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A plant microRNA regulates the adaptation of roots to drought stress
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Plants tend to restrict their horizontal root proliferation in response to drought stress, an adaptive
response mediated by the phytohormone abscisic acid (ABA) in antagonism with auxin through
unknown mechanisms. Here, we found that stress-regulated miR393-guided cleavage of the tran-
scripts encoding two auxin receptors, TIR1 and AFB2, was required for inhibition of lateral root
growth by ABA or osmotic stress. Unlike in the control plants, the lateral root growth of seedlings
expressing miR393-resistant TIR1 or AFB2 was no longer inhibited by ABA or osmotic stress. Our
results indicate that miR393-mediated attenuation of auxin signaling modulates root adaptation
to drought stress.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Drought stress (soil water deficit) is among the most common
adverse environmental conditions limiting agricultural productiv-
ity worldwide. Plant roots are responsible for water uptake and
are the first plant organ to encounter soil water deficiency. Accord-
ingly, roots exhibit great architectural plasticity to help the plants
to better adapt to water availability [1–3]. Under normal condi-
tions lateral roots proliferate; under drought stress, both the initi-
ation and the elongation of lateral roots are reduced [1–3],
presumably facilitating primary root elongation for water uptake
from deeper soil. Whereas the phytohormone auxin plays an
essential role in promoting lateral root initiation and elongation
[4,5], the stress hormone abscisic acid (ABA) inhibits lateral root
generation [3,6,7]. Little is known, however, about the mechanisms
underlying this antagonistic interaction between the ABA and aux-
in signaling pathways in regulating lateral root development.

In the auxin-signaling pathway, the binding of auxin to the
F-box TIR1 family of auxin receptors promotes interactions be-
tween the receptors and Aux/IAA proteins [8]. One miRNA,
miR393, targets the TIR1 family mRNAs for degradation [9–16].
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This layer of regulation affects the auxin response in several devel-
opmental processes in plants when either the miRNA or its resis-
tant targets are overexpressed [15,17]. Interestingly, the miR393
transcript level has been shown to be induced by ABA, cold, salt,
or PEG treatment [11], implying a potential connection between
stress and auxin signaling via this micro RNA. Nonetheless, this
connection has not been well established, although miR393 was
shown to be induced by a pathogen elicitor that initiates the cleav-
age of TIR1 family mRNAs [18].

While studying root responses to drought stress and ABA, we
found that fry1, a previously identified ABA hypersensitive mutant,
is also hypersensitive to the inhibition of lateral root development
by ABA. It also displays phenotypes reminiscent of auxin-resistant
mutants. The fry1 mutants exhibited enhanced cleavage of auxin
receptor transcripts as well as increased expression of the ABA-
induced miR393. We thus explored the possible link between
miR393 and the response of roots to drought stress. Our results
demonstrate that miR393-mediated attenuation of auxin signaling
is essential for inhibition of lateral root growth by ABA or osmotic
stress.

2. Materials and methods

2.1. Plant materials and growth conditions

Arabidopsis thaliana ecotype Col-0 was used in the experiments
unless otherwise stated. The fry1-1 mutant in the C24 background
lsevier B.V. All rights reserved.
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and a T-DNA knockout line fry1-6 (SALK_020882) in the Col-0
background were described previously [19,20]. Seeds were sur-
face-sterilized with bleach and planted on half-strength MS media
supplemented with 1% sucrose and 0.6% agar. After 3 days of cold
treatment, the plates were incubated at 22 ± 1 �C under constant
white light for seed germination and seedling growth. For the root
growth assays with ABA or PEG treatment, four-day-old seedlings
were transferred to ½ MS agar plates with or without 0.5 or
1.0 lM cis, trans-ABA (Cat. #A1049, Sigma, St. Louis) or �0.5 MPa
PEG. The plates were incubated vertically for growth under the
above-mentioned conditions. Upon completion of the treatment,
the seedlings were photographed using a digital camera and lateral
root lengths were measured. For the PEG treatment assays, PEG-
infused agar plates were prepared by using 25% PEG (molecular
weight 8000, Sigma, St. Louis) as described [21]. The soil-grown
plants were kept in a growth room at 22 ± 1 �C with a 16-h light
period.

