integration and the functional
equation of the Hurwitz zeta-function. The proof of (1.2) was given by Berndt [5]
and Apostol [2]. Lewittes [20] generalized log ZðzÞ as follows:

Aðz; s; r1; r2Þ ¼
X

n>�r1

XN
k¼1

ks�1e2pikr2þ2pikðr1þnÞz;

Hðz; s; r1; r2Þ ¼Aðz; s; r1; r2Þ þ episAðz; s;�r1;�r2Þ

for zAH: If r1 ¼ 0; r2 ¼ 0 in the above, then we obtain immediately Aðz; sÞ ¼P
N

n¼1 ss�1ðnÞe2pinz; where ss�1ðnÞ ¼
P

kjn ks�1: We note that Aðz; 0Þ is closely related
to the Dedekind eta-function. By the definition of ZðzÞ; we have

log ZðzÞ � piz

12
¼

XN
n¼1

logð1� e2pinzÞ ¼ �
XN
n¼1

s�1ðnÞe2pinz ¼ �Aðz; 0Þ:

Lewittes also showed transformation formulae of Aðz; s; r1; r2Þ and Hðz; s; r1; r2Þ
under the modular substitutions. However, the formulae (Theorem 3, Eq. (51) in
[20]) are so complicated that even in the simplest case of the Dedekind eta-function it
is exceedingly difficult to deduce the usual transformation formulae in terms of
Dedekind sums. Berndt [7] gave a different proof of this formulae (Theorem 3,
Eq. (51) in [20]). He also proved a transformation formula under modular
substitutions, which is derived for a very large class of generalized Eisentein series.
This transformation formula is easily converted into a transformation formula for a
large class of functions that includes and generalizes the classical Dedekind eta-
function. In addition, he gave elegant transformation formulae in which Dedekind
sums or various generalizations of Dedekind sums appear. These formulae include
those functions studied by Dieter [13], Schoeneberg [26] and Tezeng and Miao [29].
Dieter [13] and Schoeneberg [26] have derived the result for a subset of Berndt’s
functions (Eqs. (21)–(22) in [5]). The results of Dieter and Schoeneberg are special
cases of Berndt’s function(see Eq. (22) in [5]). We shall employ some of the notation
in [5,26]. Let g and h be integers, and N be a positive integer N: We define
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generalized Dedekind eta-function, Zg;hðzÞ as follows:

Zg;hðz;NÞ ¼ ag;hðNÞepiz %B2ð
g
N
Þ Y

m�gðNÞ;m>0

ð1� zh
Nqm

NÞ
Y

m��gðNÞ;m>0

ð1� z�h
N qm

NÞ

for zAH; where zN ¼ e
2pi
N ; qN ¼ e

2piz
N and

ag;hðNÞ ¼ epi %B1ð h
N
Þð1� z�h

N Þ if g � 0; hc0 modN;

1 otherwise:

(

%B1 and %B2 in the formulae are Bernoulli functions:

%B1ðxÞ ¼ x � ½x
 � 1
2
; %B2ðxÞ ¼ ðx � ½x
Þ2 � ðx � ½x
Þ þ 1

6
:

The functions Zg;hðz;NÞ are holomorphic for zAH and depend upon g; h modulo N:

Furthermore, Zg;hðz;NÞ ¼ Z�g;�hðz;NÞ for each g and h; and Zg;hðz;NÞ ¼ Z2ðzÞ for
ðg; hÞ � ð0; 0Þ ðmodNÞ: Zg;hðz;NÞ is a modular function with a multiplication of
absolute value 1 for the principal congruence group GðNÞ if ðg; hcð0; 0Þ ðmodNÞ
(see [13,26]). In the following, we regard these functions from the point of view of the
modular group G (see [18] about modular group and subgroups of modular group).
Tzeng and Miao [29] showed that Zg;hðz;NÞ is an almost automorphic function for
the whole modular group G if ðg; hÞcð0; 0Þ ðmodNÞ: Some examples and some
relations between Theta functions Wm;n and Dedekind eta-function were given by
Tzeng and Miao [29]. Generalized transformation formulae for log Zg;hðz;NÞ is
defined as follows:

Let ðg1; h1Þ ¼ ðg; hÞ a b

c d

� �
; and

bg;hðNÞ ¼
1; g � h � 0 ðmodNÞ;
0 otherwise:

(

Then,

log Zg;hðAz;NÞ ¼ log Zg1;h1
ðz;NÞ þ pia

c
%B2

g

N

	 

þ pid

c
%B2

g1

N

	 


� 2pisg;hðd; c;NÞ � bg;hðNÞ pi

2
� logðcz þ dÞ

� �
; ð1:3Þ

where sg;hðd; c;NÞ is generalized Dedekind sum, which is defined as [26]

sg;hðd; c;NÞ ¼
X

m mod c

g þ mN

cN

� �� �
g1 þ dmN

cN

� �� �
:
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Remark 1. Let 0pg; hoN: log Z0;0ðz;NÞ ¼ 2log ZðzÞ; and (1.3) is reduced to (1.2)
and s0;0ðd; c; 1Þ ¼ sðh; kÞ: Eq. (1.3) is proved in different ways. Generalized

transformation formula for log Zg;hðzÞ is proved by Dieter [13] and Schoeneberg
[26], and Berndt [5–10] proved a transformation formula for a fairly broad class of
analytic Eisenstein series.

