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Abstract

In this paper, by using generalized logarithms of Dedekind eta-functions, generalized
logarithms of theta-functions are obtained. Applying these functions, the relations between
Hardy sums and Theta-functions are found. The special cases of these relations give Berndt’s
Theorems 6.1-8.1 (J. Reine Angew. Math. 303/304 (1978) 332) and explicit formulae of Hardy
sums. Using derivative of logarithms of the Dedekind eta-function, relations between
logarithm of the theta-functions and Eisenstein series are given. Applying connection between
Lambert series and generalized Dedekind sums, the relation between theta-functions and
Lambert series are obtained.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In 1972, Lewittes [20] generalized Eisenstein series as follows: Let H be a upper
half-space, H ={zeC: Imz >0}. For zeH, s=u+iveC with u>1 and
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h=(h,h), r= (rl,rz)eRz

e27u‘(m/11 +nhy)

G(Z,S’r’h) = |
I‘#(r;n)gzz ((m+rl)z+n_|_r2)s

The special case h=r=0 gives G(z,5) = > ) (umez2(mz+n)"" (for detail see
[20,2]). Lewittes [20] proved transformation formulae for the analytic continuation
of a very large class of Eisenstein series. These results give transformation formulae
for a large class of functions which generalizes Dedekind eta-function. He also
showed that this function has an analytic continuation over the entire s plane,
exhibited explicitly by a convergent Fourier expansion.

Recall that the Dedekind eta-function #(z) is defined as follows;

8

n(z) = et [T (1 - )

n=1

for zeH. (Here, we shall employ some of the notation in [2].) In many applications
of elliptic modular functions to Number Theory the n-function, which was
introduced by Dedekind in 1877, plays a central role. The product has the form
I1Z2,(1 —x") where x=e*. If zeH then |x|<1, so the product converges
absolutely and is nonzero. Moreover, since the convergence is uniform on compact
subsets of H, 7(z) is analytic on H. Dedekind sums appear in the transformation
formulae of 5(z). Here we shall review some well-known classical results on #(z). For
proofs and more details, we refer to [2,10,13,18]. Dedekind [25] gave under the
modular transformation an elegant functional equation which contains Dedekind
sums in the following theorem.

Theorem 1. If 4 = {i fl] el',c > 0 and zeH, we have

ni(a+d) . 1
nua:ﬂG“b>:€”f”*“%%a+wmm» (1.1)

where
_ ANEEE
o= 3 ()
wmod k
where h is an arbitrary integer, k is a positive integer and the function ((x)) is defined as

Sfollows:

1
— =, X is not an integer,
((x) = 2

0, otherwise,

where [x] is the largest integer <x (for detail see [2,25]).
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The sum s(/, k) in (1.1) is known Dedekind sum. For z = x + iy with x, y real. For
any complex number w, we choose that branch of log w with —z<arg w<n. We note
that Dedekind’s formula is a consequence of the following equation, obtained by
taking logarithms of both sides of (1.1) [2,24]

ni(a + d)

. i 1
e —mis(d, c) — — + zlog(cz + d). (1.2)

logn(Az) = logn(z) + )

Rademacher’s first paper, which was published in 1932, devoted to the eta-
function and Dedekind sums [25]. Here he proves the transformation formula for
log #(z) under modular transformations via contour integration and the functional
equation of the Hurwitz zeta-function. The proof of (1.2) was given by Berndt [5]
and Apostol [2]. Lewittes [20] generalized log#(z) as follows:

0
A(Z, S, 1, r2> _ § E ksflekarﬁka(m+n):7

n>—ry k=1

H(z,s,r1,r2) =A(z,8,11,r2) + e’”'SA(z7 S, =11, —r2)

for zeH. If ry =0, =0 in the above, then we obtain immediately A(z,s) =
>ty 051 (n)e*™, where g (n) = 5, k*'. We note that 4(z,0) is closely related
to the Dedekind eta-function. By the definition of #(z), we have