2.2. Constructs and plant transformation

AFB2 genomic DNA was amplified using the primers CAC-
CATTGATGTTCTCTAAAAACAA and GAATCCACACAAATGGCGGCG-
CATCC. TIR1 genomic DNA was amplified using the primers CACC
TAATTTATATGGTTTGAGTCAC and CGTTAGTAGTAATGATTTGCCTG.
The fragments were ligated into the pENTR-D-TOPO vector (Invit-
rogen, Carlsbad, CA). After sequence confirmation, AFB2 was cloned
into the pMDC Gateway vector pMDC162 in frame with the GUS
coding sequence, and TIR1 was cloned into modified pMDC99 with
nos terminator added through LR clonase recombination to gener-
ate AFB2:GUS and TIR1, respectively. Site-directed synonymous
mutagenesis was carried out with primers CAATGAGGAGTTTGTGG
ATGTCTTCATGTGAAGTC and AGACATCCACAAACTCCTCATTGTTTCA
TACTTGCTCACA to generate AFB2m:GUS or with primers GCTGGA-
GACAATGCGTAGTTTGTGGATGTCTTCTTGTTCCG and CCACAAACTA
CGCATTGTCTCCAGCTTTGAAGCATTGG to generate TIR1m. Strains
of Agrobacterium tumefaciens GV3101 transformed by electropora-
tion with these constructs were used for plant transformation.

2.3. Target gene cleavage product cloning

A modified 50-RACE was performed according to the GeneRacer
kit manual (Invitrogen, Carlsbad, CA). In brief, 5 lg of total RNA
were ligated to an RNA adaptor using T4 RNA ligase before reverse
transcription. First-round PCR products were diluted 100-fold and
used for the second round amplification with a nested 50 RACE pri-
mer and the AFB2 gene-specific primer TCAACGGAGGAAAGT-
CAAAAAC. Final PCR products were gel-purified and cloned into
the pCR2.1 vector (Invitrogen, Carlsbad, CA) and sequenced.

2.4. RNA analysis

Total RNA was extracted from 12-day-old seedlings grown un-
der constant light using the Trizol reagent (Invitrogen, Carlsbad,
CA). For detection of either full-length or cleaved transcripts,
10 lg of total RNA were separated on 1.5% formaldehyde agarose
gels. For miRNA detection, 30 lg of total RNA were fractionated
by 15% polyacrylamide/8 M urea gels. A DNA oligonucleotide
GGATCAATGCGATCCCTTTGGA, complementary to the AtmiR393a
and AtmiR393b product miR393, was labeled with [c-32P] ATP
using T4 polynucleotide kinase. RNA gel blots were autoradio-
graphed to a phosphoimage screen, and the signals were quantified
using ImageQuant 5.0 (Amersham, Piscataway, NJ). For RT-PCR
analysis of miR393 precursors, the GGATCCAAAGGGATCGCAT
TG and GAATCCAAAGAGATAGCATG primers were, respectively,
used to amplify AtmiR393a and AtmiR393b transcripts with
Oligo-dT-primed first-strand cDNA. The PCR products were re-
solved with 4% agarose gel.

2.5. GUS staining and activity assay

Seedlings or tissues from transgenic plants were subjected to
vacuum while being immersed in a staining solution (25 mM
sodium phosphate buffer at pH 7.0, 10 mM EDTA, 0.5 mM ferricy-
anide, 0.5 mM ferrocyanide, 0.1% Triton X-100, and 2 mM 5-
bromo-4-choro-3-indolylb-D-glucuronide cyclohexylamine salt)
for 10 min before staining at 37 �C. GUS staining was performed
with 1-week-old seedlings for 0.5 h with the AFB2m:GUS line or
for 5 h with the AFB2:GUS line. For the AFB2:GUS and AFB2m:GUS
activity assays, the seeds were planted directly on ½ MS plates
containing 1% sucrose with 0, 0.5 or 1.0 lM ABA.

3. Results

3.1. The ABA-hypersensitive mutant fry1 is also hypersensitive to ABA
inhibition of lateral root development

The fry1 (fiery1) mutants were isolated through their phenotype
of super induction of the ABA- and stress-responsive gene RD29A
[19]. FRY1 encodes a bifunctional enzyme with both an inositol
polyphosphate 1-phosphatase activity, which catalyzes the degra-
dation of the second messenger inositol 1, 4, 5-trisphosphate (IP3),
and a nucleotidase activity, which degrades the adenosine 20,(30),
50-bisphosphate [22]. Because ABA mediates the inhibition of lat-
eral root growth by drought [3], we checked whether FRY1 could
be involved in this response. Indeed, fry1 mutants exhibited en-
hanced inhibition of lateral root growth in response to ABA
(Fig. 1). In fact, fry1 seedlings had dramatically reduced lateral root
growth even without ABA (Fig. 1 and [20]). This observation may
indicate a hypersensitive response to lower concentrations of
endogenous ABA, similar to the ABA hypersensitive gene induction
in the mutant [19].