The most fundamental property of Dedekind sums is the remarkable reciprocity
law: If h; k > 0 and ðh; kÞ ¼ 1; then

sðh; kÞ þ sðk; hÞ ¼ �1
4
þ 1

12

h

k
þ k

h
þ 1

hk

� �
:

This formula was first proved by Dedekind [25] using the transformation formulae of
log ZðzÞ: There now exist many proofs of this formula, and several of these can be
found in a monograph [25] on Dedekind sums, written by Rademacher and
completed by Grosswald after Rademacher’s death. Rademacher found five original
proofs of this formula. An elementary proof of this formula, as well as a
generalization is given by Berndt [6,8,9]. An elementary proofs appear in a paper
[14], which generalized this formula. Another elegant proof was given by Apostol [1],

which generalized this formula by the pth Bernoulli function, %BpðxÞ: Here we shall
review some of the well-known classical results on Generalized Dedekind sums and
%BpðxÞ: For proof and more details, we refer to Apostol’s paper [2]. Generalized
Dedekind sums sðh; k; pÞ are defined as follows [2]:

sðh; k; pÞ ¼
X

a mod k

a

k
%Bp

ah

k

� �
;

where h; kAZ; ðh; kÞ ¼ 1; %BpðxÞ is the pth Bernoulli function. For odd p; the sums

sðh; k; pÞ have reciprocity law. Apostol [2] proved the reciprocity law of these sums.
When p ¼ 1; the sums sðh; k; 1Þ are known as Dedekind sums, sðh; kÞ: Also the sums
sðh; k; pÞ are related to the Lambert series, GpðxÞ; which are defined as follows:

GpðxÞ ¼
XN
n¼1

n�p xn

1� xn
¼

XN
m;n¼1

n�pxmn;

where pX1: These functions are regular for jxjo1 and have the unit circle as a
natural boundary, each rational point of the circle being a singular point. The special

case p ¼ 1 gives G1ðxÞ ¼ �log
Q

N

m¼1ð1� xmÞ: Thus, log ZðzÞ is the same as piz
12

�
G1ðe2pizÞ: Using a technique developed by Rademacher, transformation formulae
relating Gpðe2pizÞ to Gpðe2piz0 Þ are obtained for odd p; where z0 ¼ azþb

czþd
is a modular

substitution [2]. The sums sðh; k; pÞ appear in these formulae. The sums sðh; k; pÞ are
expressible as infinite series related to certain Lambert series. In the last section we
shall establish new relations connection between the sums sðh; k; pÞ and the Lambert
series Gpðe2pih=kÞ and theta-functions.
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The classical theta-functions, Wnð0; qÞ ðn ¼ 2; 3; 4Þ are defined as follows [24,30]:

W2ð0; qÞ ¼ 2q
1
2
YN
n¼1

ð1� q2nÞð1þ q2nÞ2; W3ð0; qÞ ¼
YN
n¼1

ð1� q2nÞð1þ q2n�1Þ2;

W4ð0; qÞ ¼
YN
n¼1

ð1� q2nÞð1� q2n�1Þ2:

In the remainder of our work, we shall denote W2ð0; qÞ; W3ð0; qÞ and W4ð0; qÞ as
W2ðzÞ; W3ðzÞ and W4ðzÞ; respectively, where q ¼ epiz: The relations between theta-
functions and Dedekind eta-function are defined as

W2ðzÞ ¼
2Z2ð2zÞ
ZðzÞ ; W3ðzÞ ¼

Z5ðzÞ
Z2ð2zÞZ2ðz

2
Þ; W4ðzÞ ¼

Z2ðz
2
Þ

ZðzÞ :

The above relations and the others are studied by Rademacher [24]. Further
information about these functions can be found in Barner [4], Knopp [17], Peterson
[21], and Köhler [19]. Raab [23] gave the relation between generalized theta-
functions and Dedekind eta-functions in a different way. He also defined quadratic
theta-functions.
The following relations are obtained by taking logarithms of both sides of above

relations:

log W2ðzÞ ¼ log 2þ 2 log Zð2zÞ � log ZðzÞ; ð1:4Þ

log W3ðzÞ ¼ 5 log ZðzÞ � 2 log Zð2zÞ � 2 log Z
z

2

	 

; ð1:5Þ

log W4ðzÞ ¼ 2 log Z
z

2

	 

� log ZðzÞ: ð1:6Þ

In contrast to log ZðzÞ; the logarithms of the classical theta-functions have scarcely
been studied. (Here we use the notation of Whittaker and Watson [30] and Berndt
[10] for the theta-functions.) Berndt [10] and Goldberg [15] derived the transforma-
tion formulae for log WnðzÞ ðn ¼ 2; 3; 4Þ: There are 9 distinct transformation
formulae depending on parties of certain coefficients a; b; c; and d in modular
transformation ðaz þ bÞ=ðcz þ dÞ: Arising in the transformation formulae are six
different arithmetic sums, which are thus similar to Dedekind sum and well-known
Hardy sums or Berndt’s arithmetic sums. For h; kAZ with k > 0; these 6 sums are
defined as follows:

Sðh; kÞ ¼
Xk�1
j¼1

ð�1Þjþ1þ½hj
k

; s1ðh; kÞ ¼

Xk

j¼1
ð�1Þ½

hj
k

 j

k

� �� �
;
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s2ðh; kÞ ¼
Xk

j¼1
ð�1Þj j

k

� �� �
hj

k

� �� �
; s3ðh; kÞ ¼

Xk

j¼1
ð�1Þj hj

k

� �� �
;

s4ðh; kÞ ¼
Xk�1
j¼1

ð�1Þ½
hj
k

; s5ðh; kÞ ¼

Xk

j¼1
ð�1Þjþ½hj

k

 j

k

� �� �
:

Rademacher [24] studied log WnðzÞ; n ¼ 2; 3; 4: However, his approach was via the
Dedekind eta-function, so the sums defined above were not discerned by
Rademacher. Some of these sums are mentioned in a paper of Hardy [16], where
reciprocity theorems are stated without proof. However, Hardy did not observe the
connections between his sums and theta-functions. Hardy studied on the theory of
rsðnÞ; the number of representations of n as the sum of s squares, the sums Sðh; kÞ
and snðh; kÞ; n ¼ 1; 2; 3; 4; 5 arouse this theory. Hardy gave formulae rsðnÞ; for
5pnp8 and asymptotic formulae for s > 8; which can be found in [13]. Employing
the sums mentioned above, Goldberg [15] has shown that a substantial simplification
in Hardy’s proof can be effected. These sums also arise in the study of the Fourier
coefficients of the reciprocals of Wnð0; qÞ; n ¼ 2; 3; 4 [12]. Berndt and Goldberg [12]
found analytic properties of Hardy sums. They established infinite trigonometric
series representations for Hardy sums. They also evaluated certain nonabsolutely
convergent double series in terms of these sums. The most important of Hardy sums
is the following reciprocity theorem due to Sitaramachandrarao [28] and Berndt [10].

Theorem 2. Let h and k be coprime positive integers. If h þ k is odd, then,

Sðh; kÞ þ Sðk; hÞ ¼ 1 ð1:7Þ

if h is even, then

s1ðh; kÞ � s2ðk; hÞ ¼ 1
2
� 1
2

1

hk
þ k

h

� �
ð1:8Þ

if k is odd, then

2s3ðh; kÞ � s4ðk; hÞ ¼ 1� h

k
ð1:9Þ

if h is even, then

s5ðh; kÞ þ s5ðk; hÞ ¼ 1
2
� 1

2hk
: ð1:10Þ

The reciprocity theorems (1.7)–(1.10) appear in Hardy’s list, respectively, as
Eqs. (viii)–(ix) [16]. By using log Wnð0; qÞ; n ¼ 2; 3; 4; Berndt [10] proved (1.7)–(1.9)
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in a different way. Goldberg [15] deduced (1.10) from Berndt’s transformation
formulae [10]. For other proofs which do not depend on transformation theory, we
refer to Apostol and Vu [3], Berndt and Goldberg [12], Berndt and Dieter [11], and
Sitaramachandrarao [28]. The author [27] deduced (1.9) from three term relations
defined for polynomials. Pettet and Sitaramachandrarao [22] gave new relations
related to Hardy sums and three terms relations for Hardy sums. It may be noted
that Sitaramachandrarao [28] expressed reciprocity theorem, by using elementary
arguments. Each of the Hardy sums is explicitly deduced in terms of the sum sðh; kÞ
to Theorem 2 from reciprocity law of the Dedekind sums.

Theorem 3. Let ðh; kÞ ¼ 1: If h þ k is odd, then

Sðh; kÞ ¼ 8sðh; 2kÞ þ 8sð2h; kÞ � 20sðh; kÞ ð1:11Þ

if h is even, then

s1ðh; kÞ ¼ 2sðh; kÞ � 4sðh; 2kÞ ð1:12Þ

if k is even, then

s2ðh; kÞ ¼ �sðh; kÞ þ 2sð2h; kÞ ð1:13Þ

if k is odd, then

s3ðh; kÞ ¼ 2sðh; kÞ � 4sð2h; kÞ ð1:14Þ

if h is odd, then

s4ðh; kÞ ¼ �4sðh; kÞ þ 8sðh; 2kÞ ð1:15Þ

if h þ k is even, then

s5ðh; kÞ ¼ �10sðh; kÞ þ 4sð2h; kÞ þ 4sðh; 2kÞ: ð1:16Þ

Each one of Sðh; kÞðh þ k even), s1ðh; kÞðh odd), s2ðh; kÞðk odd), s3ðh; kÞðk even),
s4ðh; kÞðh even) and s5ðh; kÞðh þ k odd) is zero.

The proof of this theorem is given by Sitaramachandrarao [28]. The relations
between Hardy sums and log WnðzÞ ðn ¼ 2; 3; 4Þ are given in theorems below.

Theorem 4. Let A ¼ a b

c d

� �
AG0ð2Þ; c > 0: If c is even and ðc; dÞ ¼ 1; then

log W2ðAzÞ ¼ log W2ðzÞ þ
1

2
logðcz þ dÞ � pi

4
þ pi

a þ d

4c

� �
� pis2ðd; cÞ: ð1:17Þ
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Theorem 5. Let A ¼ a b

c d

� �
AG0ð2Þ; c > 0: If d is odd and ðc; dÞ ¼ 1; then

log W4ðAzÞ ¼ log W4ðzÞ þ
1

2
logðcz þ dÞ � pi

4
� pi

4
s4ðd; cÞ: ð1:18Þ

The proofs of Theorems 4 and 5 have been given by Berndt [10] using analytic
continuation of Hðz; s; r; hÞ and residue calculus. It is the first purpose of the present
paper to prove and generalize Theorems 4 and 5. Our proofs will be quite different
from those of Berndt [10]. We will also generalize these theorems by using the
relations between Hardy sums and generalized transformation formulae of
logarithms of the classical theta-functions, which will be explained in Section 2.
We will deduce some new results, which are generalized Theorem 3, as well. Our

second aim is to give the relations between d
dz
Zg;hðzÞ and Eisenstein series, which will

be given in Section 3. Our third aim is to prove the relation between generalized
Dedekind sums, Hardy sums and Lambert series, which will be explained in the last
section.