o0

iz - inz ninz
logn(z) =45 = > log(l— ™) = =3 01 ()™ = —A(z,0).
n=1

n=1

Lewittes also showed transformation formulae of A(z,s,ry,r;) and H(z,s,r1,r2)
under the modular substitutions. However, the formulae (Theorem 3, Eq. (51) in
[20]) are so complicated that even in the simplest case of the Dedekind eta-function it
is exceedingly difficult to deduce the usual transformation formulae in terms of
Dedekind sums. Berndt [7] gave a different proof of this formulae (Theorem 3,
Eq. (51) in [20]). He also proved a transformation formula under modular
substitutions, which is derived for a very large class of generalized Eisentein series.
This transformation formula is easily converted into a transformation formula for a
large class of functions that includes and generalizes the classical Dedekind eta-
function. In addition, he gave elegant transformation formulae in which Dedekind
sums or various generalizations of Dedekind sums appear. These formulae include
those functions studied by Dieter [13], Schoeneberg [26] and Tezeng and Miao [29].
Dieter [13] and Schoeneberg [26] have derived the result for a subset of Berndt’s
functions (Egs. (21)—(22) in [5]). The results of Dieter and Schoeneberg are special
cases of Berndt’s function(see Eq. (22) in [5]). We shall employ some of the notation
in [5,26]. Let g and & be integers, and N be a positive integer N. We define
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generalized Dedekind eta-function, n,,(z) as follows:
iz l m m
Ngn(23N) = ogn(N)e B H (1- ?v v) H (1- thN)
m=g(N),m>0 m=—g(N),m>0

2mi 2miz
for zeH, where {y =eN, gy =e¢ N and

mB] . .
agn(N) = (1*CN) 1fg:9, h#0mod N,
1 otherwise.

B, and B, in the formulae are Bernoulli functions:

Ba() = (- P~ (- ) g
The functions 1, ,(z; N) are holomorphic for ze H and depend upon g, modulo N
Furthermore, 1,,(z; N) =n_, ,(z; N) for each g and h, and n,,(z; N) = n*(z) for
(9,h) = (0,0) (mod N). n,,(z;N) is a modular function with a multiplication of
absolute value 1 for the principal congruence group I'(N) if (g,h#(0,0) (mod N)
(see [13,26]). In the following, we regard these functions from the point of view of the
modular group I" (see [18] about modular group and subgroups of modular group).
Tzeng and Miao [29] showed that 5, ,(z; N) is an almost automorphic function for
the whole modular group I' if (g,h)#(0,0) (mod N). Some examples and some
relations between Theta functions 3,, and Dedekind eta-function were given by
Tzeng and Miao [29]. Generalized transformation formulae for logn,,(z; N) is
defined as follows:

b
Let (glahl):(gvh){i d:|aand

1, gEhEO(mOdN)v
b, n(N) =
g1 (N) { 0 otherwise.

Then,

mia - (g mid -
log Ny (Az; N) =log Ny, n (z; N) + —Bz (N) + —Bz (N)

— 2misyp(d, c; N) — by s (N) (%— log(cz+d)>, (1.3)

where s,,(d, c; N) is generalized Dedekind sum, which is defined as [26]

Sqn(d,c; N) = u;ic((g JCFJ\L;N)) ((91 t;f”N))
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Remark 1. Let 0<g,h<N. logng,(z; N) = 2logn(z), and (1.3) is reduced to (1.2)
and soo(d,c,1) =s(h,k). Eq.(1.3) is proved in different ways. Generalized
transformation formula for logn,,(z) is proved by Dieter [13] and Schoeneberg
[26], and Berndt [5-10] proved a transformation formula for a fairly broad class of
analytic Fisenstein series.

The most fundamental property of Dedekind sums is the remarkable reciprocity
law: If 4,k > 0 and (h, k) = 1, then

1 1/h k 1
s(h, k) + sk, ) :_Zﬁﬁ(%*Z*E)'

This formula was first proved by Dedekind [25] using the transformation formulae of
log n(z). There now exist many proofs of this formula, and several of these can be
found in a monograph [25] on Dedekind sums, written by Rademacher and
completed by Grosswald after Rademacher’s death. Rademacher found five original
proofs of this formula. An eclementary proof of this formula, as well as a
generalization is given by Berndt [6,8,9]. An elementary proofs appear in a paper
[14], which generalized this formula. Another elegant proof was given by Apostol [1],
which generalized this formula by the pth Bernoulli function, B,(x). Here we shall
review some of the well-known classical results on Generalized Dedekind sums and
B,(x). For proof and more details, we refer to Apostol’s paper [2]. Generalized
Dedekind sums s(/, k; p) are defined as follows [2]:

T ED I ACIE

a mod k

where h,keZ, (h,k) =1, B,(x) is the pth Bernoulli function. For odd p, the sums
s(h, k; p) have reciprocity law. Apostol [2] proved the reciprocity law of these sums.
When p = 1, the sums s(h, k; 1) are known as Dedekind sums, s(h, k). Also the sums
s(h,k;p) are related to the Lambert series, G,(x), which are defined as follows:

n

0 X o0
_ —p _ —p mn
G,,(x)fg 1111 n*E nrx"™
n=1 -X

m,n=1

where p>1. These functions are regular for |x|<1 and have the unit circle as a
natural boundary, each rational point of the circle being a singular point. The special
case p =1 gives Gy(x) = —log[], (1 —x"). Thus, logy(z) is the same as 75 —
G (e’™). Using a technique developed by Rademacher, transformation formulae
relating G,(e*™%) to G,(e*™') are obtained for odd p, where 2/ = %4 is a modular
substitution [2]. The sums s(h, k; p) appear in these formulae. The sums s(/, k; p) are
expressible as infinite series related to certain Lambert series. In the last section we
shall establish new relations connection between the sums s(/, k; p) and the Lambert

series G,(e*™/*) and theta-functions.
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The classical theta-functions, 3,(0,¢) (n=2,3,4) are defined as follows [24,30]:

1 0
900,9) =22 ] (1 =™ (1 + 4™, 9:0.9) = [J(1 — ™)1 + "),

n=1 n=1

o0
Oq:H 1—¢™) l—qz"’l)z.

n=1

In the remainder of our work, we shall denote 9,(0,¢q), 33(0,¢) and 94(0,¢q) as
92(z), 33(z) and 94(z), respectively, where ¢ = ¢™. The relations between theta-
functions and Dedekind eta-function are defined as

The above relations and the others are studied by Rademacher [24]. Further
information about these functions can be found in Barner [4], Knopp [17], Peterson
[21], and Kohler [19]. Raab [23] gave the relation between generalized theta-
functions and Dedekind eta-functions in a different way. He also defined quadratic
theta-functions.

The following relations are obtained by taking logarithms of both sides of above
relations:

log 92(z) =log2 + 2logn(2z) — logn(z), (1.4)
log 95(z) = Slogn(z) — 2logn(2z) — 210g17(§), (1.5)
log 94(z) = 2log n(g) —logn(z). (1.6)

In contrast to log#(z), the logarithms of the classical theta-functions have scarcely
been studied. (Here we use the notation of Whittaker and Watson [30] and Berndt
[10] for the theta-functions.) Berndt [10] and Goldberg [15] derived the transforma-
tion formulae for log9,(z) (n=2,3,4). There are 9 distinct transformation
formulae depending on parties of certain coefficients a,b,c, and d in modular
transformation (az + b)/(cz + d). Arising in the transformation formulae are six
different arithmetic sums, which are thus similar to Dedekind sum and well-known
Hardy sums or Berndt’s arithmetic sums. For i, keZ with k > 0, these 6 sums are
defined as follows:

_ "z‘i (_1);+1+[%’ s1(hy k) = Z(—l)[%(@))’

J=1 J=1
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0=2 (@) e -2 ((R)

=S ol sn=3 (7).

J=1 J=1

Rademacher [24] studied log 3,(z), n = 2,3,4. However, his approach was via the
Dedekind eta-function, so the sums defined above were not discerned by
Rademacher. Some of these sums are mentioned in a paper of Hardy [16], where
reciprocity theorems are stated without proof. However, Hardy did not observe the
connections between his sums and theta-functions. Hardy studied on the theory of
rs(n), the number of representations of n as the sum of s squares, the sums S(, k)
and s,(h, k), n=1,2,3,4,5 arouse this theory. Hardy gave formulae r,(n), for
5<n<8 and asymptotic formulae for s > 8§, which can be found in [13]. Employing
the sums mentioned above, Goldberg [15] has shown that a substantial simplification
in Hardy’s proof can be effected. These sums also arise in the study of the Fourier
coefficients of the reciprocals of 3,(0,¢), n=2,3,4 [12]. Berndt and Goldberg [12]
found analytic properties of Hardy sums. They established infinite trigonometric
series representations for Hardy sums. They also evaluated certain nonabsolutely
convergent double series in terms of these sums. The most important of Hardy sums
is the following reciprocity theorem due to Sitaramachandrarao [28] and Berndt [10].

Theorem 2. Let h and k be coprime positive integers. If h+ k is odd, then,

S(h,k) 4 S(k,h) =1 (1.7)

if h is even, then
sl(h,k)—sz(k,h):%—%(ﬁﬂg) (1.8)

if k is odd, then
2s3(h k) — sa(k,h) =1 —% (1.9)

if h is even, then
ss(hy k) + ss(k, h) = % —ﬁ. (1.10)

The reciprocity theorems (1.7)—(1.10) appear in Hardy’s list, respectively, as
Eqgs. (viii)—(ix) [16]. By using log 3,(0,¢), n=2,3,4, Berndt [10] proved (1.7)—(1.9)
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in a different way. Goldberg [15] deduced (1.10) from Berndt’s transformation
formulae [10]. For other proofs which do not depend on transformation theory, we
refer to Apostol and Vu [3], Berndt and Goldberg [12], Berndt and Dieter [11], and
Sitaramachandrarao [28]. The author [27] deduced (1.9) from three term relations
defined for polynomials. Pettet and Sitaramachandrarao [22] gave new relations
related to Hardy sums and three terms relations for Hardy sums. It may be noted
that Sitaramachandrarao [28] expressed reciprocity theorem, by using clementary
arguments. Each of the Hardy sums is explicitly deduced in terms of the sum s(%, k)
to Theorem 2 from reciprocity law of the Dedekind sums.