3.2. Enhanced cleavage of AFB2 mRNA and elevated miR393 levels in
fry1

We previously reported that fry1 is less responsive to auxin in
both lateral root induction and the activation of the auxin response
reporter DR5::GUS as well as native auxin-responsive genes [20].
Since the F-box auxin receptors TIR1, AFB1, AFB2 and AFB3 are
involved in root system morphology [15,23], we checked the
transcript levels of these receptor genes in fry1. However, no signif-
icant differences were detected in the full-length mRNA levels
of TIR1, AFB1, AFB2, and AFB3 between the wild type and fry1
(Fig. 2A).

It is known that TIR1 family members are cleaved by miR393
[9–13]. Interestingly, whereas AFB2 cleavage products were barely
detectable in the corresponding wild types, these products ac-
counted for 11.3 and 6.7 percent of the total AFB2 transcript levels
in fry1-1 and fry1-6, respectively (Fig. 2A). The cleavage products of
the three other family members were also detectable, but were not
particularly accumulated in fry1 mutants (Fig. 2A and data not
shown). Using RNA isolated from 2-week-old seedlings, 50-RACE
further confirmed that the fry1-6 mutant contained a higher level
of AFB2 cleavage products than the wild type (data not shown).
These cleavage products were cloned, sequenced, and found to
be cleaved predominantly at the miR393 target site (Fig. 3A and
Supplementary Fig. 1).

Enhanced cleavage of auxin receptor transcripts in fry1 suggests
that fry1 might have an elevated level of miR393. Indeed, the
miR393 level was several-fold higher in fry1 than in the wild type,



Fig. 2. Accumulation of AFB2 cleavage products and elevated miR393 and its precursor levels in fry1. (A) RNA blotting analysis of TIR1 family members and their miR393
cleavage products in fry1 mutants. Full-length transcripts are indicated with arrows and cleavage products are indicated with asterisks. rRNA was used as a loading control.
(B) miR393 levels in fry1-1 mutants. 5S RNA and miR164 were used as loading controls. The relative level data are the signal ratios of miR393 to the 5SRNA transcript. (C) RT-
PCR of miR393 precursors AtmiR393a and AtmiR393b in fry1-6. PCRs were performed for 40 cycles in the first round (upper panel), after which the products were diluted 100-
fold and then amplified for 35 cycles in the second round (middle panel). A Tubulin gene was used as the control.

Fig. 1. fry1 mutants are hypersensitive to ABA inhibition of lateral root growth. (A) Morphology of 2-week-old wild-type and fry1-6 seedlings grown on ½ MS media with or
without ABA. (B) Total lateral root (LR) lengths of the wild-type and fry1-6 seedlings shown in (A). Data are means and standard errors (n = 5). ⁄ and ⁄⁄ denote significant
differences between fry1-6 and Col-0 at the 0.05 and 0.01 significance levels (Student’s t-test), respectively.
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particularly after ABA treatment (Fig. 2B). Nonetheless, compared
with the strong induction of miR393 by ABA in a previous report
[11], we could not detect a significant increase in the miR393 level
in the wild-type seedlings upon ABA treatment (Fig. 2B). Since the
Arabidopsis genome harbors two miR393 precursors, both giving
identical mature miR393 [11,12,24], we checked for their potential
contribution to the elevated miR393 level in fry1. While both pre-
cursors were barely detectable in the wild type, a significant level
of AtmiR393a was detected in fry1. When the first round PCR prod-
uct was diluted and subjected to a second round of amplification,
the AtmiR393b transcript could be detected in fry1 but not in the
wild type, even after 35 cycles (Fig. 2C). Therefore, both miR393
precursors were induced to higher levels in the fry1 mutant than
in the wild type.
3.3. Expression of miR393-resistant AFB2 stabilizes AFB2 expression

We generated transgenic plants expressing the AFB2 native pro-
moter driven either the AFB2:GUS or AFB2m:GUS translational
fusion constructs. The AFB2m gene contained synonymous muta-
tions in the miR393 target site, which lowered the free energy such
that the duplex formation was not favored (Fig. 3A). Since a certain
level of miR393 was detected in seedlings grown under normal
conditions (Fig. 3B), some difference in GUS activity between
AFB2:GUS and AFB2m:GUS transgenic seedlings would be expected
when the transcript is targeted by miR393. Indeed, the AFB2m:GUS
activity was detected in multiple transgenic lines after 0.5 h stain-
ing at levels that were comparable to or even stronger than those
in the 5-h stained AFB2:GUS seedlings (Fig. 3B and D). Therefore,