2. Main theorems on generalized theta-functions and Hardy sums

In this section, we shall define some new functions, which are related to
generalized Dedekind eta-function. These functions will give us further insights into
the nature of (1.4)–(1.6). We will need these function throughout the paper. Here, we
will use the notations of Berndt [5,10] and Schoeneberg [26]. By using (1.3) in (1.4),
(1.5) and (1.6), we have

f2;g;hðz;NÞ ¼ log 2þ 2 log Zg;hð2z;NÞ � log Zg;hðz;NÞ; ð2:1Þ

f3;g;hðz;NÞ ¼ 5 log Zg;hðz;NÞ � 2 log Zg;h

z

2
;N

	 

� 2 log Zg;hð2z;NÞ; ð2:2Þ

f4;g;hðz;NÞ ¼ 2 log Zg;h

z

2
;N

	 

� log Zg;hðz;NÞ: ð2:3Þ

By using these functions we shall give several new theorems, which generalize
Theorems 3–5. Furthermore, note that

fn;0;0ðz;NÞ ¼ 2 log WnðzÞ; n ¼ 2; 3; 4

and (2.1), (2.2) and (2.3) reduces to (1.4), (1.5) and (1.6), respectively.

Proof of Theorem 4. The proof of this theorem is given by Berndt, (Theorem 6.1)
[10]. We give a different proof of this theorem.
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Putting z ¼ t�d
c
; and 2z ¼ 2ðt�dÞ

c
; and choosing A ¼ 2a 4ad�1

c

c 2d

� �
; we can rewrite

(1.2) and we obtain

log Zð2zÞ ¼ log Z 2t� 2d
c

� �
¼ log Z

2a � 1
2t

c

� �
� pi

a þ d

6c
� 1
4

� �

þ pisð2d; cÞ � 1
2
log t: ð2:4Þ

By using (2.4) and (1.2) in (1.4), we deduce that

log W2ðzÞ ¼ log W2ðAzÞ � 1
2
logðcz þ dÞ þ pi

4
� pi

a þ d

4c

� �
þ pið�sðd; cÞ þ 2sð2d; cÞÞ: ð2:5Þ

Hence, we assume that c is even and we apply (1.13) to (2.5) and we obtain (1.17).
The proof is complete. &

Now by using (1.3) and (2.1), we obtain generalized Theorem 4 as follows:

Theorem 6. Let A ¼ a b

c d

� �
AG0ð2Þ; c > 0: If c is even and ðc; dÞ ¼ 1; then

f2;g;hðAz;NÞ ¼ f2;g1;h1ðz;NÞ þ pia

c
%B2

g

N

	 

þ pid

c
%B2

g3

N

	 

� %B2

g1

N

	 
	 


� 2piT2;g;hðd; c;NÞ � bg;hðNÞ pi

2
� logðcz þ dÞ

� �
; ð2:6Þ

where

ðg3; h3Þ ¼ ðg; hÞ
2a 4ad�1

c

c 2d

" #

and

T2;g;hðd; c;NÞ ¼ 2sg3;h3ð2d; c;NÞ � sg1;h1ðd; c;NÞ:

Proof. Putting t ¼ cz þ d; and hence 2z ¼ 2t�2d
c
and choosing A ¼ 2a 4ad�1

c

c 2d

� �
we

can rewrite (1.3), and we obtain
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log Zg;h

2a � 1

2z
c

;N

0
B@

1
CA ¼ log Zg3;h3

2z � 2d
c

;N

� �
þ 2pia

c
%B2

g

N

	 

þ 2pid

c
%B2

g3

N

	 


� 2pisg3;h3ð2d; c;NÞ � bg;hðNÞðpi

2
� log ðtÞÞ: ð2:7Þ

Multiplying (2.7) by 2 and subtracting (1.3), using (2.1), we deduce that

f2;g;hðAz;NÞ ¼ f2;g1;h1ðz;NÞ þ pia

c
%B2

g

N

	 

þ pid

c
%B2

g3

N

	 

� %B2

g1

N

	 
	 

� pið�4sg3;h3ð2d; c;NÞ þ 2sg1;h1ðd; c;NÞÞ

� bg;hðNÞ pi

2
� logðcz þ dÞ

� �
: ð2:8Þ

Hence, we assume that c is even. By using (1.13) in (2.8) we get (2.6). The proof is
complete. &

Remark 2. Theorems 3 and 4 are special cases of Theorem 6. If we get g ¼ h � 0ðNÞ
then f2;0;0ðAz;NÞ is deduced to Theorem 4 (Berndt’s Theorem 6.1 [10]) and

T2;0;0ðd; c;NÞ is deduced to reciprocity theorem for Hardy sums (1.13) (Sitarama-
chandrarao’s Theorem 5.1 [28]).

Proof of Theorem 5. The proof of this theorem is given by Berndt, (Theorem 8.1

[10]). We give a different proof of this theorem. Putting z ¼ t�d
c
; and z

2
¼ t�d

2c
; and

choosing A ¼ a ad�1
2c

2c d

� �
; we can rewrite (1.2) and we have

log Z
z

2

	 

¼ log Z t� d

2c

� �
¼ log Z

a � 1
t

2c

� �
� pi

a þ d

24c
� 1
4

� �

þ pisðd; 2cÞ � 1
2
log t: ð2:9Þ

Hence, by using (1.2) and (2.9) in (1.6), we deduce that

log W4ðzÞ ¼ log W4ðAzÞ � 1
2
logðcz þ dÞ þ pi

4
þ pi

4
ð�4sðd; cÞ þ 8sðd; 2cÞÞ: ð2:10Þ

Here, we assume that d is odd and we apply (1.15) to (2.10), thus we obtain (1.18).
The proof is complete. &