Theorem 3. Let (h,k) = 1. If h+ k is odd, then

S(h,k) = 8s(h,2k) + 8s(2h, k) — 20s(h, k) (1.11)

if h is even, then
s1(h k) = 2s(h, k) — 4s(h,2k) (1.12)

if k is even, then
s2(hy k) = —s(h, k) + 25(2h, k) (1.13)

if k is odd, then
s3(hy k) = 2s(h, k) — 4s(2h, k) (1.14)

if h is odd, then
sa(h, k) = —4s(h, k) + 8s(h, 2k) (1.15)

if h+ k is even, then

ss(h, k) = —10s(h, k) + 4s(2h, k) + 4s(h, 2k). (1.16)

Each one of S(h,k)(h+k even), si(h,k)(h odd), s:(h,k)(k odd), s3(h,k)(k even),
s4(h, k)(h even) and ss(h,k)(h + k odd) is zero.

The proof of this theorem is given by Sitaramachandrarao [28]. The relations
between Hardy sums and log ,(z) (n = 2,3,4) are given in theorems below.

b

Theorem 4. Let 4 = {a
c d

] el'g(2), ¢> 0. If ¢ is even and (c,d) = 1, then

| .
log 32(Az) = log %2(2) +§log(c2 +d) —HZI—F ni(a:_cd) — misz(d, ¢). (1.17)



346 Y. Simsek | Journal of Number Theory 99 (2003) 338-360

Theorem 5. Let A = {Z Z] el*(2), ¢>0.Ifdis odd and (c,d) = 1, then
1 wi omi
log 94(Az) = log 94(z) +§log(cz +d)— i Zu(d, c). (1.18)

The proofs of Theorems 4 and 5 have been given by Berndt [10] using analytic
continuation of H(z, s, r, 1) and residue calculus. It is the first purpose of the present
paper to prove and generalize Theorems 4 and 5. Our proofs will be quite different
from those of Berndt [10]. We will also generalize these theorems by using the
relations between Hardy sums and generalized transformation formulae of
logarithms of the classical theta-functions, which will be explained in Section 2.
We will deduce some new results, which are generalized Theorem 3, as well. Our
second aim is to give the relations between %ngﬁ(z) and Eisenstein series, which will
be given in Section 3. Our third aim is to prove the relation between generalized
Dedekind sums, Hardy sums and Lambert series, which will be explained in the last
section.

2. Main theorems on generalized theta-functions and Hardy sums

In this section, we shall define some new functions, which are related to
generalized Dedekind eta-function. These functions will give us further insights into
the nature of (1.4)—(1.6). We will need these function throughout the paper. Here, we
will use the notations of Berndt [5,10] and Schoeneberg [26]. By using (1.3) in (1.4),
(1.5) and (1.6), we have

JSrgn(z,N) =log2 +2log ng’h(2z, N) —log ngyh(z, N), (2.1)

. z
Fran(z,N) = 51og (2 N) = 2logng; (5. N) = 2logn,,(22.N),  (22)

z
Fruan(z,N) = 210g 1, (5, V) = log 1, (2, V). (2:3)

By using these functions we shall give several new theorems, which generalize
Theorems 3-5. Furthermore, note that

Juoo(z,N) =2log9,(z), n=2,3,4

and (2.1), (2.2) and (2.3) reduces to (1.4), (1.5) and (1.6), respectively.

Proof of Theorem 4. The proof of this theorem is given by Berndt, (Theorem 6.1)
[10]. We give a different proof of this theorem.
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2(t

|:2a 4ad—1

—d) . . _ c .
, and choosing A4 ¢ 2 ], we can rewrite

Putting z = %’, and 2z ==

(1.2) and we obtain

2t —2d 2a—lf fa+d 1
logn(ZZ):logn( - )zlogn(Tz)—m( 6 _4_1>

+ nis(2d, ¢) —%log T. (2.4)

By using (2.4) and (1.2) in (1.4), we deduce that

1 ; d
log !92(2) zlog 92(142) — Elog(cz +d) +TEZZ_ nl.(d:—c )

+ mi(—s(d, c) + 2s(2d, c)). (2.5)

Hence, we assume that ¢ is even and we apply (1.13) to (2.5) and we obtain (1.17).
The proof is complete. [

Now by using (1.3) and (2.1), we obtain generalized Theorem 4 as follows:

b

Theorem 6. Let A = {a
c d

] el'y(2), ¢> 0. If ¢ is even and (c,d) = 1, then

0=+ E(8) 2(0,5) - 3

c

— 27‘EiT2;g’h(d, C; N) — bg7/1(N) <g — lOg(CZ + d)) s (26)
where
2a dad—1
hi) = (g, h ¢
(93, h3) (g,)[c 2d]
and

Togi(d,c; N) =254, 4,(2d, ¢; N) — g, 1, (d, ¢; N).

