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Surface integrity remains one of the major areas of concern in electric discharge machining (EDM).
During the current study, grey-fuzzy logic-based hybrid optimization technique is utilized to determine
the optimal settings of EDM process parameters with an aim to improve surface integrity aspects after
EDM of AISI P20 tool steel. The experiment is designed using response surface methodology (RSM)
considering discharge current (Ip), pulse-on time (Ton), tool-work time (Tw) and tool-lift time (Tup) as
process parameters. Various surface integrity characteristics such as white layer thickness (WLT), surface
crack density (SCD) and surface roughness (SR) are considered during the current research work. Grey
relational analysis (GRA) combined with fuzzy-logic is used to determine grey fuzzy reasoning grade
(GFRG). The optimal solution based on this analysis is found to be Ip ¼ 1 A, Ton ¼ 10 ms, Tw ¼ 0.2 s, and
Tup ¼ 0.0 s. Analysis of variance (ANOVA) results clearly indicate that Ton is the most contributing
parameter followed by Ip, for multiple performance characteristics of surface integrity.
© 2015 Karabuk University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

EDM is one of the widely used non-traditional machining pro-
cesses, where electrical energy is used to generate electrical spark
andmaterial removal occurs primarily due to thermal energy of the
spark. EDM is most commonly recommended to cut difficult-to-
machine materials including high strength and high temperature
resistant alloys [1].

EDM is usually characterized bymultiple performancemeasures
primarily governed by productivity, quality and surface integrity
which are in turn dependent on different process parameters like
discharge current (Ip), pulse-on time (Ton), pulse-off time (Toff),
voltage (V), flushing pressure (Fp), tool-work time (Tw), tool lift time
(Tup) etc. Therefore, optimization of EDM process essential requires
multi-objective optimization techniques. Significant amount of
research work has been reported in this context. Bhattacharyya
et al. [2] investigated the influence of EDM parameters like Ip and
Ton on EDMed surface integrity of AISI D2 tool steel. Response
surface methodology (RSM)-basedmodelling and optimizationwas
carried out to find out the optimal setting of machining parameters.
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Similar study on surface integrity of the same material has also
been reported recently using RSM combined with grey relational
analysis (GRA) as multi-objective optimization technique [3]. Grey
system is particularly designed for dealing with uncertain and
complex interrelationship between input parameters and output
responses. Therefore, GRA-based multi-response optimization
techniques have become a topic of research interest in EDM. GRA
was also adopted for multi-response optimization of micro EDM
process considering tool wear entrance and exit clearances,
machining time and number of shorts [4]. The same technique was
utilized in optimization of multiple responses during EDM of
Ale10%SiCP composites by converting the responses into single
response grey relational grade [5]. Simultaneous increase inMRR as
well as reduction in TWR could be achieved through successful
implementation of GRA technique in EDM of AISI P20 tool steel [6].

The analysis based on fuzzy-logic finds applications in vague
and uncertain environment. In the recent years, fuzzy-logic-based
multi-criteria decision making approaches have become very
popular in optimization of EDM and other manufacturing pro-
cesses. Rupajati et al. [7] has optimized the multiple performances
like recast layer thickness and surface roughness using fuzzy-logic
method with the design of Taguchi L18 mixed- orthogonal array. It
was observed that application of this optimization technique
significantly improvedmultiple responses. The same techniquewas
also used to predict material removal rate (MRR), tool wear rate
n open access article under the CC BY-NC-ND license (http://creativecommons.org/
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Table 1
Machining parameters and their levels.

Parameters Symbol Levels Unit

Low Middle High

Control parameters
Pulse current Ip 1 3 5 A
Pulse on time Ton 10 80 150 ms
Work time Tw 0.2 0.6 1.0 s
Lift time Tup 0.0 0.75 1.5 s

Fixed parameters
Duty cycle (z) 70 %
Voltage V 45 V
Flushing pressure Fp 0.3 kgf/cm2

Sensitivity SEN 6

Table 2
Observation table.

Run Pt type Blocks Ip Ton Tw Tup WLT SCD SR
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(TWR) and surface roughness (SR) in ultrasonic-assisted EDM (US/
EDM) process [8]. Different other manufacturing processes were
also optimized using similar type of optimization technique [9e11].