Now by using (1.3) and (2.3), we shall generalize Theorem 5 as follows:
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Theorem 7. Let A ¼ a b

c d

� �
AG0ð2Þ; c > 0: If d is odd and ðc; dÞ ¼ 1; then

f4;g;hðAz;NÞ ¼ f4;g1;h1ðz;NÞ þ pid

c
%B2

g2

N

	 

� %B2

g1

N

	 
	 


� pi

2
T4;g;hðd; c;NÞ � bg;hðNÞ pi

2
� logðcz þ dÞ

� �
; ð2:11Þ

where

ðg2; h2Þ ¼ ðg; hÞ a
ad � 1
2c

2c d

2
4

3
5

and

T4;g;hðd; c;NÞ ¼ 8sg2;h2ðd; 2c;NÞ � 4sg1;h1ðd; c;NÞ:

Proof. Putting t ¼ cz þ d and hence z
2
¼ t�d

2c
and choosing A ¼ a ad�1

2c

2c d

� �
we can

rewrite (1.3), and we obtain

log Zg;h

a � 1
z

2c
;N

� �
¼ log Zg2;h2

z � d

2c
;N

� �
þ pia

2c
%B2

g

N

	 

þ pid

2c
%B2

g2

N

	 


� 2pisg2;h2ðd; 2c;NÞ � bg;hðNÞ pi

2
� logðtÞ

� �
: ð2:12Þ

Multiplying (2.12) by 2 and subtracting (1.3), and using (2.3), we deduce that

f4;g;hðAz;NÞ ¼ f4;g1;h1ðz;NÞ þ pid

c
%B2

g2

N

	 

� %B2

g1

N

	 
	 

� pið4sg2;h2ðd; 2c;NÞ � 2sg1;h1ðd; c;NÞÞ

� bg;hðNÞ pi

2
� logðcz þ dÞ

� �
: ð2:13Þ

Hence, we assume that d is odd. Applying (1.15) to (2.13) we obtain (2.11). The
proof is complete. &

Remark 3. Theorems 3 and 5 are special cases of Theorem 7. If we get g ¼ h �
0 ðmodNÞ then f4;0;0ðAz;NÞ is deduced to Theorem 5 (Berndt’s Theorem 8.1 [10])
and T4;0;0ðd; c;NÞ is deduced to reciprocity theorem for Hardy sums (1.15)

(Sitaramachandrarao’s Theorem 5.1 [28]).
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Theorem 8. Let A ¼ a b

c d

� �
AGy; c > 0: If d þ c is even and ðc; dÞ ¼ 1; then

f5;g;hðAz;NÞ ¼ f5;g1;h1ðz;NÞ þ pid

c
5 %B2

g2

N

	 

� %B2

g1

N

	 

� 4 %B2

g3

N

	 
	 


þ piT5;g;hðd; c;NÞ � bg;hðNÞ pi

2
� logðcz þ dÞ

� �
; ð2:14Þ

where

T5;g;hðd; c;NÞ ¼ 4sg2;h2ðd; 2c;NÞ þ 4sg3;h3ð2d; c;NÞ � 10sg1;h1ðd; c;NÞ:

Proof. The proof of this theorem is similar to above theorems. By using (1.3), (2.7),
(2.12) and (1.16) in (2.2), we get (2.14). The proof is complete. &

Here,

T5;0;0ðd; c;NÞ ¼ 4s0;0ðd; 2c;NÞ þ 4s0;0ð2d; c;NÞ � 10s0;0ðd; c;NÞ

is equal to Eq. (1.16).

Corollary 1. Let A ¼ a b

c d

� �
AG0ð2Þ; c > 0: If d is even and ðc; dÞ ¼ 1; then

f4;g;hðAz;NÞ ¼ f4;g1;h1ðz;NÞ þ pid

c
%B2

g2

N

	 

� %B2

g1

N

	 
	 


� pi

2
T1;g;hðd; c;NÞ � bg;hðNÞ pi

2
� logðcz þ dÞ

� �
;

where

T1;g;hðd; c;NÞ ¼ �4sg2;h2ðd; 2c;NÞ þ 2sg1;h1ðd; c;NÞ:

The proof of Corollary 1 is similar to Theorem 7. Here,

T1;0;0ðd; c;NÞ ¼ �4s0;0ðd; 2c;NÞ þ 2s0;0ðd; c;NÞ

is equal to Eq. (1.12).
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Corollary 2. Let A ¼ a b

c d

� �
AG0ð2Þ; c > 0: If c is odd and ðc; dÞ ¼ 1; then

f2;g;hðAz;NÞ ¼ f2;g1;h1ðz;NÞ þ pia

c
%B2

g

N

	 

þ pid

c
%B2

g3

N

	 

� %B2ð

g1

N
Þ

	 


� 2piT2;g;hðd; c;NÞ � bg;hðNÞ pi

2
� logðcz þ dÞ

� �
;

where

T3;g;hðd; c;NÞ ¼ �4sg3;h3ð2d; c;NÞ þ 2sg1;h1ðd; c;NÞ:

The proof of Corollary 2 is similar to Theorem 5. Here,

T3;0;0ðd; c;NÞ ¼ �4s0;0ð2d; c;NÞ � 2s0;0ðd; c;NÞ

is equal to (1.14).