4ad—1
Proof. Putting t = ¢z + d, and hence 2z = 2=2¢ and choosing 4 = [251 - } we

can rewrite (1.3), and we obtain
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1
2a — — . .
2z —2d 2nia - (¢ 2nid 5 (g3
log 1,1 | — 22 N | =logn,, . (—C ;N) + =28, (N) + 28, (—)

— 2misg, p,(2d,¢; N) — bgvh(N)(%i —log (1)). (2.7)

Multiplying (2.7) by 2 and subtracting (1.3), using (2.1), we deduce that

9=+ 20(8)  (0,5) - (3

c

- nl‘(_4s.t13,/13 (2d7 ¢ N) + zsgl,hl (d7 (& N))

by a(N) (% ~log(ez + d)) . (2.8)

Hence, we assume that c¢ is even. By using (1.13) in (2.8) we get (2.6). The proof is
complete. [

Remark 2. Theorems 3 and 4 are special cases of Theorem 6. If we get g = h = 0(NV)
then f500(Az;N) is deduced to Theorem 4 (Berndt’s Theorem 6.1 [10]) and
Tr00(d,c; N) is deduced to reciprocity theorem for Hardy sums (1.13) (Sitarama-
chandrarao’s Theorem 5.1 [28]).

Proof of Theorem 5. The proof of this theorem is given by Berndt, (Theorem 8.1

[10]). We give a different proof of this theorem. Putting z = =4, and 5 =54, and
ad—1
choosing 4 = {2(: Z, } , we can rewrite (1.2) and we have
lo (£>—10 —d =lo -y —mi atd 1
8Mo) =08 o) T8 T2e ) T M\ 240 T 4
1
+ mis(d,2¢) — Elog T. (2.9)

Hence, by using (1.2) and (2.9) in (1.6), we deduce that

| o
log 94(2) = log 94(z) — 5 log(ez +d) + 7+ —4s(d, c) +8s(d. 2¢)).  (2.10)

Here, we assume that d is odd and we apply (1.15) to (2.10), thus we obtain (1.18).
The proof is complete. O

Now by using (1.3) and (2.3), we shall generalize Theorem 5 as follows:



Y. Simsek | Journal of Number Theory 99 (2003) 338-360 349

a b

Theorem 7. Let A = L d] el*(2), ¢>0.Ifdis odd and (c,d) = 1, then

Fran(A2.N) =g (2 N) + 0 (B2(2) — Bo(%))

- % Tagi(d,c; N) — by p(N) <% —log(cz + d)) , (2.11)
where
4 ad — 1
(92,h2) = (g, h) 2¢c
2¢ d
and

Tagn(d,c; N) = 85, 4,(d,2¢; N) — 45y, 4, (d, c; N).

ad—1
Proof. Putting t = ¢z + d and hence 5 = %" and choosing A = {2616 il;’ } we can

rewrite (1.3), and we obtain
a—% z—d mia - (g wid - (g>
108 (zc N ) =108 g (zc N > +5 2 (y) + 5P (F)
— 2nisy,(d, 2¢; N) — by u(N) (%’ - log(r)). (2.12)

Multiplying (2.12) by 2 and subtracting (1.3), and using (2.3), we deduce that

Jagn(Az, N) = fag, 1 (2, N) + #(Ez (%) - B (q_]\lf)>

- 7-l:l'(""gyz,hz (d7 2¢; N) - 2Sg1-,/’ll (dv [N N))
141
— byn(N) (? — log(cz + d)) . (2.13)

Hence, we assume that d is odd. Applying (1.15) to (2.13) we obtain (2.11). The
proof is complete. [

Remark 3. Theorems 3 and 5 are special cases of Theorem 7. If we get g=h =
0 (mod N) then fi00(Az; N) is deduced to Theorem 5 (Berndt’s Theorem 8.1 [10])
and Tuo0(d,c;N) is deduced to reciprocity theorem for Hardy sums (1.15)
(Sitaramachandrarao’s Theorem 5.1 [28]).
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Theorem 8. Let A = {Z Z] €lyp, ¢>0.1Ifd+ cis even and (c,d) = 1, then

a9 o594 5) - (5] -5

¢
+ wiTs,yp5(d, c;N) — by p(N) <7;l —log(cz + d)> , (2.14)
where
Tsgn(d,c;N) =454, 5,(d,2¢;N) + 4sg, 4, (2d, c; N) — 1054, 4, (d, ¢; N).