Utility of fuzzy-logic based optimization technique can be
further improved when it is integrated with other optimization
methodologies. Sengottuvel et al. utilized fuzzy-logic to predict
output responses (MRR, TWR and SR) while desirability approach
was used to optimize the parameters during EDM of Inconel 718
[12]. Fuzzy-TOPSIS based multi-objective optimization was per-
formed with a view to improve of EDM surface integrity as well as
dimensional accuracy of AISI P20 tool steel [13].

GRA also has strong potential to further enhance the capability
of fuzzy-logic in multi-objective optimization problems. Here, the
optimization of complex multiple response characteristics can be
effectively transformed into optimization of single grey fuzzy
reasoning grade (GFRG). Lin and Lin [14] carried out optimization of
EDM process of SKD11 alloy steel with multiple process responses
using grey-fuzzy-logic method. Soepangkat and Pramujati applied
integrated approach comprising of GRA and fuzzy-logic in order to
optimize wire EDM of AISI D2 steel for minimizing surface rough-
ness and recast layer thickness [15]. Similar optimization tech-
niques have been successfully utilized in various manufacturing
processes which are particularly carried out under complex and
uncertain environment [16e20].
Fig. 1. Experimental setup.
Although some research work has been carried out to examine
the influence of EDM parameters on quality and productivity as-
pects, it is also very essential to determine optimal parametric
combination in order to obtain improved EDMed surface integrity.
Moreover, surface integrity characteristics of AISI P20 tool steel is
also rare although the same material is widely used in the
manufacturing of plastic moulds, hydro forming tools and many
other applications. Therefore, present work aims at utilizing grey-
fuzzy logic-based hybrid optimization technique to optimize
different surface integrity characteristics such as WLT, SCD, SR
during machining AISI P20 tool steel using EDM.
2. Experimental details

2.1. Materials and methods

The experimental runs were conducted on Electronica Elec-
traplus PS 50ZNC Die Sinking Machine. Commercial grade EDM oil
(specific gravity ¼ 0.763, false point ¼ 94 �C) was used as dielectric
fluid. The machining parameters and their levels are presented in
Table 1. The work piece material was AISI P20 tool steel with semi-
circular shape (100 mm diameter and 10 mm thickness). The
composition of AISI P20 tool steel includes 0.4% C, 1% Mn, 0.4% Si,
1.2% Cr, 0.35% Mo, 0.25% Cu, 0.03% P 0.03% S and rest Fe. A cylin-
drical shaped commercially pure copper with a diameter of 12 mm
was used as a tool. The workpiece (þve polarity) and the tool (�ve
polarity) are shown in Fig. 1.
2.2. Design of experiment using RSM

Response surface methodology (RSM) is a collection of mathe-
matical and statistical techniques that are useful for modelling and
analysis of problems in which output or response is influenced by
order (A) (ms) (s) (s) (mm) (mm/mm2) (mm)

1 0 2 3 80 0.6 0.75 12.452 0.0210 4.86
2 1 2 5 150 1.0 1.50 28.379 0.0078 7.13
3 1 2 1 10 1.0 1.50 3.755 0.0662 1.73
4 1 2 1 150 1.0 0.00 7.479 0.0703 1.73
5 1 2 5 10 1.0 0.00 15.633 0.0210 3.40
6 0 2 3 80 0.6 0.75 15.209 0.0066 5.20
7 1 2 5 150 0.2 0.00 26.882 0.0066 5.86
8 1 2 1 150 0.2 1.50 10.271 0.0605 2.00
9 1 2 5 10 0.2 1.50 17.469 0.0004 3.66
10 1 2 1 10 0.2 0.00 6.954 0.0202 2.06
11 �1 3 3 80 0.6 0.00 18.243 0.0093 4.66
12 �1 3 3 80 0.2 0.75 13.717 0.0110 5.26
13 �1 3 3 10 0.6 0.75 7.299 0.0011 3.20
14 �1 3 5 80 0.6 0.75 23.166 0.0009 6.06
15 0 3 3 80 0.6 0.75 14.660 0.0096 5.06
16 �1 3 3 150 0.6 0.75 17.302 0.0186 5.06
17 �1 3 1 80 0.6 0.75 4.972 0.0637 2.89
18 0 3 3 80 0.6 0.75 17.993 0.0134 5.40
19 �1 3 3 80 0.6 1.50 16.305 0.0031 4.66
20 �1 3 3 80 1.0 0.75 13.001 0.0156 4.80
21 1 1 1 150 1.0 1.50 9.595 0.0690 1.73
22 1 1 5 150 1.0 0.00 29.842 0.0092 5.53
23 1 1 5 10 1.0 1.50 16.553 0.0370 3.26
24 0 1 3 80 0.6 0.75 16.435 0.0027 4.80
25 1 1 1 10 1.0 0.00 3.146 0.0730 1.66
26 0 1 3 80 0.6 0.75 18.275 0.0071 4.96
27 1 1 1 150 0.2 0.00 9.267 0.0650 1.86
28 1 1 5 150 0.2 1.50 24.615 0.0069 6.60
29 1 1 5 10 0.2 0.00 19.594 0.0010 3.00
30 1 1 1 10 0.2 1.50 6.684 0.0230 1.82



Fig. 2. Steps for grey-fuzzy logic method.