Corollary 3. Let A ¼ a b

c d

� �
AGy; c > 0: If d þ c is odd and ðc; dÞ ¼ 1; then

f5;g;hðAz;NÞ ¼ f5;g1;h1ðz;NÞ þ pid

c
5 %B2

g2

N

	 

� %B2

g1

N

	 

� 4 %B2

g3

N

	 
	 


þ pi

2
Tg;hðd; c;NÞ � bg;hðNÞ pi

2
� logðcz þ dÞ

� �
;

where

Tg;hðd; c;NÞ ¼ 8sg2;h2ðd; 2c;NÞ þ 8sg3;h3ð2d; c;NÞ � 20sg1;h1ðd; c;NÞ:

The proof of Corollary 3 is similar to Theorem 8. Putting g ¼ h ¼ 0;

T0;0ðd; c;NÞ ¼ 8s0;0ðd; 2c;NÞ þ 8s0;0ð2d; c;NÞ � 20s0;0ðd; c;NÞ

is equal to (1.11).

3. Main theorems on the Eisenstein series and generalized Dedekind eta-functions

In this section, we shall review some of the well-known basic result on Eisenstein
series. For proofs and more details we refer to Apostol [2], Berndt [1,5,10] and
Lewittes [20]. We will use the following properties of Eisenstein series as follows:
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For x and a both real numbers and Re s > 1; let [10]

cðs; x; aÞ ¼
X

yþa>0

e2piyxðy þ aÞ�s:

The function cðs; x; aÞ has an analytic continuation into the entire complex plane.
This continuation is analytic everywhere except for a possible simple pole at s ¼ 1:
For zAH the Eisenstein series Gðz; 2Þ is defined as follows:

Gðz; 2Þ ¼ 2zð2Þ þ 2ð2piÞ2
XN
a¼1

sðnÞe2pinz;

where sðnÞ ¼
P

djn d; and zðzÞ denotes Riemann zeta-function [2].

Lemma 1. If zAH; then

Gðz; 2Þ ¼ 2zð2Þ þ
X

0amAZ

X
nAZ

1

mz þ n

� �2
:

Proof. Now we give the following equation (Equation (12) of Chapter 1 [1]):

�ð2piÞ2
XN
r¼1

re2pirz ¼ � 1
z2

�
X

0amAZ

1

z þ m

� �2
: ð3:1Þ

Replacing z by nz; where n > 0; and sum over all n > 0; and by using Riemann zeta-
function in (3.1), we have the desired result. &

Apostol [2] raised the following question concerning the Dedekind eta-function
and Gðz; 2Þ function: let zAH: We have

Gðz; 2Þ ¼ �4pi
d

dz
log ZðzÞ: ð3:2Þ

Now, by using differentiating logarithm of generalized Dedekind eta-function, we
find generalized (3.2) as follows:

Lemma 2. Let g and h be integers and N be positive integer and zAH: Then

� 4pi
d

dz
log Zg;hðz;NÞ

¼ 4p2 %B2
g

N

	 

þ 2N c 2;

�h

N
; 0

� �
þ c 2;

h

N
; 0

� �� �

þ 1

N
G

z

N
; 2; 0;

h

N
; 0

� �� �
þ G

z

N
; 2; 0;

�h

N
; 0

� �� �� �
; ð3:3Þ
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� 4pi
d

dz
log Zg;hð2z;NÞ

¼ 8p2 %B2
g

N

	 

þ N c 2;

�h

N
; 0

� �
þ c 2;

h

N
; 0

� �� �

þ 2

N
G
2z

N
; 2; 0;

h

N
; 0

� �� �
þ G

2z

N
; 2; 0;

�h

N
; 0

� �� �� �
; ð3:4Þ

� 4pi
d

dz
log Zg;h

z

2
;N

	 


¼ 2p2 %B2
g

N

	 

þ 4N c 2;

�h

N
; 0

� �
þ c 2;

h

N
; 0

� �� �

þ 1

2N
G

z

2N
; 2; 0;

h

N
; 0

� �� �
þ G

z

2N
; 2; 0;

�h

N
; 0

� �� �� �
: ð3:5Þ

Proof. We prove (3.3). By differentiating log Zg;hðz;NÞ and through some calcula-
tions, we get

d

dz
log Zg;hðz;NÞ ¼ pi %B2

g

N

	 

þ 2pi

N

XN
m¼1;m�gðNÞ

m
e2piðhþzmÞ=N

1� e
2piðhþzmÞ=N

þ 2pi

N

XN
m¼1;m��gðNÞ

m
e2pið�hþzmÞ=N

1� e
2pið�hþzmÞ=N

ð3:6Þ

by the well-known relation
P

vAN e�nv ¼ en

en�1; using (3.1) and the above relation in

(3.6), then the desired result is obtained. &

Remark 4. The proofs of (3.4) and (3.5) follow precisely along the same lines as the
proof of (3.3), and so we omit them. Eq. (3.2) is a special case of Lemma 2. If we get

g ¼ h � 0ðNÞ then d
dz
log Z0;0ðzÞ is reduced to d

dz
ð2 log ZðzÞÞ: By using the above

lemma, we find relations between theta-functions and Eisenstein series. These
relations are given as follows:

Theorem 9. Let g and h be integers and N be positive integer and zAH: Then

�4pi
d

dz
f2;g;hðz;NÞ ¼ 12p22 %B

g

N

	 

þ 1

N
ðE1ðzÞ þ E2ðzÞÞ;

where

E1ðzÞ ¼ 4G
2z

N
; 2; 0;

h

N
; 0

� �� �
� G

z

N
; 2; 0;

h

N
; 0

� �� �
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and

E2ðzÞ ¼ 4G
2z

N
; 2; 0; � h

N
; 0

� �� �
� G

z

N
; 2; 0; � h

N
; 0

� �� �

and Gðz; s; r; hÞ is Eisenstein series %B2ðxÞ is Bernoulli function.