Proof. The proof of this theorem is similar to above theorems. By using (1.3), (2.7),
(2.12) and (1.16) in (2.2), we get (2.14). The proof is complete. [

Here,
T5;0"0(d, C; N) = 4S0,0(d, ZC; N) + 4S0_0(2d, C; N) — IOS()’O(d7 c; N)
is equal to Eq. (1.16).

a b

Corollary 1. Let A = [c d} el®(2), ¢>0.Ifd is even and (c,d) = 1, then

_ mid (5 (92\ _ p (91
f4:g,h (sz N) _f4:,.<11.,h1 (Za N) + ¢ (BZ (N) B, (N))
- %lTl;gﬁ(d? ¢;N) — byn(N) (%’ —log(cz + d)) :
where

Tign(d,c; N) = =454, 1,(d,2¢; N) + 284, 5, (d, ¢; N).

The proof of Corollary 1 is similar to Theorem 7. Here,
Tl;O,O (d7 c; N) = —4S0"0(d, 2¢; N) + 2S0‘0(d, c; N)

is equal to Eq. (1.12).
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b

a
Corollary 2. Let A = L d

} elg(2), ¢> 0. If cis odd and (c,d) = 1, then

Srgn(Az,N) = fog i (z,N) + n_laBZ (N) + M( (N) B2(N)>
— 2niT.g4(d, c; N) — by (N) (g —log(cz + d)> ,

where

T3gn(d,c; N) = =454, 1,(2d, ¢; N) + 284, 4, (d, ¢; N).

The proof of Corollary 2 is similar to Theorem 5. Here,
T3;0’0 (d7 C; N) = —4S010(2d, C; N) — 2S010(d, C; N)

is equal to (1.14).

Corollary 3. Let A = [z b} €ly, ¢>0.1Ifd+cisodd and (c,d) =1, then

d

Ssgn(A4z2,N) =fsig.n (2, NHM( BZ(N) BZ(N) _432(%»
+ 2Ty, V)~ byV) (5~ oz +))

where

Tyn(d,c;N) =85y, 1,(d,2¢; N) + 884, 1, (2d, ¢; N) — 2084, 5, (d, ¢; N).

The proof of Corollary 3 is similar to Theorem 8. Putting g = 4 =0,
To‘o(d, ¢, N) = &S‘(),()(d, 2c¢; N) + 85‘0\0(20’, ¢ N) - 205‘0"0(d, C, N)

is equal to (1.11).

3. Main theorems on the Eisenstein series and generalized Dedekind eta-functions

In this section, we shall review some of the well-known basic result on Eisenstein
series. For proofs and more details we refer to Apostol [2], Berndt [1,5,10] and
Lewittes [20]. We will use the following properties of Eisenstein series as follows:
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For x and a both real numbers and Re s > 1, let [10]

1p(s,x,a) = Z zmyx(y"i_a) %

y+a>0

The function (s, x,a) has an analytic continuation into the entire complex plane.
This continuation is analytic everywhere except for a possible simple pole at s = 1.
For zeH the Eisenstein series G(z,2) is defined as follows:

G(Z’ 2) = 25(2) + 2(27‘51)2 i O-(n)eZﬂin:7
a=1

where a(n) = 3, d, and {(z) denotes Riemann zeta-function [2].

Lemma 1. If zeH, then

G(z,2) =202+ > Z(mz+n>2.

0#meZ neZ

Proof. Now we give the following equation (Equation (12) of Chapter 1 [1]):

—(2ni) i oo Loy (Zimy_ (3.1)

r=1 0#meZ

Replacing z by nz, where n > 0, and sum over all n > 0, and by using Riemann zeta-
function in (3.1), we have the desired result. [

Apostol [2] raised the following question concerning the Dedekind eta-function
and G(z,2) function: let ze H. We have

G(z,2) = —4ni%log n(z). (3.2)

Now, by using differentiating logarithm of generalized Dedekind eta-function, we
find generalized (3.2) as follows:

Lemma 2. Let g and h be integers and N be positive integer and ze H. Then

d
—4an10gng‘h(z,N)

— 4n’B, (N) +2N<¢<2,;vh,o> +¢(2,]}\’,,0>>
+ %(G(%,Z,O, (%0)) +G<%72707 (‘Who
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d
—4md logn,,(2z,N)

e (2) 5((2320) +(210)
i) o (R o

_ 2nzlg (N) +4N(lﬂ<h2,_7h,0> +n//<2,%,0>>h
+W<G<2N 2,0, ( 0>)+G<2N20 (N 0))) (3:5)