Fig. 3. Representative SEM images of SCD obtained with different parametric combinations.
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several variables and the goal is to find the correlation between the
response and the variables [21]. The RSM using central composite
design with four variables (Ip, Ton, Tw and Tup) yield a total of 30
runs in three blocks, where the cardinal points used are sixteen
cube points, eight axial points and six center points. The machining
parameters and their levels are presented in Table 1. A second-order
model is given in Eq. (1).

y ¼ b0 þ
Xm
i¼1

bixi þ
Xm
i¼1

biix
2
i þ

Xm
i;j¼1;isj

bijxixj þ 3 (1)

where y ¼ corresponding response, xi ¼ input variables and xij
2 and

xi$xj are the squares and interaction terms respectively, of these
input variables. The unknown regression coefficients are b0, bi and
bij and 3¼ random error term.

Detailed observation for the entire sets of experiment is pro-
vided in Table 2. For each combination of experimental runs, cor-
responding responses such as WLT, SCD and SR were calculated.
2.3. Measurement of responses

During the current study, EDMed surface integrity was charac-
terized by SR, WLT and SCD. After machining, each specimen was
sectioned vertically. This was followed by polishing of the speci-
mens with different grades of polishing papers with deceasing grit
size. The polished surface was then etched with Nital solution to
Fig. 4. Representative optical microscopic images of WL
reveal micro-structure along with recast layer or white layer. Im-
ages were then captured on five different locations of each spec-
imen using optical microscope (with model: SCD313 BPD and
make: Radical Instrument) with a magnification of 400�. The
measurement of WLT was carried out with an optical microscope
with 400�magnification. Recast areawasmeasured using software
(PDF X-change viewer) and then the area was divided by total
length of optical microscopic images, to get the average height of
recast layer (i.e. WLT). In order to measure SCD, the top surface
morphology of the EDMed surface was studied using scanning
electron microscopy (SEM) with a magnification of 1000�.
Randomly, five sample areas were selected on each specimen and
the length of the crackswasmeasured using the same software. The
average crack length on each specimenwas divided by area of each
micrograph (10649.072 mm2) to measure the SCD. The similar
measurement of SCD has been reported elsewhere [22]. EDMed
Surface roughness (Ra) was measured using surface roughness
tester (Make: Taylor Hobson, Model: Talysurf, Surtronic 3þ).

3. Methodology

3.1. Grey relation analysis

Grey relational analysis (GRA) is an effective method in which
analysis being done among the sequence groups requires that all
sequences satisfy comparability conditions, for instance, non-
T obtained with different parametric combination.



Table 3
Computing GRC and grey fuzzy reasoning grade (GFRG).

Run
no.