Theorem 10. Let g and h be integers and N be positive integer and zAH: Then

�4pi
d

dz
f3;g;hðz;NÞ ¼ 1

N
ðF1ðzÞ þ F2ðzÞÞ;

where

F1ðzÞ ¼ 5G
z

N
; 2; 0;

h

N
; 0

� �� �
� 2G 2z

N
; 2; 0;

h

N
; 0

� �� �
� G

z

2N
; 2; 0;

h

N
; 0

� �� �

and

F2ðzÞ ¼ 5G
z

N
; 2; 0; � h

N
; 0

� �� �
� 2G 2z

N
; 2; 0; � h

N
; 0

� �� �

� G
z

2N
; 2; 0; � h

N
; 0

� �� �

and Gðz; s; r; hÞ is Eisenstein series.

Theorem 11. Let g and h be integers and N be positive integer and zAH: Then

�4pi
d

dz
f4;g;hðz;NÞ ¼ 6NY ðzÞ þ 1

N
ðT1ðzÞ þ T2ðzÞÞ;

where

T1ðzÞ ¼ G
z

2N
; 2; 0;

h

N
; 0

� �� �
� G

z

N
; 2; 0;

h

N
; 0

� �� �
;

T2ðzÞ ¼ G
z

2N
; 2; 0; � h

N
; 0

� �� �
� G

z

N
; 2; 0; � h

N
; 0

� �� �

and

YðzÞ ¼ c 2;
h

N
; 0

� �
þ c 2;� h

N
; 0

� �

and Gðz; s; r; hÞ is Eisenstein series.
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Proof of Theorem 9. Differentiating (2.1) and multiplying both sides by �4pi; we
find

�4pi
d

dz
f2;g;hðz;NÞ ¼ �8pi

d

dz
Zg;hð2z;NÞ þ 4pi

d

dz
Zg;hðz;NÞ:

Using (3.3), (3.4) and evaluating Gðz; s; r; hÞ and cðs; x; aÞ in the above, we find that

�4pi
d

dz
f2;g;hðz;NÞ ¼ 12p22 %B

g

N

	 

þ 1

N
4G

2z

N
; 2; 0;

h

N
; 0

� �� ��

� G
z

N
; 2; 0;

h

N
; 0

� �� �
þ 1

N
4G

2z

N
; 2; 0; � h

N
; 0

� �� ��

� G
z

N
; 2; 0; � h

N
; 0

� �� ��
:

Thus, we obtain the desired result. &

Remark 5. The proof of Theorems 10 and 11 follow precisely along the same lines as
the proof of Theorem 9, and so we omit them. By these theorems, the connection
between fn;g;hðz;NÞ; n ¼ 2; 3; 4 and Eisenstein series are found. Eqs. (1.4)–(1.5) are
special cases of these theorems. For g ¼ h � 0ðNÞ we get d

dz
log Z0;0ðzÞ is reduced to

d
dz
ð2 log ZðzÞÞ and d

dz
fn;0;0ðz;NÞ are reduced to d

dz
ð2WnðzÞÞ; n ¼ 2; 3; 4:

4. Theorems on Lambert series and generalized Dedekind sums

We review some notation from Apostol [1] and Berndt [5,8] papers. We will define
Dedekind sums, Aðz; s; r; hÞ and Lambert series and discuss some of the fundamental
properties of these functions which are needed in the following theorems:

sða; b; pÞ ¼ p!

ð2piÞp

XN
k¼1;kc0ðbÞ

k�p e2pika=b

1� e2pika=b
� e�2pika=b

1� e�2pika=b

� �
; ð4:1Þ

where p is fixed odd integer X1; and ða; bÞ ¼ 1 (in Theorem 4 Eq. (4.11) in [2]).
Berndt [8] has established representation sða; bÞ by the cot pz function as follows:

sða; bÞ ¼
XN

k¼1;kc0ðbÞ

cotðpak
b
Þ

k
; ð4:2Þ

where ða; bÞ ¼ 1 (see [14,8] for detail).
We define new relation as follows:

e2piz

1� e2piz
¼ i cot pz þ e�2piz

1� e�2piz
: ð4:3Þ
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In Theorem 2 in [5], put r1 ¼ r2 ¼ 0 and s ¼ �m; where m > 0 is even, we get

Aðz;�mÞ ¼
XN

k;n¼1
k�m�1e2piknz ¼

XN
k¼1

k�m�1 e2pikz

1� e2pikz
; ð4:4Þ

which is a Lambert series in the variable e2piz: By using (4.3) in (4.4), we get

Aðz;�mÞ ¼ 2i
XN
k¼1

k�m�1 cot ðpkzÞ þ 2Gmþ1ðe�2pizÞ:

Putting z ¼ a
b
; ka0ðbÞ; k ¼ 1; 2; 3;y;N in the above, we arrive at the following:

A
a

b
;�m

	 

¼ 2i

XN
k¼1;kc0ðbÞ

k�m�1cot
pk a

b

� �
þ 2Gmþ1 e�2pi

a
b

	 

:

By using (4.1) in the above, we arrive at the following lemma:

Lemma 3. Let ða; bÞ ¼ 1: For even m > 0; we have

A
a

b
;�m

	 

¼ �pð4piÞm

ðm þ 1Þ!sða; b;m þ 1Þ þ 2
XN

k¼1;kc0ðbÞ
k�m�1 e�2pika=b

1� e�2pika=b
:

Using the definition of Aðz; 0; 0Þ; Lambert series, (4.3) and (4.2), it is easy to show
that

A
a

b
; 0

	 

¼ �psða; bÞ þ 2

XN
k¼1;kc0ðbÞ

k�1 e�2pika=b

1� e�2pika=b
:

Recalling the following equation:

Aðz; 0; 0; 0Þ ¼ piz

6
� 2 log ZðzÞ ð4:5Þ

and by using (4.5) in the above equation, we obtain

XN
k¼1;kc0ðbÞ

k�1 e�2pika=b

1� e�2pika=b
¼ pia

12b
� 2 log Z a

b

	 

� p
2

sða; bÞ:

Now, putting Aðz;�mÞ ðmX0; is even) in (1.4)–(1.6) and through some calculations
and by using Theorem 3, we find the relations between theta-function, Hardy sums
and Lambert series as follows:
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Theorem 12. Let a and b denote relatively prime integers with b > 0: If b is even, then

log W2
a

b

	 

¼ log 2þ pia

3b
þ 2ps2ða; bÞ þ L2

a

b

	 


if b is odd, then

log W2
a

b

	 

¼ log 2þ pia

3b
� ps3ða; bÞ þ L2

a

b

	 

;

where

L2
a

b

	 

¼ G1ðe�2pia=bÞ � 2G1ðe�4pia=bÞ

if a þ b is even, then

log W3
a

b

	 

¼ �ps5ða; bÞ þ L3

a

b

	 


if a þ b is odd, then

log W3
a

b

	 

¼ �p

2
Sða; bÞ þ L3

a

b

	 

;

where

L3
a

b

	 

¼ 2G1ðe�pia=bÞ þ 2G1ðe�4pia=bÞ � 5G1ðe�2pia=bÞ

and if a is odd, then

log W4
a

b

	 

¼ p
4

s4ða; bÞ þ L4
a

b

	 


and if a is even, then

log W4
a

b

	 

¼ �p

2
s1ða; bÞ þ L4

a

b

	 

;

where

L4
a

b

	 

¼ G1ðe�2pia=bÞ � 2G1ðe�pia=bÞ:

Now using (1.4)–(1.6) and (4.5), we define following functions as follows:

Fð2; z;mÞ ¼ log 2þ piz

4
þ Aðz;�mÞ � 2Að2z;�mÞ;
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Fð3; z;mÞ ¼ 2A z

2
;�m

	 

þ 2Að2z;�mÞ � 5Aðz;�mÞ;

Fð4; z;mÞ ¼Aðz;�mÞ � 2A z

2
;�m

	 

:

We will use these functions in the theorems below.

Theorem 13. Let a and b denote relatively prime integers with b > 0 and m be even

integer, with mX0: If b is even, then

F 2;
a

b
;m

	 

¼ log 2þ pia

4b
þ ið2piÞmþ1

ðm þ 1Þ! s2;mþ1ða; bÞ þ L2;mþ1
a

b

	 

ð4:6Þ

if b is odd, then

F 2;
a

b
;m

	 

¼ log 2þ pia

4b
þ ið2piÞmþ1

2ðm þ 1Þ!s3;mþ1ða; bÞ þ L2;mþ1
a

b

	 


where

L2;mþ1
a

b

	 

¼ Gmþ1ðe�2pizÞ � 2Gmþ1ðe�4pizÞ;

if a þ b is even, then

F 3;
a

b
;m

	 

¼ pia

12b
� ið2piÞmþ1

2ðm þ 1Þ!s5;mþ1ða; bÞ þ L3;mþ1
a

b

	 


if a þ b is odd, then

F 3;
a

b
;m

	 

¼ pia

12b
� ið2piÞmþ1

4ðm þ 1Þ! Smþ1ða; bÞ þ L3;mþ1
a

b

	 


where

L3;mþ1
a

b

	 

¼ 2Gmþ1ðe�pia=bÞ þ 2Gmþ1ðe�4pia=bÞ � 5Gmþ1ðe�2pia=bÞ

if a is odd, then

F 4;
a

b
;m

	 

¼ �ið2piÞmþ1

4ðm þ 1Þ! s4;mþ1ða; bÞ þ L4;mþ1
a

b

	 


if a is even, then

F 4;
a

b
;m

	 

¼ �ið2piÞmþ1

2ðm þ 1Þ! s1;mþ1ða; bÞ þ L4;mþ1
a

b

	 

;
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where

L4;mþ1
a

b

	 

¼ Gmþ1ðe�pia=bÞ � 2Gmþ1ðe�2pia=bÞ:

Proof of Theorem 13. We prove (4.6). If we employ in (4.4) the well-known Lambert

series in the variables e2piz; e4piz; we find that

Fð2; z;mÞ ¼ log 2þ piz

4
� 2

XN
k¼1

k�m�1 e4pikz

1� e4pikz
þ
XN
k¼1

k�m�1 e2pikz

1� e2pikz
:

Let a and b be integers and ða; bÞ ¼ 1: Putting z ¼ a=b and substituting (4.1), (4.2),
(4.3) into the above, we get

F 2;
a

b
;m

	 

¼ log 2þ pia

4b
� ð2piÞmþ1

ðm þ 1Þ! ið�smþ1ða; bÞ þ 2smþ1ð2a; bÞÞ

þ Gmþ1ðe�2pizÞ � 2Gmþ1ðe�4pizÞ:

If b is even, by using (1.13) in the above, we establish the desired result
immediately. &

Remark 6. Theorems 12 and 3 (Explicit formulae, cf. Theorem 5.1 in [28]) are special
cases of Theorem 13. If we get m ¼ 0; then Theorem 13 is deduced to Theorem 12.
Smþ1ða; bÞ and sx;mþ1ða; bÞ; 1pxp5 are deduced to Sða; bÞ and sxða; bÞ; 1pxp5:
The proof of Theorem 12 and the other relations of Theorem 3 follow along the same
lines as the proof of (4.6), and so we omit them.
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