Proof. We prove (3.3). By differentiating log#,,(z, N) and through some calcula-
tions, we get

d .5 (Y9 2ni % e2ni(h+zm)/N
E log ng‘h (Z, N) = TElB2 (N) + W Z ml_ehm
m=1,m=g(N)
2mi * e2mi(=h+zm)/N
D DR e (3.6)

by the well-known relation ZUeN e =5 1,
(3.6), then the desired result is obtained. [

using (3.1) and the above relation in

Remark 4. The proofs of (3.4) and (3.5) follow precisely along the same lines as the
proof of (3.3), and so we omit them. Eq. (3.2) is a special case of Lemma 2. If we get
g=h=0(N) then Llogny,(z) is reduced to £(2logn(z)). By using the above
lemma, we find reldtlons between theta-functions and FEisenstein series. These
relations are given as follows:

Theorem 9. Let g and h be integers and N be positive integer and zeH. Then

S(EG) + B (),

Ei(z) = 4G(%,2,0, (% 0)) - G(%72707 (% 0))

—47‘[1 fQQh(z N) = l2n§B(%>+

where
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Ex(z) = 46(%,2, 0, (—% 0)) - G<%7270, (—% 0))

and G(z,s,r,h) is Eisenstein series By(x) is Bernoulli function.

and

Theorem 10. Let g and h be integers and N be positive integer and ze H. Then

—ani L fugn(zN) = () + B(2),

where

z h 2z h z h
Fi(z) = SG(N,Z,O, (ﬁ’ 0)) — ZG(N,LO, (ﬁ’ 0)) — G(ﬁ,Z,O, (N’ 0))

and

and G(z,s,r,h) is Eisenstein series.

Theorem 11. Let g and h be integers and N be positive integer and ze H. Then

47:1'% Fagn(z,N) = 6NY(2) + % (Ti(z) + T(2)).
Ti(z) = G(%,Z,O, (%0)) — G(%,Z,O, (%0))
To(z) = G(%,z,o, <—% 0)) - G(%,z,o, <—% 0>>
Y(z) =y <2, % 0) +y (2, —%, 0)

and G(z,s,r,h) is Eisenstein series.

where

and
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Proof of Theorem 9. Differentiating (2.1) and multiplying both sides by —4ni, we
find

d .d .d
—47'Cl£f‘2;g‘/1(27 N) = —8mi % ng,h(227 N) +4mi % ng,h(za N)

Using (3.3), (3.4) and evaluating G(z, s, r, i) and ¥/(s, x, a) in the above, we find that
d 25 g 1 2z h
—4ﬂl£fé;g,/1(z, N) = 127'(23(N) + N <4G <N, 27 07 <N, 0>>
z h 1 2z h
- G—=,2,0,(—,0 —(4G|—,2,0,( ——,0
(520 Gvo)) +xleo(20 ()
z h
-Gl —,2,0,( —,0 .
(w20 ()
Thus, we obtain the desired result. O
Remark 5. The proof of Theorems 10 and 11 follow precisely along the same lines as
the proof of Theorem 9, and so we omit them. By these theorems, the connection
between fy.,4(z, N), n=2,3,4 and Eisenstein series are found. Egs. (1.4)—(1.5) are

special cases of these theorems. For g =/ = 0(N) we get %log Mo,0(z) is reduced to
4(21logn(z)) and £ f,00(z,N) are reduced to £(29,(z)), n=2,3,4.

4. Theorems on Lambert series and generalized Dedekind sums

We review some notation from Apostol [1] and Berndt [5,8] papers. We will define
Dedekind sums, A4(z, s, r, 1) and Lambert series and discuss some of the fundamental
properties of these functions which are needed in the following theorems:

. B p| 0 L eQm'ka/h e—2nika/h
sla,bip) = (2ni)’ k:léow)k (1 — 2mikalb | — g=2mikafb |’ (4.1)

where p is fixed odd integer >1, and (4,b) =1 (in Theorem 4 Eq. (4.11) in [2]).
Berndt [8] has established representation s(a,b) by the cot nz function as follows:

% cot (k)

sa,b)= > a (4.2)

where (a,b) = 1 (see [14,8] for detail).
We define new relation as follows:

eZni: ef2m‘z

1 — eZniz =icotnz + 1 — e—27ziz'
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In Theorem 2 in [5], put r; = r, =0 and s = —m, where m > 0 is even, we get
0 - 1 2mk4
_ —m— TIKNnZ —m—
B Z k ¢ Zk eZmlw (44)
k.n=1

which is a Lambert series in the variable ¢>™*. By using (4.3) in (4.4), we get
S Iy
A(z,—m) =2i Y k™" cot (kz) + 2Gpi1 (e7™).
k=1
Putting z = ¢, k#0(b), k=1,2,3, ..., 0 in the above, we arrive at the following:
a . - —m—1 nk a —2mid
A(—, —m) =2 > k" eot F2Gm ( b).
b b
k=1,k#0(b)