Normalized Grey relation coefficient (GRC) GFRG Rank

N WLT N SCD N SR WLT SCD SR

1 0.6514 0.7163 0.4150 0.5892 0.6380 0.4608 0.5612 29
2 0.0548 0.8981 0.0000 0.3460 0.8307 0.3333 0.5948 18
3 0.9772 0.0937 0.9872 0.9564 0.3555 0.9750 0.7776 02
4 0.8377 0.0372 0.9872 0.7549 0.3418 0.9750 0.6891 08
5 0.5323 0.7163 0.6819 0.5167 0.6380 0.6112 0.5835 24
6 0.5481 0.9146 0.3528 0.5253 0.8541 0.4359 0.5931 22
7 0.1109 0.9146 0.2322 0.3599 0.8541 0.3944 0.5943 20
8 0.7331 0.1722 0.9378 0.6520 0.3766 0.8894 0.6828 10
9 0.4635 1.0000 0.6344 0.4824 1.0000 0.5776 0.7250 06
10 0.8574 0.7273 0.9269 0.7780 0.6471 0.8724 0.7731 4
11 0.4345 0.8774 0.4516 0.4693 0.8031 0.4769 0.6298 14
12 0.6040 0.8540 0.3419 0.5581 0.7740 0.4317 0.5711 25
13 0.8444 0.9904 0.7185 0.7627 0.9811 0.6398 0.7741 03
14 0.2501 0.9931 0.1956 0.4000 0.9864 0.3833 0.5937 21
15 0.5687 0.8733 0.3784 0.5369 0.7978 0.4458 0.5930 23
16 0.4697 0.7493 0.3784 0.4853 0.6661 0.4458 0.5562 30
17 0.9316 0.1281 0.7751 0.8797 0.3645 0.6898 0.6495 12
18 0.4438 0.8209 0.3163 0.4734 0.7363 0.4224 0.5625 26
19 0.5071 0.9628 0.4516 0.5036 0.9308 0.4769 0.6339 13
20 0.6308 0.7906 0.4260 0.5753 0.7049 0.4655 0.5614 28
21 0.7584 0.0551 0.9872 0.6742 0.3460 0.9750 0.6829 09
22 0.0000 0.8788 0.2925 0.3333 0.8049 0.4141 0.5955 17
23 0.4978 0.4959 0.7075 0.4989 0.4979 0.6309 0.5619 27
24 0.5022 0.9683 0.4260 0.5011 0.9404 0.4655 0.6241 15
25 1.0000 0.0000 1.0000 1.0000 0.3333 1.0000 0.7781 01
26 0.4333 0.9077 0.3967 0.4687 0.8442 0.4532 0.6071 16
27 0.7707 0.1102 0.9634 0.6856 0.3598 0.9319 0.6828 11
28 0.1958 0.9105 0.0969 0.3834 0.8481 0.3564 0.5944 19
29 0.3839 0.9917 0.7550 0.4480 0.9837 0.6712 0.7189 07
30 0.8675 0.6887 0.9707 0.7905 0.6163 0.9447 0.7723 05
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dimension, scaling, and polarization attributes [23]. First step in
GRA is to normalize all the experimental data in the range of zero to
one. Such normalization is necessary because the range and the
unit in one response may vary from the others. If the response is of
‘higher-the-better’ characteristics, equation for normalizing is as
follows:

x*i ðkÞ ¼
xiðkÞ �min xiðkÞ
max xi �min xiðkÞ

(2)

If ‘lower-the-better’ criterion is to be followed, then the following
equation is to be utilized for normalizing the corresponding data:

x*i ðkÞ ¼
max xiðkÞ � xiðkÞ
max xi �min xiðkÞ

(3)

where xi
* (k) and xi (k) are the normalized data and observed data

respectively for ith experiment using kth response. After normal-
izing the responses, the next step is to calculate the grey relation
coefficient (GRC). GRC is denoted by for kth response. It can be
calculated by using Eq. (4).

ziðkÞ ¼
Dmin þ zDmax

DiðkÞ þ zDmax
(4)

where Di(k) is the absolute value of the different between xoi ðkÞ and
x*i ðkÞ and DiðkÞ ¼

��x*i ðkÞ � xoi ðkÞ
��. Dmax and Dmin are the global

maximum and global minimum values in the different data series,
respectively. The distinguishing coefficient lies between 0 and 1,
which is to expand or compress the range of GRC, general, z ¼ 0.5 is
taken.

3.2. Grey-fuzzy logic

In GRA, each response is categorized as either ‘lower-the-better’
or ‘higher-the-better’ or ‘nominal-the-better’ quality characteristics
and the analysed results show some level of uncertainty. This un-
certainty can be effectively examined by using fuzzy-logic approach
[18]. Thus complicated multi-objective optimization problem can
be solved by integrating GRA and fuzzy-logic techniques.

Fuzzy-logic system (Mamdani system) includes of a fuzzifier,
membership functions, fuzzy rule base, inference engine and
defuzzifier [24]. In this analysis, the fuzzifier uses membership
functions to fuzzify the GRC, as it comprises some degree of un-
certainty and vagueness with respect to performances character-
istic. The inference engine performs fuzzy reasoning on fuzzy rules
to generate a fuzzy value. Finally, the defuzzifier converts fuzzy
predicted value into a single equivalent multi performance char-
acteristics index.

3.3. Steps for grey-fuzzy-logic method

The steps of grey-fuzzy-logic method are illustrated in Fig. 2 and
described as follows:

1. The experimental values of WLT, SCD and SR are normalized in
the range of 0e1.

2. Grey relational coefficient (GRC) of each response is calculated.
3. Then fuzzy-logic system is applied. The fuzzifier uses the

membership functions to fuzzify GRC of each performance
characteristic.