Fig. 3. ABA influences the stability of AFB2 through miR393. (A) Cleavage sites and mutated sequences of TIR1 and AFB2. The free energy of the native and mutated pairs is
indicated. (B) GUS staining in 6-day-old AFB2 or AFB2m transgenic seedlings treated with (right) or without (left) ABA at the indicated concentrations. (C) GUS staining in 6-
day-old AFB2 or AFB2m seedlings treated with 0 or 1.0 lM ABA. (D) GUS staining of lateral roots in 6-day-old AFB2 or AFB2m transgenic seedlings treated with (right) or
without (left) ABA at the indicated concentrations. ⁄ Denotes a significant difference between ABA treated and not treated at the 0.05 significance level (Student’s t-test).
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the mutated form of AFB2m is resistant to miR393-guided cleavage
under normal conditions.

We then investigated the impact of ABA on AFB2 expression in
these reporter lines. After treatment for one week with 0.5 lM
ABA, the AFB2:GUS staining was clearly reduced in the elongation
zone and was slightly reduced at the root tips (Fig. 3B). With
1.0 lM ABA treatment, a dramatic decrease in AFB2:GUS staining
was observed throughout the entire root (Fig. 3B). In contrast,
the same ABA treatments did not reduce GUS staining in the
AFB2m:GUS lines. In fact, the ABA treatments even slightly en-
hanced the AFB2m:GUS staining compared with the control
(Fig. 3B). The GUS activities in these lines were quantified using
proteins extracted from seedlings treated with or without 1.0 lM
ABA. ABA treatment reduced the AFB2:GUS activity by more than
50%, but increased the AFB2m:GUS activity by around 30%
(Fig. 3C). To further investigate AFB2 expression during lateral root
growth, we stained seedlings with lateral roots and found AFB2:-
GUS mainly at the lateral root tips. ABA treatment of these seed-
lings significantly reduced GUS activities in AFB2:GUS seedlings,
yet it had little effect on GUS activities in AFB2m:GUS seedlings
(Fig. 3D). These experiments were repeated several times with
similar results obtained.

3.4. Expression of miR393-resistant AFB2 or TIR1 blocks lateral root
inhibition by ABA or osmotic stress

With the above finding that ABA does not reduce the level of
AFBm:GUS expression, we examined whether attenuation of auxin
signaling through miR393 cleavage of auxin receptor transcripts is
required for ABA-initiated inhibition of lateral root growth. As
shown in Fig. 4A, ABA significantly inhibited lateral root growth
in wild-type seedlings, but it was unable to inhibit the growth of
lateral roots in both miR393-resistant AFB2m and TIR1m transgenic
seedlings. After ABA treatment, the lateral root length decreased by
about 60% in the wild-type but by less than 10% in the miR393-
resistant seedlings (Fig 4B). Therefore, miR393-guided transcript
cleavage of TIR1 family members is essential for ABA inhibition
of lateral root growth.

Since osmotic stress is an important component of drought
stress and can be administered in a more quantitative way using
polyethylene glycol (PEG) in agar media [21], we investigated if
the inhibition of lateral growth by osmotic stress [3] also requires
miR393-guided cleavage of TIR1 family transcripts. PEG treatment
inhibited lateral root growth both in the wild-type and transgenic
control plants but much less so in the miR393-resistant seedlings
(Fig. 4C). Compared to plants in the non-stress control, the total
lateral root length decreased by 38% and 25% in the PEG-treated
AFB2m and TIR1m plants, respectively; whereas in AFB2 and TIR
plants, the total lateral root length decreased by 73% and 41%,
respectively (Fig 4D).

4. Discussion

In plants, inhibition of lateral root growth combined with pro-
motion of primary root growth are common adaptive responses
to drought stress, yet the underlying mechanisms for these adapta-
tions are unclear [3]. In this study, we first observed that the ABA-
hypersensitive mutant fry1 is also hypersensitive to ABA-regulated
inhibition of lateral root growth (Fig. 1). Since fry1 mutants are less
sensitive to auxin [20], we hypothesized that the FRY1 locus might
mediate the antagonistic interaction of these two signaling path-
ways. It should be noted that fry1 is distinct from other auxin-
resistant mutants, such as axr1, axr2, and ibs, which have reduced
sensitivity to both auxin and ABA [25,26]. Therefore, FRY1 may
underpin novel mechanisms responsible for the interaction be-
tween ABA and auxin signaling pathways.