By using (4.1) in the above, we arrive at the following lemma:

Lemma 3. Let (a,b) = 1. For even m > 0, we have

a (47‘Ei) © I 672m'ka/b
A (—7 —m> = — (a b m + 1) 2 Z k m _72](]7
b (m+1)! k=1k20(b) I — e2mikal

Using the definition of A(z,0,0), Lambert series, (4.3) and (4.2), it is easy to show
that

a © » 872niku/b
A (Z, 0) = —ﬂfS(a7 b) + 2 Z k m
k=1,k#0(b)
Recalling the following equation:
A(z,0,0 0):?—210g11( z) (4.5)
and by using (4.5) in the above equation, we obtain
- ¢~ 2nika/b Tia a\ w
Z k' =" _2log n(—) — =s(a,b).
k=1 TZ000) 1 — e~2nika/b— 12p b 2

Now, putting A(z, —m) (m=0, is even) in (1.4)—(1.6) and through some calculations
and by using Theorem 3, we find the relations between theta-function, Hardy sums
and Lambert series as follows:
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Theorem 12. Let a and b denote relatively prime integers with b > 0. If b is even, then

log 9, (g) =log2+ Z—Zl + 2msy(a,b) + Ly (g)

if b is odd, then

a mia a
log '92 (Z) = log 24 E — TCS3((l, b) + L, (5) ,
where
a . .
Lz (Z) — Gl (6_27”0/17) _ 2G1 (e—4ma/b)

if a+ b is even, then
a a
log 33 (5) = —nss(a,b) + Ls (5)
if a+ b is odd, then

log 93 (g) = —gS(a, b) + Ls <g),

where
L, (%) =2G, (e—nia/b> +2G, (e—4m’a/b) - 5G, (e—Zm'a/b)
and if a is odd, then

a

log 94 (b

) = %4((1, b)+ Ly (E)

and if a is even, then

where

a . .
Ly (E) =G (e—Zma/b) _ 2G1 (e—ma/h).

Now using (1.4)—(1.6) and (4.5), we define following functions as follows:

F(2,z,m) =log2 + % + A(z,—m) — 24(2z,—m),
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F(3,2,m) =24 G —m) £ 2A4(2z,—m) — SA(z, —m),

F(4,z,m) = A(z, —m) — 24 G —m) .
We will use these functions in the theorems below.

Theorem 13. Let a and b denote relatively prime integers with b > 0 and m be even
integer, with m=0. If b is even, then

mia i(27ri)m+1

a a
F(2, B, I’)’l) = lOg 2 + E + W $2.m+1 (a, b) + L2,m+1 (E) (46)

if b is odd, then

a B mia  i(2mi)™"! a
F(27 x m) =log2+ b + m&mﬂ (a,b) + Ly i1 (E)
where
a iz —4niz
LZ,m—H (B) = Gm+l(€72m~) - 2Gm+l(e ! ),

if a+ b is even, then

a ) mia  i(2mi)™"!
,m

a
F(37 Z - m - m55,171+1 (Cl, b) + L3,m+1 (Z)

if a+ b is odd, then

F(3m) =T O 0h)+ L (9
where
L3 i1 (g) = 2G i1 (™) 4 2Gy 1 (674 P) — 3Gy (770
if a is odd, then
P18 m) = O+ L ()

if a is even, then
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where

a . .
Ly (Z) = Guy1 (eim/b) - 2Gm+1(€’72ma/b)-

Proof of Theorem 13. We prove (4.6). If we employ in (4.4) the well-known Lambert
series in the variables *™, ¢*= we find that

47‘le4 o) e2nikz

iz 1 —m—1
F(2,z,m) = 1og2+——2zk’” mﬁlzk’" 1 — e2nikz"
k=1

Let a and b be integers and (a,b) = 1. Putting z = a/b and substituting (4.1), (4.2),
(4.3) into the above, we get

nia (2n )m+l

F(Z,% )—log2+4b m+ 1)

+ Gm+l(e 2miz ) - 2Gm+l(ei4m'z)-

( Sm+1(a b) + 2sm+1 (2(! b))

If b is even, by using (1.13) in the above, we establish the desired result
immediately. O

Remark 6. Theorems 12 and 3 (Explicit formulae, cf. Theorem 5.1 in [28]) are special
cases of Theorem 13. If we get m = 0, then Theorem 13 is deduced to Theorem 12.
Sm+1(a,b) and sy pi1(a,b), 1<x<5 are deduced to S(a,b) and s.(a,b), 1<x<5.
The proof of Theorem 12 and the other relations of Theorem 3 follow along the same
lines as the proof of (4.6), and so we omit them.
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