4. Fuzzy rules (if-then control rules) are generated and finally
defuzzifier converts fuzzy predicted value into a GFRG.

5. Optimal setting of machining parameters with the help of main
effect plots for GFRG is finally evaluated.
4. Results and discussion

In this section, pre-processed data of WLT, SCD and SR along
with the optical microscopic and SEM images depicting the for-
mation of recast layer (white layer) and surface crack are presented.
The experimental results are provided in Table 2. The representa-
tive SEM images of crack formation of machine surface and optical
microscopic images of white layer obtained under different
machining condition are shown in Figs. 3 and 4 respectively. The
experimental data are utilized for determination of GRC and then
GFRG followed by analyses of variance (ANOVA) for GFRG. Confor-
mation test is also carried out with the optimal parametric
combination.

4.1. Calculating the grey relation coefficients

For all the surface integrity characteristics i.e. WLT, SCD and SR,
‘lower-the-better’ criterion is chosen. Therefore, the output values
that are listed in Table 2 have been normalized by using Eq. (3).
GRCs for each response have been calculated using Eq. (4). Table 3
shows the normalized data and grey relational coefficients for
corresponding to each experiment runs. However, in order to
obtain an improved quality in the performances and to decrease the
uncertainty in the data, grey-fuzzy logic method is further used for
computing the GFRG.

4.2. Grey-fuzzy reasoning analysis

In this paper, three inputs and one output fuzzy-logic system are
used. The inference engine (Mamdani fuzzy inference system)
performs fuzzy reasoning with fuzzy rules to generate a fuzzy
value. These fuzzy rules are presented in the form of ‘if-then’
control rule. For each rule, the three inputs are assigned in the fuzzy



Fig. 5. Membership function of input and output.
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subsets of small, medium and large and the corresponding mem-
bership functions mx1, mx2 and mx3 respectively. The output is
assigned to any of the seven fuzzy subsets (tiny, very small, small,
medium, large, very large) membership functions mY. The mem-
bership functions of the input and output are indicated in Fig. 5. The
relationship between three inputs and the output is represented in
the form of ‘if-then’ control rules that are:

Rules 1: if x1 is Large and x2 is Large and x3 is Large then Y is
Very Large else
Rules 2: if x1 is Small and x2 is Medium and x3 is Medium then Y
is Medium else
…..
…..
Rules n: if x1 is Small and x2 is Small and x3 is Very Small then Y
is Very Small else

Fuzzy rules are directly derived based on the fact that ‘larger-
the-better’ characteristic. The rule based fuzzy-logic reasoning
procedure is shown in Fig. 6. By tracking maximumeminimum
Fig. 6. Fuzzy logic rea
compositional operation, the fuzzy reasoning of these rules yields a
fuzzy output. Finally, the defuzzifier converts fuzzy predicted value
into a GFRG by using MATLAB tool box [20]. This GFRG values are
provided in Table 3.

The higher value of GFRG means comparability sequence has a
stronger correlation to the reference sequence. Based on Table 4
and Fig. 7, the optimal setting of the EDM process parameters is
found to correspond to experimental run no. 10 i.e. with discharge
current at level one (1 A), pulse on time at level one (10 ms), tool
work time at level one (0.2 s), and tool lift time also at level one
(0.0 s). This has been indicated in bold font in Table 2. The dif-
ference between maximum and minimum value of GFRG of EDM
parameters is also calculated and provided in Table 4.

The response equation of GFRG is shown in Eq. (5). The most
influencing factor for multi-performance is the maximum of this
value (i.e. rank 1) which is the pulse on time (Ton). The same in-
formation can also be obtained from Fig. 7 by finding out the
response graph with the steepest slope. The rank versus GFRG plot
(paerto graph) is shown in Fig. 8 which indicates the ranking of the
experimental run with multi-performance characteristics.
soning procedure.



Fig. 7. Main effect plots for GFRG.

Table 4
Response table for the grey-fuzzy reasoning grade.