Auxin is perceived by auxin-receptor TIR1 family members,
which, upon binding to auxin, target Aux/IAA proteins, the repres-
sors of auxin signaling, for degradation [8]. Given that fry1 exhibits
broad auxin-insensitive phenotypes, it is likely that fry1 plants pos-
sess impaired auxin receptor functions. Auxin receptor transcripts
are known targets of miR393-guided cleavage [9–13]. Intriguingly,



Fig. 4. Expression of AFB2m and TIR1m confers ABA and PEG insensitivity in lateral root growth. (A) Four-day-old wild type, TIR1, TIR1m, AFB2, and AFB2m transgenic seedlings
were transferred from regular ½ MS media to MS media supplemented with the indicated concentrations of ABA. The pictures were taken 4 d after the transfer. (B) Relative
lateral root lengths of the indicated seedling lines treated with or without ABA. Data are averages of two independent experiments with four seedlings for each line. ⁄ Denotes
a significant difference between ABA treated and not treated at the 0.05 significance level (Student’s t-test). (C) Four-day-old seedlings were transferred from the regular ½
MS medium to a medium with �0.5 MPa PEG. The pictures were taken ten days after the transfer. (D) Relative lateral root lengths of the indicated seedling lines treated with
or without PEG. Data are averages of two independent experiments with four seedlings for each line. ⁄ denotes a significant difference between AFB2m and AFB2 with PEG
treatment at the 0.05 significance level (Student’s t-test).
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miR393 has been shown to be induced by ABA and various stresses
[11,18]. Although we did not detect a strong ABA or stress induc-
tion of miR393 in wild-type seedlings under our experimental con-
ditions, elevated miR393 levels were clearly seen in fry1 mutants,
particularly after ABA treatment (Fig. 2B and C). This suggests that
the ABA hypersensitivity of fry1 may lead to sensitized ABA induc-
tion of this microRNA. Similarly, we detected reduced expression of
miR393 in the ABA-insensitive mutant abi1 (H. Chen and L. Xiong,
unpublished). These data indicate that miR393 and its precursors
may be under complex regulation by ABA and other stimuli
(Fig. 2C).

As expected in plants with elevated miR393 levels, significantly
more cleavage products of AFB2 were accumulated in fry1 (Fig. 2A).
However, we failed to amplify any AFB3 cleavage products using
RNA from young seedlings. In floral tissues, cleavage products of
AFB2, AFB3, and TIR1 but not AFB1 were detected [10], suggesting
that tissue-specific cleavage events might occur. This kind of spa-
tially regulated cleavage of TIR1/AFB transcripts likely plays a pre-
dominant role in controlling localized auxin responses. It also
implies that only a fraction of the total TIR/AFB transcript pool is
targeted by miR393 for cleavage. This perhaps explains why no sig-
nificant difference in total steady-state TIR1/AFB transcript levels
was found between wild-type and fry1 homogenized seedlings
(Fig. 2A).

Direct evidence for in vivo cleavage of auxin receptor mRNA by
ABA-induced miR393 was also obtained using AFB2:GUS transgenic
plants. Upon ABA treatment, AFB2:GUS staining was reduced,
whereas AFB2m:GUS staining was not (Fig. 3B–D). We therefore
suggest that ABA acts through promoting the cleavage of AFB2
transcripts rather than repressing AFB2 transcription, although
we could not rule out the possibility that miR393 may additionally
inhibit translation of the TIR1/AFB proteins.

ABA destabilization of the TIR1/AFB transcripts via miR393-
guided cleavage may represent a key mechanism responsible for
ABA regulation of root adaptation to drought stress. Whereas the
native AFB2 and TIR1 transgenic seedlings responded to ABA and
PEG similarly to wild-type plants, miR393-resistant TIR1m and
AFB2m seedlings were insensitive to the inhibition of lateral root
development caused by ABA and PEG treatment (Fig. 4). Thus, it
is the miR393 resistance of the auxin receptors that is responsible
for the ABA insensitivity in these plants. Although TIR1 has been
shown to be the primary auxin receptor modulating lateral root
growth [23,27], it is not unexpected that miR393-resistant AFB2m
also exhibited ABA- and PEG-insensitive lateral root growth, since
TIR1/AFB genes express in a largely overlapping pattern and show
certain functional redundancy [23]. Consistent with this notion,
both TIR1m and AFB2m transgenic seedlings still displayed certain
ABA responsiveness in lateral root growth (Fig. 4). Taken together,
our results demonstrate that ABA modulates root adaptation to
drought stress at least partially through up-regulation of
miR393-targeted cleavage of auxin receptor transcripts.
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