Level Ip Ton Tw Tup

1 0.7209 0.7183 0.6794 0.6717
2 0.6167 0.6042 0.6325 0.6137
3 0.6180 0.6303 0.6472 0.6695

Maxemin 0.1042 0.1141 0.0469 0.0579

Rank 2 1 4 3
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GFRG ¼ 0:850229� 0:0257278� Ip� 0:00310761� Ton
� 0:0402639� Tw � 0:00144444� Tup þ 1:54955

� 10�05 � T2on
(5)

The results of analysis of variance (ANOVA) of GFRG are shown
in Table 5. This examination is done at a significance confidence
level of 95%. Fisher's F-test is further applied to find out the EDM
parameters with prominent effect on multiple performance
characteristics of surface integrity. Similar information is also
provided by % contribution which is indicated in the last column in
same table. In this table insignificant terms obtained from the P
values have been eliminated and the remaining terms are provided.
Fig. 8. GFRG for mul
This table represents that Ip is the most significant factor followed
by Ton.

The obtained results are verified by the confirmatory experi-
ment. Table 6 shows confirmation results of surface integrity as-
pects corresponding to initial and optimal machining conditions. It
is evident that machiningwith the optimal parametric combination
would minimize WLT form 12.452 to 6.954 mm, SCD from 0.0210 to
0.0202 mm/mm2 and decrease SR from 4.8600 to 2.06 mm. The
estimated or predicted GFRG (bY ) at the optimum level of the
machining parameters can be calculated by Eq. (6).

bY ¼ Ym þ
Xq
i¼1

�
Yi � Ym

�
(6)

where Ym is the mean of GFRGs for all experimental runs and Yi is
the mean of GFRG at the optimum level of ith parameter, and q is
the number of machining parameters that significantly affect GFRG.
Table 6 also indicates that the machining with optimal setting
would result in an improvement of GFRG of 0.2119 and 0.2341 for
experimental and predicted values respectively. Therefore, the
current study clearly demonstrates that grey-fuzzy-logic method
combined with RSM-based design of experiment is a useful tech-
nique with smaller number of experimental trials and for ease in
optimizing multi-performance characteristics of EDMed surface
integrity.
ti-performance.



Table 5
Analysis of variance for GFRG.

Source DOF SS MS F P % Contribution

Regression 3 0.12399 0.041329 24.48 0.000 73.86
Linear 2 0.08248 0.041240 24.43 0.000 49.13
Ip 1 0.04766 0.047658 28.23 0.000 28.39
Ton 1 0.03482 0.034822 20.63 0.000 20.74
Square 1 0.04151 0.041508 24.59 0.000 24.73
Ton*Ton 1 0.04151 0.041508 24.59 0.000 24.73
Residual error 26 0.04389 0.001688 26.14
Lack-of-fit 5 0.01370 0.002739 1.91 0.136 8.16
Pure error 21 0.03019 0.001438 17.98

Total 29 0.16788 100.00

Table 6
Comparison of results obtained under initial and optimal machining condition.

Levels Initial machining
parameters level

Optimum machining
parameters level

Ip ¼ 3 A, Ton ¼ 80 ms,
Tw ¼ 0.6 s, Tup ¼ 0.75 s

Ip ¼ 1 A, Ton ¼ 10 ms,
Tw ¼ 0.2 s, Tup ¼ 0.0 s

Predicted Experimental

WLT (mm) 12.452 6.954
SCD (mm/mm2) 0.0210 0.0202
SR (mm) 4.8600 2.06
GFRG 0.5612 0.7953 0.7731
Improvement

in the GFRG
0.2341 0.2119
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5. Conclusions

The current research work utilizes hybrid optimization tech-
nique using GRA and fuzzy-logic method for simultaneously opti-
mizing multiple performance characteristics of surface integrity
(WLT, SCD and SR) in EDM. Based on the above experimental
investigation as well as analysis, the following conclusions are
presented:

1) The optimal EDM parametric combination of Ip ¼ 1 A,
Ton¼ 10 ms, Tw ¼ 0.2 s and Tup¼ 0.0 s has been determined using
grey-fuzzy logic with an aim to achieve minimum EDMed sur-
face integrity of AISI P20 tool steel.

2) ANOVA results demonstrated that the pulse-on time is the most
significant parameter followed by discharge current, whereas
tool work time and tool lift time do not significantly affect the
multi-performance characteristics of surface integrity.

3) Comparison of machining performance obtained under initial
and optimal condition of machining indicated an improvement
of GFRG of 0.2119 and 0.2341 for experimental and predicted
values respectively.

4) The hybrid technique of grey-fuzzy logic method combinedwith
RSM-based experimental design has a good potential to do away
with the arduous task of multiple criteria optimization by con-
verting the data into a single GFRG and hence can be effectively
used in optimising the process parameters in EDM in order to
achieve minimum aspects of surface integrity.
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